
Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.49 (63), 2004, ISSN 1224-600X

1

Factoring Mechanism of Reverse Inheritance

Ciprian-Bogdan Chirila*, Pierre Crescenzo**, Philippe Lahire**,
Dan Pescaru*, Emanuel Tundrea*

* Department of Computer Science, Automation and Computer Science Faculty,

University “Politehnica” of Timisoara, V. Pârvan no. 2, Timisoara, Romania
chirila@cs.utt.ro, dan@cs.utt.ro, emanuel@emanuel.ro

** I3S Laboratory (UNSA/CNRS), University “Sophia Antipolis” Nice, Les Algoritmes,

bat. Euclide B 2000, Route des Lucioles BP121,F-06903 Sophia Antipolis CEDEX, France
Philippe.Lahire@unice.fr, Pierre.Crescenzo@nom.fr

Abstract – In this paper we present a new approach for
facilitating the maintenance, reengineering and
adaptation of class libraries designed using object-
oriented technology. The technique uses a new class
relationship called reverse inheritance. We strive to prove
that using this class relationship with it’s factoring
supporting mechanism it is possible to factor features
from a hierarchy, to add new features to a hierarchy, and
to connect two class hierarchies. Also in the paper a list of
problems relative to the new approach is formulated.

Keywords: inheritance relationship, reverse inheritance

relationship, reengineering.

I. INTRODUCTION

Inheritance is the most difficult and the most problematic
issue in the object-oriented programming. This feature
distinguishes object-oriented programming from object-
based programming or from other modern programming
languages. Inheritance is defined informally as [5]: an
incremental modification mechanism that transforms the
ancestor class into a descendent class by augmenting it in a
various way. The informal definition is broadly accepted
by researchers, but it’s implementations are very different.
Another definition is given in [17], inheritance is viewed as
a shorthand mechanism for defining a new class relative to
an existing class specifying only the differences, inheriting
all the existing features. As many implementations for
inheritance exist, as many object-oriented paradigms are to
be considered [5].
In this paper we present the model of a new kind of
inheritance class relationship and we show the motivations
behind the supporting mechanisms that are needed. Direct
inheritance models are downward type of inheritance,
while what we propose, reverse inheritance for software
adaptation and evolution, is an upward type of inheritance.
It is more natural to define concrete subclasses and then to
extract commonalities into superclasses [11].
In [3] are presented the main use cases of reverse
inheritance. The need for reverse inheritance is motivated

because of the many facilities offered: i) to share common
functionalities; ii) inserting a class into an existing
hierarchy; iii) extending an existing hierarchy; iv) adding
features to a class; v) factoring features from classes. The
proposed technique is applied to class libraries and
components - in the sense of hierarchies of classes stated
by Bertrand Meyer in [8].

Fig. 1. Approach

The diagram from figure 1 depicts the states through which
the library is transformed in order to reach evolution and
adaptation goals. We start from state A, the original state of
the library that we want to reengineer. The choice is
dichotomist, the available possibilities are: adaptation or
evolution. By adaptation we mean changes that will make
the classes suitable to a particular context: removing
unused features, adding new ones, renaming existing ones.
By evolution we refer to changes that keep the original
interfaces intact in order to be compatible with older
clients. Then another two cases appear for each choice:
wheatear we have or not access to modify the source code.
Because of many reasons source code may not be
modified: i) software may be copyrighted; ii) software have
to be unchanged for existing applications; iii) software is
maintained by third party; iv) software of source code is
not available e.g. precompiled libraries. In state B (B1 or
B2) the hierarchies are linked by inheritance and reverse

2

inheritance. In this state are applied the changes towards a
new context or a new purpose of the classes. State C is the
final one, in which only direct inheritance class relationship
is used, all the reverse inheritance link being transformed
automatically into native language class relationships. The
set of code transformations we are using deals with
signature adaptation and uses the following basic actions: i)
method / parameter renaming; ii) parameter addition /
removal / reordering; iii) method parameter type changing.
Now the library code is human readable, refactored,
adapted, evolved, ready to be integrated into the new
context.
The structure of the paper is the following: In the first
section it is presented the new class relationship relative to
it’s symmetrical, normal or direct inheritance. In section
two we present our approach relative to reverse inheritance
and possible use cases. In the third section factoring
mechanism it is described. The fourth section talks about
the motivation for the renaming mechanism and related
problems. In the fifth section related works are exposed
with their differences from our work. In the sixth section
conclusions are extracted and future works are traced.

