
State of the Art in Reuse Mechanisms
of Object-Oriented Programming

PhD Research Report #1
Author: asist. univ. ing. Ciprian-Bogdan Chirila

PhD Supervisor: prof. dr. ing. Ioan Jurca
Faculty of Automation and Computer Science

University Politehnica of Timi³oara

8th March 2006

Contents

1 Introduction 2
1.1 Motivation . 2

1.1.1 Designing in a More Natural Way . 2
1.1.2 Capturing Common Functionalities . 3
1.1.3 Inserting a Class Into an Existing Hierarchy 3
1.1.4 Extending a Class Hierarchy . 4
1.1.5 Reusing Partial Behavior of a Class . 4
1.1.6 Creating a New Type . 5
1.1.7 Decomposing and Recomposing Classes . 5

1.2 Overview on the Inheritance Class Relationship 6
1.3 Inheritance in Object-Oriented Programming Languages 8
1.4 Document Outline . 9

2 Reuse Mechanisms in Object Technology 10
2.1 Multiple Inheritance . 10

2.1.1 Repeated Inheritance . 13
2.1.2 Implementations of Multiple Inheritance . 17

2.1.2.1 Emancipation . 18
2.1.2.2 Composition . 18
2.1.2.3 Expansion . 20
2.1.2.4 Variant Type . 20

2.1.3 Delegation . 21
2.2 The �Like-Type� Class Relationship . 23
2.3 Mixins . 23

2.3.1 The Mixin Concept . 24
2.3.2 The Mixin Layer Concept . 24

2.4 Traits . 26
2.4.1 Motivations . 26
2.4.2 Classes and Traits . 26
2.4.3 Composing Traits Use Case . 26
2.4.4 Traits vs. Multiple Inheritance . 28

2.5 Role Programming . 28
2.5.1 Roles . 28
2.5.2 Collaborations . 29
2.5.3 Role Implementation Techniques . 29

2.6 Composition Filters . 30
2.6.1 Motivations . 30
2.6.2 The Composition Filters Model . 31

2.7 Views . 31
2.8 Aspect Oriented Programming . 32
2.9 Summary . 33

1

3 Generalities About Exheritance 35
3.1 Main Approaches of Reverse Inheritance . 35
3.2 De�nition . 35
3.3 Intension and Extension of a Class . 35
3.4 Semantical Elements of Reverse Inheritance . 36
3.5 Reuse of Object vs. Reuse of Class . 37
3.6 Explicit vs. Implicit Declaration of Common Features 37
3.7 Allowing Empty Class . 38
3.8 Source Code Availability . 38
3.9 Single/Multiple Exheritance . 38
3.10 Summary . 39

4 Interface Exheritance 40
4.1 Concrete vs. Abstract Generalizing Classes . 40
4.2 The In�uence of Modi�ers on Exherited Features 40
4.3 Status of Original Methods: Abstract/Concrete . 41
4.4 Type Conformance Between Superclass/Subclass 43
4.5 Common Features and Assertions . 43
4.6 Possible Con�icts . 44

4.6.1 Name Con�icts . 44
4.6.2 Value Con�icts . 46
4.6.3 Scale Con�icts . 46
4.6.4 Parameter Con�icts . 47

4.6.4.1 Parameter Order . 47
4.6.4.2 Parameter Number . 47
4.6.4.3 Parameter Type . 48

4.7 Summary . 49
5 Implementation Exheritance 50

5.1 Impact of Polymorphism in the Generalization Source Class 50
5.2 Adding New Behavior . 53
5.3 Exheriting Dependencies Problem . 53
5.4 Type Invariants Assumptions . 53
5.5 Summary . 53

6 Mixing Inheritance With Exheritance 55
6.1 Fork-Join Inheritance . 55
6.2 Reusing Common Behavior . 55

6.2.1 Specialization - The Classic Solution . 57
6.2.2 Feature Adding in Foster Class . 57
6.2.3 Setting Superclass for Foster Class . 57

6.3 Dynamic Binding Problems . 57
6.4 Architectural Restrictions . 58
6.5 Summary . 60

7 Conclusions and Future Work 61
Bibliography 66

2

Abstract
Inheritance is one way to achieve class reusability in object-oriented systems. Reverse inheritance
can be considered a special kind of inheritance, where the subclasses exist �rst and then the
superclass is created. It is more natural to de�ne the subclasses �rst, to notify the commonalities
and then to factor them in a common superclass. Using reverse inheritance it is possible to achieve
class reusability in several ways: to capture common functionalities of classes, to insert a new class
in an already existing class hierarchy, to extend an existing class hierarchy, to reuse partial behavior
of a class and to create a new type. Reverse inheritance class relationship equipped with semantics
equivalent to direct inheritance is not straightforward. When integrating reverse inheritance in
several modern object-oriented programming languages, a lot of conceptual problems arrise, which
have to be analyzed carefully.

