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Abstract — In this paper we present a new approach for
facilitating the maintenance, reengineering and
adaptation of class libraries designed using object-
oriented technology. The technique uses a new class
relationship called reverseinheritance. Westriveto prove
that using this class relationship with it's factoring
supporting mechanism it is possible to factor features
from a hierarchy, to add new featuresto a hierarchy, and
to connect two classhierarchies. Alsoin the paper alist of
problems relative to the new approach isformulated.

Keywords: inheritance relationship, reverse inheritance
relationship, reengineering.

I. INTRODUCTION

Inheritance is the most difficult and the most problematic
issue in the object-oriented programming. This feature
distinguishes object-oriented programming from object-
based programming or from other modern programming

languages. Inheritance is defined informally as [5]: an
incremental modification mechanism that transforms the
ancestor classinto a descendent class by augmentingitina
various way. The informal definition is broadly accepted
by researchers, but it’simplementations are very different.
Another definitionisgiven in [17], inheritance is viewed as
a shorthand mechanism for defining a new class relative to
an existing class specifying only the differences, inheriting
al the existing features. As many implementations for

inheritance exist, as many object-oriented paradigms are to
be considered [5].

In this paper we present the model of a new kind of

inheritance class relationship and we show the motivations
behind the supporting mechanisms that are needed. Direct
inheritance models are downward type of inheritance,
while what we propose, reverse inheritance for software
adaptation and evolution, is an upward type of inheritance.
It is more natural to define concrete subclasses and then to
extract commonalities into superclasses[11].

In [3] are presented the main use cases of reverse
inheritance. The need for reverse inheritance is motivated

because of the many facilities offered: i) to share common
functionalities; ii) inserting a class into an existing
hierarchy; iii) extending an existing hierarchy; iv) adding
features to a class; v) factoring features from classes. The
proposed technique is applied to class libraries and
components - in the sense of hierarchies of classes stated
by Bertrand Meyer in [8].
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Fig. 1. Approach

The diagram from figure 1 depicts the states through which
the library is transformed in order to reach evolution and
adaptation goals. We start from state A, the original state of
the library that we want to reengineer. The choice is
dichotomist, the available possibilities are: adaptation or
evolution. By adaptation we mean changes that will make
the classes suitable to a particular context: removing
unused features, adding new ones, renaming existing ones.
By evolution we refer to changes that keep the original
interfaces intact in order to be compatible with older
clients. Then another two cases appear for each choice:
wheatear we have or not access to modify the source code.
Because of many reasons source code may not be
modified: i) software may be copyrighted; ii) software have
to be unchanged for existing applications; iii) softwareis
maintained by third party; iv) software of source code is
not available e.g. precompiled libraries. In state B (B1 or
B2) the hierarchies are linked by inheritance and reverse



inheritance. In this state are applied the changes towards a
new context or a new purpose of the classes. State C isthe
final one, inwhich only direct inheritance classrel ationship
is used, al the reverse inheritance link being transformed
automatically into native language class relationships. The
set of code transformations we are using deals with
signature adaptation and uses the following basic actions: i)
method / parameter renaming; ii) parameter addition /
removal / reordering; iii) method parameter type changing.
Now the library code is human readable, refactored,
adapted, evolved, ready to be integrated into the new
context.

The structure of the paper is the following: In the first
section it is presented the new classrelationship relative to
it's symmetrical, normal or direct inheritance. In section
two we present our approach relative to reverse inheritance
and possible use cases. In the third section factoring
mechanism it is described. The fourth section talks about
the motivation for the renaming mechanism and related
problems. In the fifth section related works are exposed
with their differences from our work. In the sixth section
conclusions are extracted and future works are traced.

