
A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

1 of 6

A BETTER REPRESENTATION FOR CLASS RELATIONSHIPS IN

UML USING OFL META-INFORMATION

Dan Pescaru (*), Philippe Lahire (**), Ciprian Chirila (*),
Emanuel Tundrea (*)

(*) “Politehnica” University of Timisoara, Automation and Computer Science Faculty,

Computer Science Department, V. Parvan no. 2, B622, Timisoara, Romania
dan@cs.utt.ro, chirila@cs.utt.ro, emanuel@emanuel.ro

(**) University “Sophia Antipolis” Nice, I3S Laboratory (UNSA/CNRS),
Les Algoritmes, bat. Euclide B 2000, Route des Lucioles BP121,

F-06903 Sophia Antipolis CEDEX, France
Philippe.Lahire@unice.fr

ABSTRACT
In the last decade software industry exists a general opinion about the evident gap

between object-oriented modeling languages and programming languages with a great impact
on products reliability, testability and maintenance. Many companies do not use yet Unified
Modeling Language (UML), which is the Object Management Group (OMG) standard of
object-oriented modeling languages since many years. Indeed, even they use UML in the
analyzing phase, they prefer to jump over implementation model for application. Instead they
are using to have only an ad-hoc model that resides directly in implementation. First explanation
consists in contradiction between generality of UML and specificity of application model after
implementation in a programming language. The reaction of OMG against these critics was the
definition of UML Profiles as standard means to adapt the UML to some domain-specific needs.
In this framework, this paper propose a precise representation of programming language class
relationships that can be included in a language specific Profile. This goal is achieved using
meta-information about the programming language described in a meta model named OFL.

Keywords: UML, application modeling, OFL, meta-programming

1. INTRODUCTION
The Unified Modeling Language (UML) [1] is a standard introduced by OMG .

It is used in a wide area of contexts, by people coming from different cultures, many of
them considering (more or less justified) their case special and asking for a deviation
from the standard in the form of a particular tuning of UML. A hard-coded UML
precise semantics would preclude the existence of these tunings and thus would be
practically unacceptable. Considering this, the OMG proposed a definition for UML
Profiles as standard means to adapt the UML to some domain-specific needs.

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

2 of 6

The goal of this research is to define construction belonging to specific Profiles
that bring closer object oriented programming languages and UML. The problem
appears when the UML is used to create an implementation model. After the
implementation of this model, the application will contain itself an intrinsic model.
Because a programming languages has a more precise semantic than UML, this two
models will be different. If the specification change the problems will appear at
reengineering phase.

If we think at UML Profile solution, the problem is how to specify this profile in
order to fill the gap. This problem is harder if we think in terms of number of existing
programming languages, each of them with different versions and flavors. The approach
presented here tries to use meta-information about a programming language described
in a meta-meta model called OFL [2, 3].

2. UML AND UML PROFILES
The Unified Modeling Language (UML) is a graphical language for visualizing,

specifying, constructing, and documenting the artifacts of a software-intensive system.
The UML is, as its name implies, a modelling language and not a method or process.
UML is made up of a very specific notation and the related grammatical rules for
constructing software models.

UML in itself does not prescribe or advise on how to use that notation in a
software development process or as part of an object-oriented design methodology. It
describes the notation for classes, components, nodes, activities, work flow, logical,
objects, states and how to model relationships between these elements. UML also
supports the notion of custom extensions through stereotyped elements.

Any modeling language need support for application constraints as assertions. In
UML they are modeled in Object Constraint Language OCL [4].

An UML Profile consists of a set of UML extensions (stereotypes, tagged
values, constraints) and is supplemented by specifications of the mappings of the
domain concepts to those extensions, and specifies additional well-formedness rules
(expressed in OCL or in natural language). Each particular profile is described through
its Virtual Meta-model.

The general UML Profile mechanism is discussed in [5]. It presents how specific
domains, which require a specialization of the general UML meta-model, can define an
UML profile. The goal is to focus UML to describe more precisely the considered
domains.

Even as concrete UML profiles have started to emerge [6, 7], use of the profiling
mechanism is still discussed [8].