Acknowledgements
This research report belongs to a PhD programme developed in the collaboration of University
�Politehnica� of Timisoara, Romania and the University of Nice from Sophia-Antipolis, France.
Until now, I attended two preparation stages at the I3S research laboratories in Sophia-Antipolis
where I worked in an international research team. I want to thank professor Ioan Jurca for his
e�orts in supervising my PhD programme and in elaborating the reviews for this report. I would
like to thank M.C. Philippe Lahire and M.C. Pierre Crescenzo for their intellectual and
�nancial e�orts invested in the development of the ideas related to the theme of the thesis and
sustaining the research. I would like also to thank the team members for their determination in
making me advancing on the subject. I would like to thank also professor Markku Sakkinen
from University of Jyvaskyla, Finland, for the valuable ideas that he gave me during one of my PhD
preparation stages. Also I would like to thank my colleagues lecturer Dan Pescaru and teaching
assistant Emanuel �undrea for the realistic feedback and for the technical coaching. I want
also to express my gratitude to Ms. Monica Ruzsilla for her commitment and determination
in developing the prototypes implied by this research. I would like to thank also the dean of our
faculty, professor Octavian Pro³tean and to the chief of our department professor Vladimir
Creµu for the approval of the �nancial support in one of my research internships.

1

Chapter 1

Introduction

1.1 Motivation
One of the most important factors on which the software quality depends is reusability. The
bene�ts of reusability are increased speed of executing projects, decreased maintenance e�ort,
reliability [27]. In object-oriented technology, one way to achieve reusability is by organizing the
classes in hierarchies. Currently, class organization is done by inheritance, which is considered
one of the basic concepts in the object-oriented paradigm. Inheritance is an incremental modi�-
cation mechanism which allows the transformation of the ancestor class into a descendant class
by augmentation [13]. In practice it has several uses, it can be used for subtyping as well as
for subclassing. From the modeling point of view inheritance can be used either for classi�ca-
tion or for implementation. A very close concept to the concept of inheritance is the reverse
relationship, namely reverse inheritance.

The idea of reverse inheritance seems to have appeared in the world of objectual database
[35], where the main goal is object reuse. Then it was integrated in the context of object-oriented
programming languages as generalization [30], in order to reuse classes. After that, some ideas
of integrating it in Ei�el language can be found in [25], which we admit to be the most advanced
approach at the moment. Finally the same concept is discussed in several aspects related to
multiple programming languages in the work of [32].

The works of [35, 30, 25, 32] argue about the idea that the reverse inheritance concept favors
software reusability in the case of object-oriented systems. The creation of a generalized class
which plays the role of supertype and contains all the common features of subclasses is a way of
achieving class homogeneity and a better reuse[35]. The interest for such a class relationship can
grow when we are dealing with subclasses which belong to a library and have read-only source code
or even worse, the source code is not available [32]. The reason for which a library is read-only may
vary: copyright reasons, maintenance reasons. We can mention also that this class relationship
was neither completely developed in the literature, nor integrated in a programming language[32].
Next, several ways in which reverse inheritance can be usefull in class hierarchy reorganization are
presented in more details.

1.1.1 Designing in a More Natural Way

In [30] it is stated that reverse inheritance is a more natural way for designing class hierarchies.
When modeling classes, it is considerred that it is more natural to design each class with its own
features and only then to notice commonalities and factor them in a common superclass. This
will lead to avoidance of data and code duplication.