I1. ABOUT FACTORING SEMANTICS
A. Inheritance Semantics

We strive to define reverse inheritance relative to the
definition of normal inheritance and to assign semanticsto
it. A first possible informal definition follows: Reverse
inheritance is defined as the inheritance’s symmetrical
relationship. At the code level we, introduce two new
keywords infers which intends to be the symmetrical of
extends, and foster [7] by which the base class of reverse
inheritance is denoted:

A

extends | r——" infers

Fig. 2. Infers
/'l used by desi gner
class B extends A {}
/1 used by progranmrer, nmaintainer

foster class Ainfers B {}

This definition is very ambiguous and a new one, more
formal is needed. So the best way in finding a definition, is
to start from one of the formal definitions of inheritance,
from literature [14, 15, 16, 17, 19]. The selected one isthe
following: derived = base A extra, where the union with
override operator A is defined as:

"a,b,gA:@®b) " @® g)® (a® bEQ)
A=1(f:a® b)l(g:a® g).
{ki> v|(kT don(f)E dom(g))U

(kT dom(g) b v=g(k))U(kT dom(g) P v= f(k))}
The wunion with override operator is a standard
mathematical operator that combines two mapsin a special
way, which is defined above. A map is a collection of
name-value pairs called maplets (eg. {a® x, By, ...}).
Objects are modeled as records or maps where each field
consists of a label that maps to a value. Operator A takes
two maps and creates a new map that contains al the
mapl ets that satisfy the given condition. The domain values
k are taken from the reunion of both argument map
domains. The range values v are obtained in the following
way: if k isin the domain of the second argument g than
it'svalueis used, otherwise the value of the first argument
f it is used. In the case of conflicting labels are preferred
the values from the second map argument g.

B. Reverse|nheritance Semantics

In the context of the inheritance model presented, we
define our reverse inheritance class relationship and it's
associated mechanismsin avery similar way:
base = factored A extra

factored = derived, C derived, C ... C derived,,
We must remind the context of our approach that the base
class also called foster [7] has to be created and managed
by the programmer or the maintainer, and that the rest of
the derived classes, that will be adapted may belong to
different libraries, class hierarchies.
Thefirst line defines thebase class of areverse inheritance
which consists of two component records factored and
extra. The main ideais: to extract common features from
library classes an to put them into the foster class. We
consider common features all the features that [7]: i) have
the same name in each class; ii) exists a signature that
conforms to the signature of each featurein each class. To
be more specific, fields should be treated differently from
methodsin the following way: i) moving thefieldsto foster
class; ii) creating abstract methods in foster class
corresponding to each factored item from the derived
classes. The motivation behind this idea is to avoid data
duplication and to benefit from the dynamic linking of
polymorphism when calling methods using foster class
references. The control of the code, data and behavior is
better if it iscentralized in the foster class. Asdescribed in
the use cases of [3] code using reverse inheritance class
relationship flexibility is achieved (e.g design patternslike
Composite [6] can be more easily applied).
The factored component record contains all the common
featuresfromthederived classes (derived). Thisidearefers
the factoring use case enumerated in section |. It's content
is denoted by the intersection of all features from the
derived classes. All the common features extracted from
the derived classes are called factored features. There is
also the possibility to add new features - grouped in a



record named extra - to thelibrary classes. With this object
record we address the feature adding use case described in
section |.

C. Intuitive Approach Through an Example

In this subsection through an exampleit is presented how
the proposed reengineering processworks. It isemphasized
at each level the operations that adapt library classes.

a) Sate A: In our practical sample, we start from two
library classes Rectangle and Ellipse (state A, on the
schema 1) that belong to two different hierarchies and are