II. ABOUT FACTORING SEMANTICS

A. Inheritance Semantics

We strive to define reverse inheritance relative to the
definition of normal inheritance and to assign semantics to
it. A first possible informal definition follows: Reverse
inheritance is defined as the inheritance’s symmetrical
relationship. At the code level we, introduce two new
keywords infers which intends to be the symmetrical of
extends, and foster [7] by which the base class of reverse
inheritance is denoted:

Fig. 2. Infers
// used by designer
class B extends A {}
// used by programmer, maintainer
foster class A infers B {}

This definition is very ambiguous and a new one, more
formal is needed. So the best way in finding a definition, is
to start from one of the formal definitions of inheritance,
from literature [14, 15, 16, 17, 19]. The selected one is the
following: derived = base ⊕ extra, where the union with
override operator ⊕ is defined as:

))}()(())()((

))()((|{

).:().:(

)()()(:.,,

kfvgdomkkgvgdomk

gdomfdomkvk

gf

=⇒∉∧=⇒∈

∧∪∈

→→=⊕

∪→→→×→⊕∀

a

γαλβαλ

γβαγαβαγβα

The union with override operator is a standard
mathematical operator that combines two maps in a special
way, which is defined above. A map is a collection of
name-value pairs called maplets (e.g. {a→x, b→y, …}).
Objects are modeled as records or maps where each field
consists of a label that maps to a value. Operator ⊕ takes
two maps and creates a new map that contains all the
maplets that satisfy the given condition. The domain values
k are taken from the reunion of both argument map
domains. The range values v are obtained in the following
way: if k is in the domain of the second argument g than
it’s value is used, otherwise the value of the first argument
f it is used. In the case of conflicting labels are preferred
the values from the second map argument g.

B. Reverse Inheritance Semantics

In the context of the inheritance model presented, we
define our reverse inheritance class relationship and it’s
associated mechanisms in a very similar way:

base = factored ⊕ extra
factored = derived1 ∩ derived2 ∩ . . . ∩ derivedm

We must remind the context of our approach that the base
class also called foster [7] has to be created and managed
by the programmer or the maintainer, and that the rest of
the derived classes, that will be adapted may belong to
different libraries, class hierarchies.
The first line defines the base class of a reverse inheritance
which consists of two component records factored and
extra. The main idea is: to extract common features from
library classes an to put them into the foster class. We
consider common features all the features that [7]: i) have
the same name in each class; ii) exists a signature that
conforms to the signature of each feature in each class. To
be more specific, fields should be treated differently from
methods in the following way: i) moving the fields to foster
class; ii) creating abstract methods in foster class
corresponding to each factored item from the derived
classes. The motivation behind this idea is to avoid data
duplication and to benefit from the dynamic linking of
polymorphism when calling methods using foster class
references. The control of the code, data and behavior is
better if it is centralized in the foster class. As described in
the use cases of [3] code using reverse inheritance class
relationship flexibility is achieved (e.g design patterns like
Composite [6] can be more easily applied).
The factored component record contains all the common
features from the derived classes (derivedi). This idea refers
the factoring use case enumerated in section I. It’s content
is denoted by the intersection of all features from the
derived classes. All the common features extracted from
the derived classes are called factored features. There is
also the possibility to add new features - grouped in a

3

record named extra - to the library classes. With this object
record we address the feature adding use case described in
section I.