2

Figure 1.1: Capturing Common Functionalities

1.1.2 Capturing Common Functionalities

In some applications classes belonging to di�erent contexts need to be used together. Sometimes
they have even common functionalities which could be factored in one place to avoid duplication.
There are several ways to achieve class adaptation and reuse. When the source code of classes is
available and modi�cations are allowed, inheritance is the right choice1. An abstract superclass
can be created by ordinary inheritance and all common code can be placed in the newly created
superclass. One of the bene�ts of this solution is the type polymorphism and dynamic binding of
common features. Any instance of the subclass can be referred using references of the superclass
type. Common features can be called using superclass references and the code which will be
executed, is chosen at runtime.

We will address the situation of dealing with read-only code or precompiled class libraries
where no modi�cations are possible. In this case reverse inheritance could be one solution for
the uni�ed management of the reused classes. In �gure 1.1 we present the case of having three
classes Rectangle, Ellipse, Triangle which were supposed to be developed in di�erent contexts. A
new abstract class AbstractShape was created which contains an abstract common feature draw().
The bene�ts discussed in the previous paragraph are still available in this solution, too. The
programmer can manipulate instances of shapes through AbstractShape references. Of course, in
practice, common features may exhibit di�erent signatures, so they may need adaptations.

1.1.3 Inserting a Class Into an Existing Hierarchy

In this subsection is discussed the typical case of a class hierarchy which originally had two
abstraction layers and later on was decided that a new middle abstraction layer is necessary.
One choice is to a�ect the original classes and to make the modi�cations in order to re�ect the
new hierarchy. Of course, if other clients are already depending on the old class hierarchy, another
solution must be considerred. The use of reverse inheritance in such cases is recommended because
it implies no modi�cation of the original classes.

In the use case of �gure 1.2 we present a class hierarchy which at design time had only two
classes Shape and Rectangle in a subtype relationship. Later was decided that a new class Paral-
lelogram had to be added to the hierarchy. As it is known that any parallelogram is a shape and
any rectangle is a parallelogram, so hierarchically class Parallelogram has to be between Shape
and Rectangle. The solution proposed is to inherit the new class Paralelogram from Shape and to
reverse inherit from Rectangle. This way the natural subtyping relations are preserved.

1Even if the reused classes have superclasses, in Ei�el multiple inheritance is allowed and should be used in this
case. In programming languages like Java where no multiple inheritance between classes is allowed, the solution
would be more complicated.

3

Figure 1.2: Inserting a Class Into an Existing Hierarchy

Figure 1.3: Extending a Class Hierarchy

1.1.4 Extending a Class Hierarchy

In some applications the integration of a class hierarchy into a more general one could be of real
help. The idea of connecting two (or more) class hierarchies together under a common superclass
without a�ecting any of existing classes is achievable by reverse inheritance. The part of the system
which is newly developed can use ordinary inheritance but the link to the read-only hierarchy has
to be made through reverse inheritance.

In the use case depicted in �gure 1.3 we have a situation of class hierarchy modeling shapes.
Initially only the hierarchy rooted by class Parallelogram existed and it could not be modi�ed.
As a �rst step of the redesign precess, an abstract superclass named AbstractShape is created
using reverse inheritance. Then the evolution of the hierarchy comes naturally using ordinary
inheritance for classes like Ellipse, Circle and Triangle.

1.1.5 Reusing Partial Behavior of a Class

Some classes in object-oriented systems exhibit a great quantity of behavior. Maybe in some
contexts only a subset of them needs to be reused. This could be useful in situations where binary
code size is critical or a supertype, containing a subset of features, is needed. On the other hand

4

Figure 1.4: Reusing Partial Behavior of a Class

it could be good that clients are restricted to use only a part of the interface of an object and not
all the features from it.

In the sample located in �gure 1.4, a Dequeue class is analyzed. Originally it was designed as a
double ended queue, having operations for each end: push, pop, top (for one end) and push2, pop2,
top2 (for the other end). A new class Stack is created which is interested only in the operations
related to one end of the Dequeue class. A new class Queue is then created to get the operations
related to queue abstract data type. In conclusion the programmer has the choice of reusing
several parts of the code written in a class.

