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Abstract – In this paper we present a new approach for 
facilitating the maintenance, reengineering and 
adaptation of class libraries designed using object-
oriented technology. The technique uses a new class 
relationship called reverse inheritance. We strive to prove 
that using this class relationship with it’s factoring 
supporting mechanism it is possible to factor features 
from a hierarchy, to add new features to a hierarchy, and 
to connect two class hierarchies. Also in the paper a list of 
problems relative to the new approach is formulated.  
 
Keywords: inheritance relationship, reverse inheritance 

relationship, reengineering. 
 

I. INTRODUCTION 
 
Inheritance is the most difficult and the most problematic 
issue in the object-oriented programming. This feature 
distinguishes object-oriented programming from object-
based programming or from other modern programming 
languages. Inheritance is defined informally as [5]: an 
incremental modification mechanism that transforms the 
ancestor class into a descendent class by augmenting it in a 
various way. The informal definition is broadly accepted 
by researchers, but it’s implementations are very different. 
Another definition is given in [17], inheritance is viewed as 
a shorthand mechanism for defining a new class relative to 
an existing class specifying only the differences, inheriting 
all the existing features. As many implementations for 
inheritance exist, as many object-oriented paradigms are to 
be considered [5]. 
In this paper we present the model of a new kind of 
inheritance class relationship and we show the motivations 
behind the supporting mechanisms that are needed. Direct 
inheritance models are downward type of inheritance, 
while what we propose, reverse inheritance for software 
adaptation and evolution, is an upward type of inheritance. 
It is more natural to define concrete subclasses and then to 
extract commonalities into superclasses [11]. 
In [3] are presented the main use cases of reverse 
inheritance. The need for reverse inheritance is motivated 

because of the many facilities offered: i) to share common 
functionalities; ii) inserting a class into an existing 
hierarchy; iii) extending an existing hierarchy; iv) adding 
features to a class; v) factoring features from classes. The 
proposed technique is applied to class libraries and 
components - in the sense of hierarchies of classes stated 
by Bertrand Meyer in [8].  

 
Fig. 1. Approach 

 
The diagram from figure 1 depicts the states through which 
the library is transformed in order to reach evolution and 
adaptation goals. We start from state A, the original state of 
the library that we want to reengineer. The choice is 
dichotomist, the available possibilities are: adaptation or 
evolution. By adaptation we mean changes that will make 
the classes suitable to a particular context: removing 
unused features, adding new ones, renaming existing ones. 
By evolution we refer to changes that keep the original 
interfaces intact in order to be compatible with older 
clients. Then another two cases appear for each choice: 
wheatear we have or not access to modify the source code. 
Because of many reasons source code may not be 
modified: i) software may be copyrighted; ii) software have 
to be unchanged for existing applications; iii) software is 
maintained by third party; iv) software of source code is 
not available e.g. precompiled libraries. In state B (B1 or 
B2) the hierarchies are linked by inheritance and reverse 
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inheritance. In this state are applied the changes towards a 
new context or a new purpose of the classes. State C is the 
final one, in which only direct inheritance class relationship 
is used, all the reverse inheritance link being transformed 
automatically into native language class relationships. The 
set of code transformations we are using deals with 
signature adaptation and uses the following basic actions: i) 
method / parameter renaming; ii) parameter addition / 
removal / reordering; iii) method parameter type changing. 
Now the library code is human readable, refactored, 
adapted, evolved, ready to be integrated into the new 
context. 
The structure of the paper is the following: In the first 
section it is presented the new class relationship relative to 
it’s symmetrical, normal or direct inheritance. In section 
two we present our approach relative to reverse inheritance 
and possible use cases. In the third section factoring 
mechanism it is described. The fourth section talks about 
the motivation for the renaming mechanism and related 
problems. In the fifth section related works are exposed 
with their differences from our work. In the sixth section 
conclusions are extracted and future works are traced. 