C. Intuitive Approach Through an Example

In this subsection through an example it is presented how
the proposed reengineering process works. It is emphasized
at each level the operations that adapt library classes.
a) State A: In our practical sample, we start from two
library classes Rectangle and Ellipse (state A, on the
schema 1) that belong to two different hierarchies and are
planned to be used together in a new context:
class Rectangle {
 double perimeter;
 double getArea()
 {/*rectangle implementation*/}}
class Ellipse {
 double perimeter;
 double getArea()
 {/*ellipse implementation*/}}
Analyzing the code we can conclude that perimeter
member and getArea() method can be factored. An
automated technique in matching signatures is presented in
[20], defining a method of organizing, navigating through,
retrieving from software libraries. Signature matching is
the process of determining which library components
“match” a query signature. There are considered cases of
exact matching and various flavors of relaxed matches,
based on type built-in information.
b) State B: In state B of figure 1 the reengineering process
is initiated and a new foster class is created containing the
factored features. We will demonstrate that using the foster
class it is possible to manage collection of shapes (e.g to
compute the area of the collection uniformly, to modify the
perimeter of each item, and even to add a new field: color).
foster class Shape infers Rectangle,
Ellipse {
 factored double perimeter;
 /*no implementation, abstract method*/
 factored double getArea();
 /*extra attribute*/
 int color;}
In the code above, it is presented the structure of the new
foster class, it contains two factored features: perimeter and
getArea() and one extra feature color. The factored features
were treated differently because one is attribute and the
other is method. The former was moved from their original
location classes Rectangle and Ellipse to the foster class
Shape. The letter, getArea() being a method it had to be
abstracted through the abstract method factored double
getArea() inserted into the foster class. Methods and
attributes have to be treated differently because attributes
with the same signature give the same state component in
each object, while methods with same signatures may have
different implementations in different classes.
c) State C: In state C some modifications at the structure of
derived classes were made, eliminating the duplicated data
(a copy was in the derived class and one in the foster class):

class Rectangle {
 double getArea()
 {/*rectangle implementation*/}}
class Ellipse {
 double getArea()
 {/*ellipse implementation*/}}
After all the reengineering process, the transformations that
were made, make possible code constructs like:
Shape s1=new Rectangle();
Shape s2=new Ellipse();
...
s1.getArea();
s2.getArea();
As seen in the code above, in the new context, collection of
shapes can be very easily managed by the foster class, not
depending on the type of the instance: s1 and s2 are of type
Shape even they reference objects of types Rectangle and
Ellipse. This is possible due to the transformations made
with the help of reverse inheritance and polymorphism. If a
Composite or Strategy design patterns [6] are necessary, in
this state they can be achieved without making any
modifications to shape classes. This sample presents an
ideal situation, in which the factored features have the same
signature as in subclasses. In real situations signatures of
factored features are not identical and they have to be
adapted using code transformations pointed out in section I.

III. PROBLEMS TO ADDRESS

In this section will tackle about the problems and
restrictions that may arise in applying our adaptation and
evolution technique. Also there will be pointed awkward
situations that may appear when inheriting classes
(combinations of direct and reverse) and motivated the
acceptance decisions.

A. Name Conflicts

The factoring mechanisms presented in 2 may not be used
in several situations because of name conflicts. Not always
features with the same semantics have the same names,
because they were developed independently in different
class hierarchies. To perform factoring, name conflicts
have to be eliminated, renaming being one possible
solution. The capability to rename a feature during
inheritance is found in programming languages such as
Eiffel, C++, Java, Smalltalk: i) in Eiffel methods are
allowed to be renamed locally on demand [9]; ii) in C++
global names are used when combining methods [18, 13];
iii) in Java and Smalltalk a pseudo-variable super allows
the programmer to choose between methods with
duplicated names [1]. So renaming could be used in order
to: i) make available to possible client-classes, a name
which is more suitable to the local context; ii) handle
possible name conflicts: two features having the same
name may not address always the same functionality. In
[12] Pedersen distinguishes two kinds of name conflicts in
multiple generalization between two names N1 and N2
from two subclasses A1 and A2. The first conflict arises