1.1.6 Creating a New Type

Another facility o�ered to the programmer by the use of reverse inheritance and like-type class
relationship (which will be presented in section 2.2) is the creation of a new type starting from
existing classes. Using reverse inheritance we can create a common superclass for the existing
classes, like it was presented in subsection 1.1.2. Ordinary inheritance allows only direct inheritance
of all features from the superclass while a like-type class relationship allows importing features
selectively from other classes. In �gure 1.5 starting from two terminal classes Terminal1 and
Terminal2, it was built a TerminalANSI class which gathers all common behavior and data. Later
on a new type is created, named Terminal3. This new type is created by ordinary inheritance from
class TerminalANSI. It can be noticed that class Terminal3 may import directly some features
from Terminal1 and Terminal2 through the like-type class relation.

1.1.7 Decomposing and Recomposing Classes

Sometimes, in object-oriented systems a part of a class could be used to create a new class. This
idea was presented also in subsection 1.1.5 where the reuse of the partial behavior of a class
was discussed. In this use case it is proposed to facilitate better class design by decomposing
classes and creating new ones by recomposing with the decomposed parts. In �gure 1.6 it is
presented such a situation where class CalculatorWatch was decomposed into two abstract classes
Calculator, which contains the mathematical functions and Watch, which includes the list of clock
functionalities. It was decided to exherit just the feature signatures into the abstract classes
but not the implementation because in the two abstract classes there can not be added new
functionalities. It is more natural to extract the behavior using the like-type class relationship
into classes CalculatorImplementation and WatchImplementation. Each implementation class is a
subclass of the corresponding abstract exherited class: CalculatorImplementation is the subclass of

5

Figure 1.5: Creating a New Type

Calculator andWatchImplementation is the subclass ofWatch. Next, classWatch is combined with
class Cronograph using multiple inheritance. Thus we showed a way of decomposing a class and
recomposing it back with another class. It can be noticed that any eventual new features required in
classes Calculator or Watch can be added in CalculatorImplementation or WatchImplementation.
Adding new functionalities directly in classes Calculator or Watch would be inherited in class
CalculatorWatch a�ecting its original behavior.

1.2 Overview on the Inheritance Class Relationship
The origin of inheritance dates from 1960 and was introduced in the Simula language where it was
known under the name of concatenation [43]. The inheritance concept can not exist without the
concept of class through which the objects are de�ned. The class is considered to be the building
brick of every object-oriented system having the role of both type and module [27]. Classes are
organized in hierarchies representing the backbone of almost every object-oriented system. They
contain the state and the behavior of objects. There is no �nal de�nition for inheritance and its
implementing mechanisms. Next, several informal de�nitions of inheritance are provided from the
literature.

Inheritance is a class relationship where one class shares the state and behavior de�ned in one
or more classes, so classes can be de�ned in terms of other classes. A subclass rede�nes or restricts
the existing structure and behavior of the superclass [9]. Inheritance in [27, 2] is de�ned as module
extension mechanism because it makes possible to de�ne new classes from existing ones by adding
or adapting features, and as a type re�nement mechanism which allows the de�nition of new
types as specializations of already existing ones. Inheritance is commonly regarded as the feature
that distinguishes object-oriented programming from object based programming or other modern
programming paradigms [43]. It supports the construction of reusable and �exible software. In
the sense of object-oriented programming, inheritance is an incremental modi�cation mechanism
that transforms an ancestor class into a descendant class by augmenting it in various ways [13].
The ancestor class is known also as base class, parent class or superclass and the descendant
class as derived class, child class, heir class or subclass. A class is abstract if it has a partial
implementation and as a consequence it can have no instances. Such a class may contain abstract
and concrete members. In Ei�el language [28], an abstract class is known also as a deferred
class, an abstract feature as a deferred feature and a concrete feature as an e�ective feature.

Inheritance brings several bene�ts like code and data reuse, class hierarchy conceptual or-
ganization, rapid prototyping. There are also some drawbacks of inheritance class relationship.
Execution speed is a�ected because object-oriented programs must include code implied by sev-
eral supporting mechanisms like: constructors, method calling mechanism (polymorphism and
parameter transmission), garbage collectors, run-time type checkers. Another consequence of the
supporting mechanisms in object-oriented systems is program size. All of the mechanisms men-

6

Figure 1.6: Decomposing and Recomposing Classes

tioned earlier imply routines which will be executed in runtime. So their code is added to the
object-oriented system. The complexity of the object-oriented systems is higher compared to other
systems designed using non object-oriented based paradigms. The complexity of the software sys-
tems is managed by the complexity of the object-oriented paradigm concepts.