3. THE OFL MODEL
OFL is the acronym for Open Flexible Languages [2, 3] and the name of a meta-

model for object oriented programming languages based on classes. It is developing in
France at University ”Sophia Antipolis” of Nice. It relies on three essential concepts of
object oriented languages: the descriptions that are a generalization of the notion of
class, the relationships such as inheritance or aggregation and the languages themselves.
OFL provides a customization of these three concepts in order to adapt their operational
semantics to the programmer’s needs. It is then possible to specify new kind of

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

3 of 6

relationships and classes that could be introduced in an existing programming language
in order to improve its expressiveness, its readability and its capabilities to evolve.

Rather than allowing redefining language behaviors thanks to algorithms, OFL
propose a set of parameters. At first reading the OFL approach can be summed up as the
search for a set of parameters whose value determines the operational semantics of an
object language based on classes. Parameters represents the main features of the
behaviors of these three important notions that are called concept-relationship, concept-
description and concept-language. For instance, concerning the concept-relationship, the
value of the Cardinality parameter allows to specify if it is simple or multiple. The
operational semantics of each concept must adapt to the value of its parameters. This is
achieved thanks to a set of action’s algorithms whose execution depends on these
values. This paper consider the original model extended through modifiers [9].

Figure 1 presents the OFL Architecture in context of a very basic application. It
is organized on three levels: OFL (concepts and atoms), OFL-Components and OFL-
Application.

Fig. 1. The OFL Architecture

 4. DEFINITION FOR VIRTUAL META-MODEL ELEMETS.
A virtual meta-model is a formal model of a set of UML extensions, expressed

in UML. Consequently, this section defines elements regarding relationships
representation that have to be included in Profiles designed for object oriented
languages. These Profiles will be named generic as OFL-ML Profiles. According to
OFL architecture, the Stereotypes introduced in the Virtual Meta-model corresponds to
two kinds of relationships: OFL-ImportRelationship and OFL-UseRelationship. It also

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

4 of 6

adds the necessary TaggedValues, Constraints, and Common Model Elements to
complete the Profile.

These stereotypes could be used in modeling tools to generate corresponding
instances of OFL elements and to fill them with appropriate information.

4.1. Representation of OFL-ImportRelationships
The OFL-import relationship is a generalization of the inheritance mechanism

found in object oriented languages. The meta-programmer has responsibility to create
an OFL relationship component for each import relationships existing in the modeled
language. The Profile will contains all necessary elements in order to represents all
these components.

The abstract stereotype <<OFLImportRelationship>> is the base for all the
concrete stereotypes representing OFL ImportRelationhip components of the considered
language. The name of the generated stereotypes are the same as the name of the OFL
components with ”Component” prefix removed (ex. for a component
”ComponentJavaExtends”, a stereotype named <<JavaExtends>> will be created).

All relationships stereotyped as specialization of <<OFLImportRelationship>>
will have associated a set of tagged values. Values of these elements correspond to
some OFL-AtomRelationship characteristics. These tagged values are presented in
Table 1. In addition, one tagged value will exists for each modifier associated with a
relationship component.

Table 1. OFL-ML Tagged Values for OFLImportRelationhip
Tagged-Value
Name

Tagged-Value
Value

Comment

abstractedFeatures string (list of feature names) list of concrete methods that are
abstracted

effectedFeatures string (list of feature names) list of abstract methods that are
effected

hiddenFeatures string (list of feature names) list of features that are hidden
redefinedFeatures string (list of feature names) list of features that are

redefined
renamedFeatures string (list of feature names) list of features that are renamed
removedFeatures string (list of feature names) list of features that are removed
shownFeatures string (list of feature names) list of features that pass the

relationship unchanged
All modifiers constraints defined at the level of relationship components will be

added. Transformation rule will translate all characteristics of relationships components
into corresponding tagged values:
(1) self.relationshipCharacteristic->forall(f:Feature|f.modifiers->includes(’modifier_name’))

translated into:
(1a) self.stereotype.taggedValue->forall(t:taggedValue |

(t.name = ’relationshipCharacteristic’ and t.values->includes(feature_name))
 imply
 self.parent.features->forall(f:Feature | f.name = feature_name
 imply
 f.stereotype.taggedValue->select(name = ’modifier_name’)->size = 1))

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

5 of 6

Additionally, several OFL Parameters have to be considered when constraints
are designed. The considered parameters are: cardinality, repetition, circularity,
feature_variance, abstracting, effecting, masking, redefining, renaming, removing and
showing. Also the characteristic AtomLanguage:: validRelationships have relevance in
this context.

