
Automation Of The Design Flaw Detection Process In
Object-Oriented Systems

Ciprian-Bogdan Chirilă
chirila@cs.utt.ro

September 10, 2002

Abstract

Because of the huge number of monolithic
and inflexible object-oriented systems and
their huge costs there is a need for redesign
in order to maintain and to reuse them.

For redesigning such a system we have to
eliminate the design flaws, and this is pos-
sible with the help of detection strategies in
a systematic, scalable and repeatable way.

In this paper will be presented a software
tool which modelates the detection strate-
gies using metrics, statistical operators, de-
tects problems in legacy systems and offers
introspection at the exact suspect entity.

1 Introduction

In the ’80s were built a huge number
of object-oriented systems which have to
be developed further. Using the object-
oriented technique advantages are achieved
better software quality and reduced devel-
opment time.

In the ’90s were obtained a huge num-
ber of object-oriented systems on large scale
which seem to be:

• inflexible: there can not be added very
easily new functionalities

• monolithic: there is a lack of struc-
tured functionality for the system
which is based on components

• hard to maintain: adding new features
fails in an endless chain of changes in
multiple places.

A decision has to be made about such a
software system. If dealing with a low eco-
nomic value system and the system is not
flexible we may drop it. The problem is
critical in the situation of high economical
value systems. The development have to
continue in spite of it’s inflexibility. There
is a need for flaws detection in order to elim-
inate them and to continue the development
process.

2 Flaw Detection Au-

tomation

We built a software tool which will offer a
general and scalable detection process. The
approach is based on the detection strategy

1

concept defined in the articles [6, Mari01a],
[7, Mari01b] which reffer to design flaw de-
tection based on metrics.

2.1 Metamodel

Figure 1: Approach

Starting from the source code of a legacy
system is generated a metamodel which
contains information that assists the detec-
tion process. The informations included are
accesses, method calls, class declarations,
variable declarations, inheritance relation-
ships informations which are stored in ta-
bles.

2.2 Metrics

2.2.1 Definition

Metrics are functions that reflect the prop-
erties of the software entities through a
number. By entities are reffered classes,
methods and subsystems.

2.2.2 Example

Weight of a Class (WOC) By Weight
of a Class metric is measured the ratio of

the non set-get methods and all the mem-
bers in the interface of the class. The metric
counts the functionality degree of the class.

Number of Public Attributes (NOPA)
The name of the metric is very sugges-
tive. The result is useful for the detec-
tion of classes which stores data separating
them from their behaviour, an error-prone
in object-oriented technology.

Number of Accessor Methods
(NOAM) The accessor methods we
are reffering to are the set-get methods
which have the job of reading or writing
values into class members. Some program-
mers hide data in classes separating them
for their natural behaviour.

2.3 Outliers

2.3.1 Definition

An outlier is a statistical operator which ap-
plied to a data collection, extracts the ex-
treme value data. The software tool will ap-
ply outliers on entity collections. The out-
lier is in fact a filtering mechanism that will
select the suspect entities.

The parametrization of the defined mech-
anisms is a complex problem. The current
approach is based on setting a default ini-
tial value for the parameters. During the
case studies those parameters will vary but
finally they will stop at a given value or
range. The magnitude of the analyzed soft-
ware project must be considered when tun-
ing outliers.

2

2.3.2 Example

Top Values, Bottom Values This type
of outliers are interested in extreme value
entities. Entities with extreme values mea-
sured may be considered suspicious.

Higher Than Values, Lower Than Val-
ues This type of outliers filter those enti-
ties with values higher or lower than a se-
lected threshold. Entities with that type of
values may be considered suspicious.

BoxPlots The BoxPlots outlier is a com-
plex filtering mechanism used for compair-
ing two nearly-continuous variables.

2.4 Detection Strategy

2.4.1 Definition

The definition for the detection strategy of
a design flaw is: [6] cuantifiable expresion of
a rule which may detect automatically the
entities affected by the design flaw. The
detection strategy is a mechanism based on
concepts like filtering and composition.
The rule may be formalized by a metric
based formula:

S := M1
O1 ∗M2

O2 ∗ · · · ∗Mn
On

∗ := ∪ | ∩ | \

In order to operate over the metamodel
a tree structure to model the theoretical
formula is needed. This set of (simplified)
rules is presented here:

DetectionStrategy

:= StrategyDefinition

SymbolsDefinition

rules for defining a

detection strategy

StrategyDefinition

:= StrategyName ":="