In [27] a taxonomy of inheritance uses is presented. Each possible purpose of inheritance is
individually analysed.

Subtype inheritance is applied when: i) the heir classes represent sets of external objects; ii)
heir classes correspond to subsets of ancestor class; iii) all heir classes must be mutually disjunctive.
In this case the parent class has to be deferred. This kind of inheritance it is very close to
hierarchical taxonomies of botany, zoology and other natural sciences.

View inheritance is the type of inheritance that is used to manage the multiple criteria of
classi�cation between objects. The classes will represent non-disjoint partition sets. This kind of
inheritance is based on multiple inheritance mechanism that enables an object having multiple
views. The classes involved have to be deferred.

Restriction inheritance where the heir class instances have additional constraints expressed
through parts of the invariants. The ancestor and heir classes have to be both abstract or both
concrete.

Extension inheritance involves adding new features to the superclass thus creating a new
enhanced subclass.

Variation inheritance (functional or type variation) involves either providing new implemen-
tations in the subclasses keeping the signatures intact or changing the signatures in a covariant
way, but no other features in the subclasses should be added.

Une�ecting inheritance happens in the case when e�ective features from the superclass are
rede�ned as deferred in the subclass.

Rei�cation inheritance applies to cases in which the deferred superclass de�nes the speci�-
cation of a data structure and the subclass implements it completely or partially. The superclass
is deferred in this case and the subclass can be e�ective or deferred.

Structure inheritance applies between a deferred superclass de�ning a property and a sub-

7

class which models an object having that property. For instance a class COMPARABLE will be
the superclass of all classes which support the comparing functionality.

Implementation inheritance facilitates the subclass to obtain a set of features (except
constant attributes2 and once functions3) from the superclass in order to implement the abstraction
of the subclass.

Facility inheritance involves constant inheritance and machine inheritance. The purpose is
to provide to the subclass a set of logically related features. With machine inheritance it means
that the set of features are routines viewed as operations on an abstract machine.

In [7] it is considered that inheritance has mainly two di�erent viewpoints: extension and
specialization inheritance. The class relation is used by programmers in modeling, to express
conceptual relations between classes and to share code between classes. It is presented a new
abstraction mechanism named component, a solution that integrates both views of inheritance in
an object-oriented language. The component is a non-instantiable collection of data and related
operations. Classes can be composed of such components. Inheritance works at two levels: at
component level which has the purpose of code-reuse and class level inheritance for subtyping.

Inheritance represents an important motive for divergence in the community of researchers
because of its di�erent uses and implementations in the programming languages. There are a lot
of works showing positive and negative examples of how inheritance must be used [26, 43].

1.3 Inheritance in Object-Oriented Programming Languages
In this section we will discuss about how the features of the inheritance mechanisms are im-
plemented in several programming languages. In C++ [41, 34] there are mainly two kinds of
inheritance: public and private (protected). The public inheritance is allowing the inheritance of
superclass members with their default visibilities. Private inheritance hides the public and pro-
tected inherited members making them private in the subclass. Protected inheritance a�ects only
the visibility of the public members, being protected in the subclass. On the other hand private
inheritance involves that the subclass will be no longer a subtype of the superclass. That means
that the type conformance relationship between the classes is disabled. In the case of multiple
inheritance there is a special kind of inheritance called virtual inheritance. This is due to the vir-
tual declarations of the base class which imply a special sharing behavior of the inherited features
when multiple inheritance paths are available. These aspects will be detailed in a later section.

In Ei�el [28, 2] there are two kinds of inheritance: conforming and non-conforming. The feature
inheritance mechanism is the same in both kinds of inheritance. The di�erence appears related to
the subtyping relationship between the superclass and subclass. With conforming inheritance the
subtyping relationship holds, while with non-conforming it doesn't. A special capability in the
context of inheritance in Ei�el is the feature redeclaration. This may imply feature renaming, since
it is considered that in the subclass, a new name may increase clarity, or rede�nition, meaning
change of signature or implementation. Of course, signatures may be changed in conformance with
the rules of covariance. For this, a set of keywords are used: rename, unde�ne, rede�ne, select.