Considering ConceptRelationship::cardinality parameter, it specify the
cardinality of relationship as an integer value n in the meaning of cardinality 1-n. As an
example, for simple inheritance n = 1 and the cardinality is 1-1. Constraint related with
this parameter will check conformance with cardinality specification. If cardinality is ∞
no constraint is necessary.

Rule context: cardinality ≠ ∞
context ComponentRelationhip(OFLImportRelationship)
inv: self.child.generalization->select(gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = n)

4.1. Representation of OFL-UseRelationships
The OFL-Use relationship is a generalization of the aggregation mechanism

found in object oriented languages. The meta-programmer has responsibility to create
an OFL relationship component for each kind of use relationships existing in the
modeled language.

The abstract stereotype <<OFLUseRelationship>> is the base for all the
concrete stereotypes representing OFL UseRelationhip components of the considered
language. As for import relationships presented in the section above, the name of the
generated stereotypes are the same as the name of the OFL components with
”Component” prefix removed (ex. for a component ”ComponentJavaAggregation”, a
stereotype named <<JavaAggregation>> will be designed). Also, same way as for
import relationship, all use relationships stereotyped as specialization of
<<OFLUseRelationship>> will have associated a set of tagged values that corresponds
to some OFL-AtomRelationship characteristics: hiddenFeatures, renamedFeatures,
removedFeatures and shownFeatures.

All associations that correspond to an OFL use relationship must have exactly

two ends that correspond to source and target of relationship.

context ComponentRelationhip(OFLUseRelationship)
inv: self.allConnections->size = 2

Some constraints regarding parameters of OFL-concept-relationship generated

for import relationships are valid also for use relationships. In this context, the
OFLUseRelationship stereotype will replace OFLImportRelationship as ancestor of
ComponentRelationship stereotype. Also, UML-associations attribute will replace the
UML-generalization. This attribute is a set that contains all association relationships in

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

6 of 6

which considered classifier is involved. Considering parameter ConceptRelationship::
cardinality, transformed constraint will be the following:

Rule context: cardinality ≠ 1
context ComponentRelationhip(OFLUseRelationship)
inv: self.child.associations->select(assoc |
 assoc.isStereotyped(’ComponentRelationship’) and
 assoc.child = self.child)->size = n

The list of parameters that are significant in context of an use relationship is:

cardinality, repetition, circularity, masking, renaming, removing and showing.
Constraints will consider all these values in context of target language.

5. CONCLUSION AND FUTURE WORK.
This paper present an approach for describing UML Profiles for object oriented

programming languages modeled by OFL. It is focused on describing a detailed model
for class relationships. It enrich original UML elements with features that allow a better
representation of these relationships. The main achieved goal is to fill the gap between
programming language expressivity and modeling language semantics.

The future work include a better models for class entities and the integration of
these elements into several profiles designed for commercial languages like C++, Eiffel,
Java or C#.

6. REFERENCES

[1] Object Management Group OMG (2003) - “Unified Modeling Language
Specification, version 1.5”, 1st ed., http://www.omg.org

[2] P. Lahire, P. Crescenzo, and A. Capouillez (2002) - “Le modele OFL au service du
m´etaprogrammeur - application a Java”, proceedings of LMO 2002, Montpellier,
France

[3] P. Crescenzo and P. Lahire (2002) - “Customisation of Inheritance”, Springer
Verlag, LNCS series, ECOOP’2002 (The Inheritance Workshop) and Proceedings
of the Inheritance Workshop at ECOOP 2002, University of Jyvskyl, Finland

[4] R. Hennicker, H. Hussmann, and M. Bidoit (2002) - “Object Modeling with the
OCL: The Rationale behind the Object Constraint Language”, Springer Verlag,
LNCS series, volume 2263

[5] P. Desfray (1999) - “White Paper on the Profile Mechanism”, OMG document
ad/99-04-07, http://www.omg.org

[6] Object Management Group OMG (2001) - “UML Profile for EJB Specification” ,
Version 1.0, http://www.omg.org

[7] Object Management Group OMG (2002) - “UML Profile for CORBA
Specification”, Version 1.0, http://www.omg.org

[8] C. Atkinson and T. Kuhne (2000) - “Strict profiles: Why and how”, Springer
Verlag, LNCS series, volume 1939, UML 2000 Third International Conference,
University of York, UK

[9] D. Pescaru and P. Lahire (2003) - “Modifiers in OFL: An Approach for Access
Control Customization”, The 9th International Conferences on Object-Orinted
Information Systems - OOIS’03, WEAR workshop, Geneva, Swizerland