 
II. ABOUT FACTORING SEMANTICS 

 
A. Inheritance Semantics 
 
We strive to define reverse inheritance relative to the 
definition of normal inheritance and to assign semantics to 
it. A first possible informal definition follows: Reverse 
inheritance is defined as the inheritance’s symmetrical 
relationship. At the code level we, introduce two new 
keywords infers which intends to be the symmetrical of 
extends, and foster [7] by which the base class of reverse 
inheritance is denoted: 
 

 
 

Fig. 2. Infers 
// used by designer 
class B extends A {} 
// used by programmer, maintainer 
foster class A infers B {} 
 
This definition is very ambiguous and a new one, more 
formal is needed. So the best way in finding a definition, is 
to start from one of the formal definitions of inheritance, 
from literature [14, 15, 16, 17, 19]. The selected one is the 
following: derived = base ⊕ extra, where the union with 
override operator ⊕ is defined as: 
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The union with override operator is a standard 
mathematical operator that combines two maps in a special 
way, which is defined above. A map is a collection of 
name-value pairs called maplets (e.g. {a→x, b→y, …}). 
Objects are modeled as records or maps where each field 
consists of a label that maps to a value. Operator ⊕ takes 
two maps and creates a new map that contains all the 
maplets that satisfy the given condition. The domain values 
k are taken from the reunion of both argument map 
domains. The range values v are obtained in the following 
way: if k is in the domain of the second argument g than 
it’s value is used, otherwise the value of the first argument 
f it is used. In the case of conflicting labels are preferred 
the values from the second map argument g. 
 
B. Reverse Inheritance Semantics 
 
In the context of the inheritance model presented, we 
define our reverse inheritance class relationship and it’s 
associated mechanisms in a very similar way: 

base = factored ⊕ extra 
factored = derived1 ∩ derived2 ∩ . . . ∩ derivedm 

We must remind the context of our approach that the base 
class also called foster [7] has to be created and managed 
by the programmer or the maintainer, and that the rest of 
the derived classes, that will be adapted may belong to 
different libraries, class hierarchies.  
The first line defines the base class of a reverse inheritance 
which consists of two component records factored and 
extra. The main idea is: to extract common features from 
library classes an to put them into the foster class. We 
consider common features all the features that [7]: i) have 
the same name in each class; ii) exists a signature that 
conforms to the signature of each feature in each class. To 
be more specific, fields should be treated differently from 
methods in the following way: i) moving the fields to foster 
class; ii) creating abstract methods in foster class 
corresponding to each factored item from the derived 
classes. The motivation behind this idea is to avoid data 
duplication and to benefit from the dynamic linking of 
polymorphism when calling methods using foster class 
references. The control of the code, data and behavior is 
better if it is centralized in the foster class. As described in 
the use cases of [3] code using reverse inheritance class 
relationship flexibility is achieved (e.g design patterns like 
Composite [6] can be more easily applied). 
The factored component record contains all the common 
features from the derived classes (derivedi). This idea refers 
the factoring use case enumerated in section I. It’s content 
is denoted by the intersection of all features from the 
derived classes. All the common features extracted from 
the derived classes are called factored features. There is 
also the possibility to add new features - grouped in a 
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record named extra - to the library classes. With this object 
record we address the feature adding use case described in 
section I. 
 
C. Intuitive Approach Through an Example 
 
In this subsection through an example it is presented how 
the proposed reengineering process works. It is emphasized 
at each level the operations that adapt library classes.  
a) State A: In our practical sample, we start from two 
library classes Rectangle and Ellipse (state A, on the 
schema 1) that belong to two different hierarchies and are 
planned to be used together in a new context: 
class Rectangle { 
  double perimeter; 
  double getArea() 
  {/*rectangle implementation*/}} 
class Ellipse { 
  double perimeter; 
  double getArea() 
  {/*ellipse implementation*/}} 
Analyzing the code we can conclude that perimeter 
member and getArea() method can be factored. An 
automated technique in matching signatures is presented in 
[20], defining a method of organizing, navigating through, 
retrieving from software libraries. Signature matching is 
the process of determining which library components 
“match” a query signature. There are considered cases of 
exact matching and various flavors of relaxed matches, 
based on type built-in information.  
b) State B: In state B of figure 1 the reengineering process 
is initiated and a new foster class is created containing the 
factored features. We will demonstrate that using the foster 
class it is possible to manage collection of shapes (e.g to 
compute the area of the collection uniformly, to modify the 
perimeter of each item, and even to add a new field: color). 
foster class Shape infers Rectangle, 
Ellipse { 
 factored double perimeter; 
 /*no implementation, abstract method*/ 
 factored double getArea(); 
 /*extra attribute*/ 
 int color;} 
In the code above, it is presented the structure of the new 
foster class, it contains two factored features: perimeter and 
getArea() and one extra feature color. The factored features 
were treated differently because one is attribute and the 
other is method. The former was moved from their original 
location classes Rectangle and Ellipse to the foster class 
Shape. The letter, getArea() being a method it had to be 
abstracted through the abstract method factored double 
getArea() inserted into the foster class. Methods and 
attributes have to be treated differently because attributes 
with the same signature give the same state component in 
each object, while methods with same signatures may have 
different implementations in different classes.  
c) State C: In state C some modifications at the structure of 
derived classes were made, eliminating the duplicated data 
(a copy was in the derived class and one in the foster class): 