4

when the names N1 and N2 are equal, but they denote
different methods, the second one is when the names N1
and N2 are different, but they denote the same method. In
our work the first type of conflicts are more likely to
appear. Renaming is possible only when exists a signature
that conforms to all the common features that are the
subject of renaming. In fact it is not just simple renaming,
it involves conversion, reordering, mapping. To
summarize, the renaming solution is very complex and
requires to take into account the following aspects: i)
changing the names of features; ii) adjusting parameter
types, number, and order; iii) adjusting the return types; iv)
taking into account the modifiers, according to the
semantics of reverse inheritance (e.g. private, package,
protected, public); v) taking into account the parameter
transmission mechanisms (e.g. transmission by value, by
address, by reference, in, out, in-out). The possible
solutions for matching two feature’s (attribute or method)
signatures are: (1) in changing the name of attributes,
methods and parameters, renaming solutions may be used;
(2) for making method return types and parameter types
compatible with the correspondent ones, type changes and
conversions, casting operations are needed; (3) to match
the order of parameters of the target signature, the
reordering of parameters must be considered.

B. Circularity

The circularity problem comes from the architectural point
of view of an application. In languages like C++ [18, 13],
Eiffel [9], Java [1] no circular inheritance class constructs
are allowed. So with reverse inheritance, the foster class is
not allowed to have a superclass that is already it’s direct or
indirect subclass. Practically it is impossible to determine
at which level will be located the inherited features,
because of the infinite circular cycle between classes.
Circular inheritance direct, reverse, or any combination of
the two is forbidden from this point of view. Example:

Fig. 3. Circularity

class A infers B {}
class B {}
foster class C extends B infers A {}

C. Inherited and Factored Features in Foster Class

Another restriction imposed is not to have in the extra
record features (explicitly declared or inherited) having the

same names as factored features. In the following example
such a prohibited situation is presented:

class A {
 /* feature that will be inherited
 in foster class */
 int x; }
foster class B extends A infers C {
 /* int x; feature inherited from
class A */
 /* factored feature */
 factored int x;}
class C {
 int x;}

The situation above causes that features from class A to be
inherited in class B using the E extends A class relationship
and features from class C to be factored in the same class
B, based on B infers C relationship. If it happens that
features with same names to be inherited and factored then
a conflict is produced. The solutions that may be adopted in
such situations are: the definition of masking rules or the
prohibition of such cases.

D. Cascaded Reverse Inheritance

This subsection explains the problems of cascaded reverse
inheritance. Cascaded reverse inheritance situation appears
when in a class hierarchy there are at least two foster
classes on the same path of the inheritance tree and where
inheritance and reverse inheritance alternate on the same
path from one ancestor class to one descendent class, like
in the example code:
foster class A infers B {
 /* extra feature */
 int x;}
class B {}
class C extends B infers D {}
class D {}
In most object oriented programming languages (Java [1],
Eiffel [9], C++ [18,13]), when using direct inheritance,
subclasses are defined after superclasses have been defined.
So in this context, an inherited feature passes from one
class to another through the inheritance relationship.
Symmetrically, reverse inheritance should do the reverse
thing, because superclasses are created after the subclasses
have been created (they belong to libraries that we want to
adapt). The order of applying reverse inheritance to the
classes is very important, because using different orders it
will result different class hierarchies. In the example above
lets take a look at the inheritance of x in two situations:
situation (1) when the relationship is applied for A infers B
declaration first and then for B infers D second, situation
(2) when the order of applying is reversed: (1) Feature x
from class A is inherited into class B through the reverse
inheritance of classes A and B, then from class B to class C
by the direct inheritance of classes B and C, and finally
from class C to class D. (2) The relationship is applied first
to no features of class C (because class C is empty, having

5

no features) to move into class D. Then the technique is
applied to A infers B class relationship and feature x will
be inherited in classes B and C because of reverse,
respectively direct inheritance. The conclusion drawn from
this examples is that in (1) class D inherits feature x and in
(2) does not. From this point of view a top-down technique
of applying reverse inheritance is preferred in order to keep
the normal evolution direction of class hierarchies, but this
kind of reverse inheritance usage may be very confusing
for the maintainer, because of the described effects.