planned to be used together in a new context:
class Rectangle {

doubl e perineter;
doubl e get Area()
{/*rectangl e inplenentation*/}}
class Ellipse {
doubl e perineter;
doubl e get Area()
{/*ellipse inplenentation*/}}
Analyzing the code we can conclude that perimeter
member and getArea() method can be factored. An
automated technique in matching signaturesis presented in
[20], defining a method of organizing, navigating through,
retrieving from software libraries. Signature matching is
the process of determining which library components
“match” a query signature. There are considered cases of
exact matching and various flavors of relaxed matches,
based on type built-in information.
b) Sate B: In state B of figure 1 the reengineering process
isinitiated and a new foster classis created containing the
factored features. We will demonstrate that using the foster
classit is possible to manage collection of shapes (e.g to
compute the area of the collection uniformly, to modify the
perimeter of each item, and even to add anew field: color).
foster class Shape infers Rectangl e,
Ellipse {
factored doubl e perineter;
/*no inplenentati on, abstract mnethod*/
factored doubl e getArea();
/*extra attribute*/
int color;}
In the code above, it is presented the structure of the new
foster class, it containstwo factored features: perimeter and
getArea() and one extrafeature color. The factored features
were treated differently because one is attribute and the
other is method. The former was moved from their origina
location classes Rectangle and Ellipse to the foster class
Shape. The letter, getArea() being a method it had to be
abstracted through the abstract method factored double
getArea() inserted into the foster class. Methods and
attributes have to be treated differently because attributes
with the same signature give the same state component in
each object, while methods with same signatures may have
different implementations in different classes.
¢) Sate C: In state C some modifications at the structure of
derived classes were made, eliminating the duplicated data
(acopy wasin the derived classand onein the foster class):

cl ass Rectangl e {
doubl e get Area()
{/*rectangl e inplementation*/}}
class Hlipse {
doubl e get Area()
{/*ellipse inplenmentation*/}}
After all the reengineering process, the transformationsthat
were made, make possible code constructs like:
Shape sl=new Rectangl e();
Shape s2=new El | ipse();

sl.get Area();

s2.get Area();

As seenin the code above, in the new context, collection of
shapes can be very easily managed by the foster class, not
depending on the type of the instance: s1 and s2 are of type
Shape even they reference objects of types Rectangle and
Ellipse. This is possible due to the transformations made
with the help of reverse inheritance and polymorphism. If a
Composite or Strategy design patterns[6] are necessary, in
this state they can be achieved without making any
modifications to shape classes. This sample presents an
ideal situation, in which the factored features have the same
signature as in subclasses. In rea situations signatures of
factored features are not identical and they have to be
adapted using code transformations pointed out in section |.

[11. PROBLEMS TO ADDRESS

In this section will tackle about the problems and
restrictions that may arise in applying our adaptation and
evolution technique. Also there will be pointed awkward
situations that may appear when inheriting classes
(combinations of direct and reverse) and motivated the
acceptance decisions.

A. Name Conflicts

The factoring mechanisms presented in 2 may not be used
in several situations because of name conflicts. Not always
features with the same semantics have the same names,
because they were developed independently in different
class hierarchies. To perform factoring, name conflicts
have to be eliminated, renaming being one possible
solution. The capability to rename a feature during
inheritance is found in programming languages such as
Eiffel, C++, Java, Smadltak: i) in Eiffel methods are
allowed to be renamed locally on demand [9]; ii) in C++
global names are used when combining methods [18, 13];
iii) in Java and Smalltalk a pseudo-variable super alows
the programmer to choose between methods with
duplicated names [1]. So renaming could be used in order
to: i) make available to possible client-classes, a name
which is more suitable to the local context; ii) handle
possible name conflicts; two features having the same
name may not address aways the same functionality. In
[12] Pedersen distinguishes two kinds of name conflictsin
multiple generalization between two names N1 and N2
from two subclasses A1 and A2. The first conflict arises



when the names N1 and N2 are equal, but they denote
different methods, the second one is when the names N1
and N2 are different, but they denote the same method. In
our work the first type of conflicts are more likely to
appear. Renaming is possible only when exists a signature
that conforms to al the common features that are the
subject of renaming. In fact it is not just simple renaming,
it involves conversion, reordering, mapping. To
summarize, the renaming solution is very complex and
requires to take into account the following aspects:. i)
changing the names of features; ii) adjusting parameter
types, number, and order; iii) adjusting the return types; iv)
taking into account the modifiers, according to the
semantics of reverse inheritance (e.g. private, package,
protected, public); v) taking into account the parameter
transmission mechanisms (e.g. transmission by value, by
address, by reference, in, out, inout). The possible
solutions for matching two feature's (attribute or method)
signatures are: (1) in changing the name of attributes,
methods and parameters, renaming solutions may be used;
(2) for making method return types and parameter types
compatible with the correspondent ones, type changes and
conversions, casting operations are needed; (3) to match
the order of parameters of the target signature, the
reordering of parameters must be considered.