class Rectangle { 
  double getArea() 
  {/*rectangle implementation*/}} 
class Ellipse { 
  double getArea() 
  {/*ellipse implementation*/}} 
After all the reengineering process, the transformations that 
were made, make possible code constructs like: 
Shape s1=new Rectangle(); 
Shape s2=new Ellipse(); 
... 
s1.getArea(); 
s2.getArea(); 
As seen in the code above, in the new context, collection of 
shapes can be very easily managed by the foster class, not 
depending on the type of the instance: s1 and s2 are of type 
Shape even they reference objects of types Rectangle and 
Ellipse. This is possible due to the transformations made 
with the help of reverse inheritance and polymorphism. If a 
Composite or Strategy design patterns [6] are necessary, in 
this state they can be achieved without making any 
modifications to shape classes. This sample presents an 
ideal situation, in which the factored features have the same 
signature as in subclasses. In real situations signatures of 
factored features are not identical and they have to be 
adapted using code transformations pointed out in section I. 
 

III. PROBLEMS TO ADDRESS 
 
In this section will tackle about the problems and 
restrictions that may arise in applying our adaptation and 
evolution technique. Also there will be pointed awkward 
situations that may appear when inheriting classes 
(combinations of direct and reverse) and motivated the 
acceptance decisions. 
 
A. Name Conflicts 
 
The factoring mechanisms presented in 2 may not be used 
in several situations because of name conflicts. Not always 
features with the same semantics have the same names, 
because they were developed independently in different 
class hierarchies. To perform factoring, name conflicts 
have to be eliminated, renaming being one possible 
solution. The capability to rename a feature during 
inheritance is found in programming languages such as 
Eiffel, C++, Java, Smalltalk: i) in Eiffel methods are 
allowed to be renamed locally on demand [9]; ii) in C++ 
global names are used when combining methods [18, 13]; 
iii) in Java and Smalltalk a pseudo-variable super allows 
the programmer to choose between methods with 
duplicated names [1]. So renaming could be used in order 
to: i) make available to possible client-classes, a name 
which is more suitable to the local context; ii) handle 
possible name conflicts: two features having the same 
name may not address always the same functionality. In 
[12] Pedersen distinguishes two kinds of name conflicts in 
multiple generalization between two names N1 and N2 
from two subclasses A1 and A2. The first conflict arises 
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when the names N1 and N2 are equal, but they denote 
different methods, the second one is when the names N1 
and N2 are different, but they denote the same method. In 
our work the first type of conflicts are more likely to 
appear. Renaming is possible only when exists a signature 
that conforms to all the common features that are the 
subject of renaming. In fact it is not just simple renaming, 
it involves conversion, reordering, mapping. To 
summarize, the renaming solution is very complex and 
requires to take into account the following aspects: i) 
changing the names of features; ii) adjusting parameter 
types, number, and order; iii) adjusting the return types; iv) 
taking into account the modifiers, according to the 
semantics of reverse inheritance (e.g. private, package, 
protected, public); v) taking into account the parameter 
transmission mechanisms (e.g. transmission by value, by 
address, by reference, in, out, in-out). The possible 
solutions for matching two feature’s (attribute or method) 
signatures are: (1) in changing the name of attributes, 
methods and parameters, renaming solutions may be used; 
(2) for making method return types and parameter types 
compatible with the correspondent ones, type changes and 
conversions, casting operations are needed; (3) to match 
the order of parameters of the target signature, the 
reordering of parameters must be considered. 
 