E. Inheriting Factored Features by Direct Inheritance

Another type of combinations of inheritance and of reverse
inheritance are discussed in this subsection. We determine
here the influence of reverse inheritance over direct
inheritance. We imagine a situation of having a foster class
that is also ancestor of another class by to which is linked
by direct inheritance:

Fig. 4. Inheriting Factored Features

foster class A infers B {
 /* factored feature */
 factored int x;}
class B {
 int x;}
class C extends A {}

Class A is linked to class B, factoring field x, on the other
hand class C is linked to class A, inheriting it’s features.
The decision of inheriting the factored feature x must be
taken. One reason for doing so, is the uniformity of the
resulted classes, another reason is that we want to keep
factoring features and direct inheritance independent.
Direct inheritance works the same with factored or non-
factored features.

F. Direct Inherited Features Are Factored

In this subsection a case of fork-join inheritance [4] is
analyzed. It is the case of having a direct inherited feature
that is subject to factoring.

foster class A infers C, D {
 factored int x;}
class B {
 int x;}
class C extends B {
 /* int x - inherited feature
 from class B */}
class D {
 int x;}

Fig. 5. Direct Inherited Features Are Factored

In the example above foster class A factors feature x from
C and D classes. The problem is that in class C, feature x is
not declared explicitly but inherited from class B. Certainly
accepting this kind of situations induces a lack of clarity in
the code but it can be eliminated with the help of an
assistance supporting tool. On the other hand class C will
have two superclasses, simulating a multiple inheritance
construct.

G. Twice Factored Features

Reverse inheritance permits constructs where a class can be
forced to factor it’s features twice:

Fig. 6. Twice Factored Features

foster class A infers C, D {
 factored int x;}
foster class B infers C, D {
 factored int x;}
class C {
 int x;}
class D {
 int x;}
In the sample above, we have two foster classes A and B
that infer both C and D classes. So feature x from class C is
factored twice it has to be moved into both classes A and
B. This class construct is very similar to multiple
inheritance constructs, combining two reverse inheritance
class relationships multiple inheritance effect is obtained.

IV. RELATED WORKS

In this research area there are works similar to our’s, that
will be mentioned in this section. In [10] are presented
refactoring steps to follow to complete the operation of

6

finding abstract classes. This work is different from our’s:
they apply manually refactorings to a system without
changing it’s behavior, and having no guarantee about the
design improve and code integrity; we adapt components
changing their behavior and reusing their code, taking into
account the restrictions imposed by the context and pointed
out in section III.

In [7] a reverse inheritance class relationship for
Eiffel language is proposed, discussing ways of factoring
out the commonality retroactively from classes that are
already developed and there are also analyzed the problems
that have to be solved at compile time. This work is very
similar to our’s but they do not address adaptation or
evolution and it is specific to Eiffel.

In [12] the idea of inverse inheritance support in
object-oriented programming is developed. There are
addressed issued about renaming and combinations of
conventional and inverse inheritance are discussed. The
combination of the two class relationships allows the
features to travel from one class to another through an
intermediary class. Among the problems discussed worth
mentioning “the fragile superclass problem”.

The [4] paper presents hierarchy transformation
strategies to transform multiple inheritance hierarchies into
single inheritance equivalent hierarchies: emancipation,
composition, expansion and variant type. Ideas from this
work may be used in making the automatic transformations
from state B to state C described in section I.