B. Circularity

The circularity problem comes from the architectural point
of view of an application. In languages like C++ [18, 13],
Eiffel [9], Java[1] no circular inheritance class constructs
are alowed. So with reverse inheritance, the foster classis
not allowed to have asuperclassthat isalready it'sdirect or
indirect subclass. Practically it isimpossible to determine
at which level will be located the inherited features,
because of the infinite circular cycle between classes.
Circular inheritance direct, reverse, or any combination of
the two is forbidden from this point of view. Example:

_____ 1
>
Adnfers

k ........
extends

class Ainfers B {}
class B {}
foster class C extends B infers A {}

C. Inherited and Factored Featuresin Foster Class

Another restriction imposed is not to have in the extra
record features (explicitly declared or inherited) having the

same names as factored features. In the following example
such a prohibited situation is presented:

class A {
/* feature that will be inherited
in foster class */
int x; }

foster class B extends Ainfers C {
/* int x; feature inherited from
class A */
/* factored feature */
factored int x;}
class C {
int x;}

The situation above causes that features from class A to be
inherited in class B using the E extends A classrelationship
and features from class C to be factored in the same class
B, based on B infers C relationship. If it happens that
features with same names to be inherited and factored then
aconflict is produced. The solutions that may be adopted in
such situations are: the definition of masking rules or the
prohibition of such cases.

D. Cascaded Reverse Inheritance

This subsection explains the problems of cascaded reverse
inheritance. Cascaded reverse inheritance situation appears
when in a class hierarchy there are at least two foster

classes on the same path of the inheritance tree and where
inheritance and reverse inheritance alternate on the same
path from one ancestor class to one descendent class, like

in the example code:
foster class Ainfers B {

/* extra feature */
int x;}

class B {}

class C extends B infers D {}

class D {}

In most object oriented programming languages (Java[1],
Eiffel [9], C++ [18,13]), when using direct inheritance,
subclasses are defined after superclasses have been defined.
So in this context, an inherited feature passes from one
class to another through the inheritance relationship.
Symmetrically, reverse inheritance should do the reverse
thing, because superclasses are created after the subclasses
have been created (they belong to libraries that we want to
adapt). The order of applying reverse inheritance to the
classesis very important, because using different orders it
will result different class hierarchies. In the example above
lets take a look at the inheritance of x in two situations:
situation (1) when the relationship is applied for A infers B
declaration first and then for B infers D second, situation
(2) when the order of applying is reversed: (1) Feature x
from class A is inherited into class B through the reverse
inheritance of classes A and B, thenfrom classB to classC
by the direct inheritance of classes B and C, and finally
from classCtoclassD. (2) Therelationshipisapplied first
to no features of class C (because class C is empty, having



no features) to move into class D. Then the technique is
applied to A infers B class relationship and feature x will
be inherited in classes B and C because of reverse,
respectively direct inheritance. The conclusion drawn from
thisexamplesisthat in (1) class D inheritsfeature x and in
(2) does not. From this point of view atop-down technique
of applying reverseinheritanceispreferredin order to keep
the normal evolution direction of class hierarchies, but this
kind of reverse inheritance usage may be very confusing
for the maintainer, because of the described effects.

E. Inheriting Factored Features by Direct Inheritance

Another type of combinations of inheritance and of reverse
inheritance are discussed in this subsection. We determine
here the influence of reverse inheritance over direct
inheritance. Weimagine a situation of having afoster class
that is also ancestor of another class by to which is linked
by direct inheritance:
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Fig. 4. Inheriting Factored Features
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foster class Ainfers B {
/* factored feature */
factored int x;}

class B {
int x;}

class C extends A {}

Class A islinked to class B, factoring field x, on the other
hand class C is linked to class A, inheriting it's features.
The decision of inheriting the factored feature x must be
taken. One reason for doing so, is the uniformity of the
resulted classes, another reason is that we want to keep
factoring features and direct inheritance independent.
Direct inheritance works the same with factored or non-
factored features.