B. Circularity 
 
The circularity problem comes from the architectural point 
of view of an application. In languages like C++ [18, 13], 
Eiffel [9], Java [1] no circular inheritance class constructs 
are allowed. So with reverse inheritance, the foster class is 
not allowed to have a superclass that is already it’s direct or 
indirect subclass. Practically it is impossible to determine 
at which level will be located the inherited features, 
because of the infinite circular cycle between classes. 
Circular inheritance direct, reverse, or any combination of 
the two is forbidden from this point of view. Example: 

 
 

Fig. 3. Circularity 
 

class A infers B {} 
class B {} 
foster class C extends B infers A {} 
 
C. Inherited and Factored Features in Foster Class 
 
Another restriction imposed is not to have in the extra 
record features (explicitly declared or inherited) having the 

same names as factored features. In the following example 
such a prohibited situation is presented: 
 
class A { 
  /* feature that will be inherited 
  in foster class */ 
  int x; } 
foster class B extends A infers C { 
  /* int x; feature inherited from 
class A */ 
  /* factored feature */ 
  factored int x;} 
class C { 
  int x;} 
 
The situation above causes that features from class A to be 
inherited in class B using the E extends A class relationship 
and features from class C to be factored in the same class 
B, based on B infers C relationship. If it happens that 
features with same names to be inherited and factored then 
a conflict is produced. The solutions that may be adopted in 
such situations are: the definition of masking rules or the 
prohibition of such cases. 
 
D. Cascaded Reverse Inheritance 
 
This subsection explains the problems of cascaded reverse 
inheritance. Cascaded reverse inheritance situation appears 
when in a class hierarchy there are at least two foster 
classes on the same path of the inheritance tree and where 
inheritance and reverse inheritance alternate on the same 
path from one ancestor class to one descendent class, like 
in the example code: 
foster class A infers B { 
  /* extra feature */ 
  int x;} 
class B {} 
class C extends B infers D {} 
class D {} 
In most object oriented programming languages (Java [1], 
Eiffel [9], C++ [18,13]), when using direct inheritance, 
subclasses are defined after superclasses have been defined. 
So in this context, an inherited feature passes from one 
class to another through the inheritance relationship. 
Symmetrically, reverse inheritance should do the reverse 
thing, because superclasses are created after the subclasses 
have been created (they belong to libraries that we want to 
adapt). The order of applying reverse inheritance to the 
classes is very important, because using different orders it 
will result different class hierarchies. In the example above 
lets take a look at the inheritance of x in two situations: 
situation (1) when the relationship is applied for A infers B 
declaration first and then for B infers D second, situation 
(2) when the order of applying is reversed: (1) Feature x 
from class A is inherited into class B through the reverse 
inheritance of classes A and B, then from class B to class C 
by the direct inheritance of classes B and C, and finally 
from class C to class D. (2) The relationship is applied first 
to no features of class C (because class C is empty, having 
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no features) to move into class D. Then the technique is 
applied to A infers B class relationship and feature x will 
be inherited in classes B and C because of reverse, 
respectively direct inheritance. The conclusion drawn from 
this examples is that in (1) class D inherits feature x and in 
(2) does not. From this point of view a top-down technique 
of applying reverse inheritance is preferred in order to keep 
the normal evolution direction of class hierarchies, but this 
kind of reverse inheritance usage may be very confusing 
for the maintainer, because of the described effects. 
 
E. Inheriting Factored Features by Direct Inheritance 
 
Another type of combinations of inheritance and of reverse 
inheritance are discussed in this subsection. We determine 
here the influence of reverse inheritance over direct 
inheritance. We imagine a situation of having a foster class 
that is also ancestor of another class by to which is linked 
by direct inheritance: 

 
 

Fig. 4. Inheriting Factored Features 
 
foster class A infers B { 
  /* factored feature */ 
  factored int x;} 
class B { 
  int x;} 
class C extends A {} 
 
Class A is linked to class B, factoring field x, on the other 
hand class C is linked to class A, inheriting it’s features. 
The decision of inheriting the factored feature x must be 
taken. One reason for doing so, is the uniformity of the 
resulted classes, another reason is that we want to keep 
factoring features and direct inheritance independent. 
Direct inheritance works the same with factored or non-
factored features. 
 