V. CONCLUSIONS AND FUTURE WORK

In this section conclusions are stated relative to factoring
supporting mechanism of reverse inheritance. The case-
study that has been presented shows the kind of
modifications that may be described using the proposed
class relationship. We may conclude from section II that
factoring of features is different depending on what type of
features we are working with. The two situations have to be
treated separately: i) if members are factored then they
must be extracted from their original declaration space and
put into the foster class; ii) if methods are factored, an
abstract method must be created in the foster class. An
important issue is to better describe the semantics of
reverse inheritance to solve all the arisen problems
presented in section III and to propose a homogenous
solution like transformations schemes as explained in
section I: i) to solve the problem of name conflicts
(renaming is a very complex potential solution and it is not
the target of this paper); ii) to model a business model
related to this purpose; iii) to build the generator that will
generate the ”library evolution” or the ”library adaptation”
in order for the former to make reengineering of library and
for the letter to reuse exiting code. iv) to use the benefit of
the approach of SmartTools or of SmartModels. Another
important issue is also to choose the language which will
be the target for a first prototype. One of the question
related to this aspect is whether we should address
languages which support single or multiple inheritance.
Typically we may choose between Eiffel or Java. The

prototype may be based on existing parsers dedicated to the
target language or may use more general tools such as
SmartTools [2] or SmartModels. This prototype will work
on an abstract syntax tree, which describes the target
language extended with reverse inheritance. It’s interface
could rely on a wizard and be plugged in programming
environment such as Eclipse or EiffelStudio.

REFERENCES

[1] K. Arnold and J. Gosling. The Java Programming Language. Sun
Microsystems, 3rd edition, USA, 2000.

[2] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau,
Joel Fillon, Didier Parigot, Claude Pasquier, and Claudio Sacerdoti
Coen. Smarttools: a development environment generator based on
XML technologies. In XML Technologies and Software
Engineering ICSE’2001, ICSE workshop proceedings, Toronto,
Canada, 2001.

[3] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire.
Towards reengineering: An approach based on reverse inheritance.
Application to Java. Research report, Laboratoire Informatique,
Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France,
July 2003.

[4] Yania Crespo, Jos ManuelMarques, and Juan Jos Rodryguez. On
the translation of multiple inheritance hierarchies into single
inheritance hierarchies. In In European Conference on Object-
Oriented Programming, 2002.

[5] Peter H. Frohlich. Inheritance decomposed. In Proceedings of the
Inheritance Workshop at ECOOP 2002, Malaga, Spain, June 2002.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

[7] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The
potential for reverse type inheritance in Eiffel. In Technology of
Object-Oriented Languages and Systems (TOOLS’94), 1994.

[8] Bertrand Meyer. Object-Oriented Software Construction 2nd ed.
Prentice Hall, 1997.

[9] Bertrand Meyer. Eiffel: The language.
 http://www.inf.ethz.ch/meyer, September 2002.

[10] William F. Opdyke and Ralph E. Johnson. Creating abstract
superclasses by refactoring, 1993.

[11] C. H. Pedersen. Extending ordinary inheritance schemes to include
generalization. In Conference proceedings on Object-oriented
programming systems, languages and applications, pages 407–417.
ACM Press, 1989.

[12] Markku Sakkinen. Exheritance - class generalization revived. In
Proceedings of the Inheritance Workshop at ECOOP 2002, Malaga,
Spain, June 2002.

[13] Herbert Schildt. C++, Manual complet. Editura TEORA, 1997.
[14] Anthony J.H. Simons. The theory of classification, part 7: A class is

a type family. Journal of Object Technology, 2(3):13–22, May-June
2003.

[15] Anthony J.H. Simons. The theory of classification, part 8:
Classification and inheritance. Journal of Object Technology,
2(4):55–64, July-August 2003.

[16] Anthony J.H. Simons. The theory of classification, part 9:
Inheritance and self-reference. Journal of Object Technology,
2(6):25–34, November-December 2003.

[17] Anthony J.H. Simons. The theory of classification, part 10: Method
combination and super-reference. Journal of Object Technology,
3(1):43–53, January-February 2004.

[18] Bjarne Stroustrup. The C++ Programming Language Third Edition.
Addison-Wesley, 1997.

[19] Antero Taivalsaari. On the notion of inheritance. In ACM
Computing Surveys, No. 3, volume 28, September 1996.

[20] Amy Moormann Zaremski and Jeannette M. Wing. Signature
matching: A tool for using software libraries. ACM Transactions on
Software Engineering and Methodology, 4(2):146–170, 1995.