DetectionRule ";"

DetectionRule

:= MetricWithOutliers |

ComposedDetectionRule

MetricWithOutliers

:= "(" MetricName ","

OutlierName ")"

ComposedDetectionRule

:= DetectionRule

CompositionOperator

DetectionRule

StrategyName

:= [A-z][A-z0-9_]

CompositionOperator

:= "or" |

"and" |

"butnotin"

symbols are defined by

metrics and outliers

SymbolsDefinition

:= MetricDefinition |

OutlierDefinition

rules for metric definitions

MetricDefinition

:= MetricName

":="

SqlQuery ";"

MetricName

:= [A-z][A-z0-9_]

3

SqlQuery

:= [.]

SELECT <Entity> <Value>

rules for outlier

definitions

OutlierDefinition

:= OutlierName

":=" OutlierType

"(" OutlierParameter ")" ";"

OutlierType

:= "TopValues" |

"BottomValues" |

"HigherThan"|

"LowerThan" |

"BoxPlots"

OutlierName

:= [A-z][A-z0-9_]

OutlierParameter

:= [0-9][0-9,][%]

2.4.2 Example

Data Classes The example proposed is
a detection strategy which detects data-
classes. Data-classes are ??? [7, Mari01b].

DataClassesStrategy:=

(

(WOC, WOCBottom) and

(WOC, WOCLower) and

((NOPA, NOPAOutliers) or

(NOAM, NOAMOutliers))

);

WOC:=

SELECT all_pub.f_class

AS f_class,

(100*pub_mth.cnt /

all_pub.cnt)

AS woc FROM...

NOPA:=

SELECT f_class,

count(f_class)

AS nopa

FROM v_members...

NOAM:=

SELECT f_class,

count(F_class)

AS noam

FROM v_accessor_methods...

WOCBottom := BottomValues(10);

WOCLower := LowerThan(33);

NOPAOutliers := TopValues(7);

NOAMOutliers := TopValues(5);

We will tackle about this strategy and it’s
target to detect data classes. By data
classes we mean those classes which sepa-
rates data from their behaviour. Based on
this principle we may build the strategy in
the folowing way: we are interested in those
classes that have many data members and
do not have much functionality. The strat-
egy will be composed out of WOC metric in
order to measure the lack of functionality,
NOPA and NOAM metrics. ???

Case Study We run “Data Classes”
strategy on a case study and the folowing
result showed up:

Class WOC NOPA NOAM

A 0.05 14
B 0.06 16
C 0.10 20

4

The results are the following: class A and
B are lighter than the threshold imposed by
the outlier and we may say that are data
classes. Class C doesn’t have public mem-
bers instead it is hiding them under accessor
methods.

3 Conclusions

The benefits using the software tool are:

• sistematic approach by the description
of the strategies using the Sod lan-
guage. With the Sod language one
may create several strategies that will
incapsulate the experience and the ef-
fort used in a manual design flaw de-
tection.

• repeatability based on the fact that the
strategies are reusable, the paramaters
may change but the strategy remains
the same. The tunning of the param-
eters should be made in conformance
with the scale of the software system.
By using the parameters also the de-
gree of acuracy or severity of the flaw
detection may be set.

• scalability provided by the software
tool Prodeoos and the results ob-
tained on industrial systems. The soft-
ware tool behaves the same way on a
large scale system as on a small scale
system. The only thing that differs in
those cases is the detection time. Af-
ter a detection has made the user has
direct access to the suspect entities of
the system, which will accelerate the
process of understanding the cause of
the flaw.

References

[1] H. Schildt: C++, Manual complet,
Editura TEORA, 1997.

[2] G. Booch: Object-Oriented Analysis
and Design with Applications, Second
Edition, Addison-Wesley, 1994.

[3] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides: Design Pat-
terns Elements of Reusable Object-
Oriented Software, Addison-Wesley,
1997.

[4] Robert Martin: Design Principles and
Patterns.
http://www.objectmentor.com, 2000.

[5] Fowler Martin: Refactoring.
Second Edition, Addison-Wesley, 1999.

[6] R. Marinescu. Detecting Design Flaws
via Metrics in Object-Oriented Sys-
tems. Proceedings of the TOOLS-USA
39, ISBN 0-7695-1251-8, IEEE Com-
puter Society, 2001.

[7] R. Marinescu. Design Flaws and De-
tection Strategies. PhD Presentation,
Karlsruhe, April 2001.

5