F. Direct Inherited Features Are Factored 
 
In this subsection a case of fork-join inheritance [4] is 
analyzed. It is the case of having a direct inherited feature 
that is subject to factoring. 
 
foster class A infers C, D { 
  factored int x;} 
class B { 
  int x;} 
class C extends B { 
  /* int x - inherited feature 
  from class B */} 
class D { 
  int x;} 

 

 
 

Fig. 5. Direct Inherited Features Are Factored 
 
In the example above foster class A factors feature x from 
C and D classes. The problem is that in class C, feature x is 
not declared explicitly but inherited from class B. Certainly 
accepting this kind of situations induces a lack of clarity in 
the code but it can be eliminated with the help of an 
assistance supporting tool. On the other hand class C will 
have two superclasses, simulating a multiple inheritance 
construct. 
 
G. Twice Factored Features 
 
Reverse inheritance permits constructs where a class can be 
forced to factor it’s features twice: 

 

 
 

Fig. 6. Twice Factored Features 
 

foster class A infers C, D { 
  factored int x;} 
foster class B infers C, D { 
  factored int x;} 
class C { 
  int x;} 
class D { 
  int x;} 
In the sample above, we have two foster classes A and B 
that infer both C and D classes. So feature x from class C is 
factored twice it has to be moved into both classes A and 
B. This class construct is very similar to multiple 
inheritance constructs, combining two reverse inheritance 
class relationships multiple inheritance effect is obtained.  
 

IV. RELATED WORKS 
 
In this research area there are works similar to our’s, that 
will be mentioned in this section. In [10] are presented 
refactoring steps to follow to complete the operation of 
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finding abstract classes. This work is different from our’s: 
they apply manually refactorings to a system without 
changing it’s behavior, and having no guarantee about the 
design improve and code integrity; we adapt components 
changing their behavior and reusing their code, taking into 
account the restrictions imposed by the context and pointed 
out in section III.  

In [7] a reverse inheritance class relationship for 
Eiffel language is proposed, discussing ways of factoring 
out the commonality retroactively from classes that are 
already developed and there are also analyzed the problems 
that have to be solved at compile time. This work is very 
similar to our’s but they do not address adaptation or 
evolution and it is specific to Eiffel. 

In [12] the idea of inverse inheritance support in 
object-oriented programming is developed. There are 
addressed issued about renaming and combinations of 
conventional and inverse inheritance are discussed. The 
combination of the two class relationships allows the 
features to travel from one class to another through an 
intermediary class. Among the problems discussed worth 
mentioning “the fragile superclass problem”. 

The [4] paper presents hierarchy transformation 
strategies to transform multiple inheritance hierarchies into 
single inheritance equivalent hierarchies: emancipation, 
composition, expansion and variant type. Ideas from this 
work may be used in making the automatic transformations 
from state B to state C described in section I. 

 
V. CONCLUSIONS AND FUTURE WORK 

 
In this section conclusions are stated relative to factoring 
supporting mechanism of reverse inheritance. The case-
study that has been presented shows the kind of 
modifications that may be described using the proposed 
class relationship. We may conclude from section II that 
factoring of features is different depending on what type of 
features we are working with. The two situations have to be 
treated separately: i) if members are factored then they 
must be extracted from their original declaration space and 
put into the foster class; ii) if methods are factored, an 
abstract method must be created in the foster class. An 
important issue is to better describe the semantics of 
reverse inheritance to solve all the arisen problems 
presented in section III and to propose a homogenous 
solution like transformations schemes as explained in 
section I: i) to solve the problem of name conflicts 
(renaming is a very complex potential solution and it is not 
the target of this paper); ii) to model a business model 
related to this purpose; iii) to build the generator that will 
generate the ”library evolution” or the ”library adaptation” 
in order for the former to make reengineering of library and 
for the letter to reuse exiting code. iv) to use the benefit of 
the approach of SmartTools or of SmartModels. Another 
important issue is also to choose the language which will 
be the target for a first prototype. One of the question 
related to this aspect is whether we should address 
languages which support single or multiple inheritance. 
Typically we may choose between Eiffel or Java. The 

prototype may be based on existing parsers dedicated to the 
target language or may use more general tools such as 
SmartTools [2] or SmartModels. This prototype will work 
on an abstract syntax tree, which describes the target 
language extended with reverse inheritance. It’s interface 
could rely on a wizard and be plugged in programming 
environment such as Eclipse or EiffelStudio. 
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