F. Direct Inherited Features Are Factored

In this subsection a case of fork-join inheritance [4] is
analyzed. It is the case of having a direct inherited feature
that is subject to factoring.

foster class Ainfers C, D {
factored int x;}

class B {
int x;}

class C extends B {
/* int x - inherited feature
fromclass B */}

class D {

int x;}
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Fig. 5. Direct Inherited Features Are Factored

In the example above foster class A factors feature x from
Cand D classes. The problem isthat in class C, feature x is
not declared explicitly but inherited from class B. Certainly
accepting thiskind of situations induces alack of clarity in
the code but it can be eliminated with the help of an
assistance supporting tool. On the other hand class C will
have two superclasses, simulating a multiple inheritance
construct.

G. Twice Factored Features

Reverseinheritance permits constructswhere aclass can be
forced to factor it’ s features twice:
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Fig. 6. Twice Factored Features

foster class Ainfers C, D{

factored int x;}
foster class Binfers C, D {

factored int x;}
class C {

int x;}
class D {

int x;}
In the sample above, we have two foster classes A and B
that infer both C and D classes. So featurex fromclassCis
factored twice it has to be moved into both classes A and
B. This class construct is very similar to multiple
inheritance constructs, combining two reverse inheritance
class relationships multiple inheritance effect is obtained.

IV. RELATED WORKS
In this research area there are works similar to our’s, that

will be mentioned in this section. In [10] are presented
refactoring steps to follow to complete the operation of



finding abstract classes. Thiswork is different from our’s:
they apply manually refactorings to a system without
changing it's behavior, and having no guarantee about the
design improve and code integrity; we adapt components
changing their behavior and reusing their code, taking into
account the restrictionsimposed by the context and pointed
out in section I11.

In [7] areverse inheritance class relationship for
Eiffel language is proposed, discussing ways of factoring
out the commonality retroactively from classes that are
already developed and there are also analyzed the problems
that have to be solved at compile time. This work is very
similar to our's but they do not address adaptation or
evolution and it is specific to Eiffel.

In [12] the idea of inverse inheritance support in
object-oriented programming is developed. There are
addressed issued about renaming and combinations of
conventional and inverse inheritance are discussed. The
combination of the two class relationships alows the
features to travel from one class to another through an
intermediary class. Among the problems discussed worth
mentioning “the fragile superclass problem”.

The [4] paper presents hierarchy transformation
strategiesto transform multipleinheritance hierarchiesinto
single inheritance eguivaent hierarchies. emancipation,
composition, expansion and variant type. ldeas from this
work may be used in making the automatic transformations
from state B to state C described in section I.

V. CONCLUSIONS AND FUTURE WORK

In this section conclusions are stated relative to factoring
supporting mechanism of reverse inheritance. The case-
study that has been presented shows the kind of
modifications that may be described using the proposed
class relationship. We may conclude from section Il that
factoring of featuresis different depending on what type of
features we are working with. The two situations have to be
treated separately: i) if members are factored then they
must be extracted from their original declaration space and
put into the foster class; ii) if methods are factored, an
abstract method must be created in the foster class. An
important issue is to better describe the semantics of
reverse inheritance to solve al the arisen problems
presented in section Il and to propose a homogenous
solution like transformations schemes as explained in
section |: i) to solve the problem of name conflicts
(renaming is avery complex potential solution and it is not
the target of this paper); ii) to model a business model
related to this purpose; iii) to build the generator that will
generate the "library evolution” or the ”library adaptation”
in order for the former to make reengineering of library and
for the letter to reuse exiting code. iv) to use the benefit of
the approach of SmartTools or of SmartModels. Another
important issue is dso to choose the language which will
be the target for a first prototype. One of the question
related to this aspect is whether we should address
languages which support single or multiple inheritance.
Typicaly we may choose between Eiffel or Java. The

prototype may be based on existing parsers dedicated to the
target language or may use more genera tools such as
SmartTools [2] or SmartModels. This prototype will work
on an abstract syntax tree, which describes the target
language extended with reverse inheritance. It's interface
could rely on a wizard and be plugged in programming
environment such as Eclipse or Eiffel Studio.
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