In Java [8] the inheritance mechanism always involves subtyping. The inheritance mechanism
involves single subclassing and multiple subtyping. In other words, classes may have only one
superclass while interfaces can have multiple superinterfaces. On the other hand, classes may
implement multiple interfaces. By interface we refer to a special concept, which behaves like a
pure abstract class and has only abstract methods. This approach avoids all problems encountered
in some of the complex cases of multiple inheritance. In C# [11] we will �nd the same behavior
as in Java, but some concepts may be named di�erently.

In the context of inheritance we can discuss also about inherited features or members. In an
Ei�el class a feature has an unique name, which can not be overloaded. In C++ and Java it
is possible to de�ne several methods with the same name but they are obliged to have di�erent

2Constant attributes are those attributes that hold a readonly value.
3Once functions di�er from the ordinary functions in the sense that their body is executed only once on an

instance, no matter how many times it it called.

8

signatures. By signature it is meant parameter number and types. Return types do not belong to
the signature.

1.4 Document Outline
We propose to analyze the features of reverse inheritance class relationship from the conceptual
point of view. The report is structured as follows. Chapter 2 presents the most important reuse
mechanisms of object-oriented technology. In chapter 3 we discuss generalities regarding reverse
inheritance, like basic principles, notations in di�erent approaches. Chapter 4 deals with exher-
itance at class interface level. There are analyzed which features from the class interface can be
exherited and what major problems are encountered. In chapter 5 implementation exheritance is-
sues are discussed. In chapter 6, some interesting combinations of ordinary and reverse inheritance
are studied. Chapter 7 points out the conclusions of our analysis and the future work.

9

Chapter 2

Reuse Mechanisms in Object

Technology

In this chapter the principles behind the most signi�cant reuse mechanisms in object-oriented pro-
gramming will be discussed. The interest goes in the direction of mechanism design, encountered
problems, possible compromising solutions and its supporting motivation. Implementation issues
are also a goal for this section, as they could be reused or similar ideas could be developed start-
ing from them. The proposed mechanism for analysis refer to central concepts of object-oriented
technology like inheritance, mixins, traits, roles, separation of concerns with its object paradigms
(aspect oriented programming, composition �lters).

2.1 Multiple Inheritance
In this subsection we will discuss several issues about multiple inheritance since it is a special form
of inheritance, which is the base concept of the object-oriented paradigm. Multiple inheritance is
the one of the most powerful facilities o�ered for the software development allowing to combine
several concepts in one abstraction. Disallowing inheritance to accept multiple parents would limit
the potential of inheritance in general [28]. Like single inheritance, multiple inheritance is used to
extend the module (class) and to create a powerful type system in applications. Inheritance is sin-
gle if the subclass has one parent ormultiple if the subclass has multiple parents. Because a class
can inherit parents in more than one way, it is encountered the case of repeated inheritance.
We will focus on the implementations of Ei�el, C++, Java and C# statically typed programming
languages, analyzing the problems and the existing solutions. The interesting points of discussion
are name clashes, duplicating and sharing features, dynamic binding issues.

In Ei�el, multiple inheritance occurs even when the same parent class is inherited twice by the
same subclass. This is also known as the repeated inheritance case [28]. If a class has no parents
declared, it implicitly is considered that inherits from class ANY, which is the base class of any
user de�ned class. In practice multiple inheritance is used in describing the basic data structures
implemented in the base library of the Ei�el language. It has been circulated the idea that
multiple inheritance is a dangerous and destructive concept [28]. This is not a justi�ed opinion,
but in practice it results from imperfect implementations and its improper uses. When using it
properly, it permits combining abstractions, being a key technique in object-oriented development.
As graphical convention, multiple inheritance can be represented like in �gure 2.1. We used the
UML notation to show that class C has two parents A and B.

In C++ this kind of multiple inheritance is named also as independent multiple inheritance
[42], because there is no dependency between the superclasses. This name allows separating from
the case of repeated inheritance.

In multiple inheritance one technical problem is the name clash. This happens when several
features with the same name are inherited from di�erent parents. In the Ei�el philosophy, features

10

Figure 2.1: Multiple Inheritance

Example 1 Multiple Inheritance Name Clashes
class LONDON

feature foo:INTEGER;

end

class NEW_YORK

feature foo:REAL;

end

class SANTA_BARBARA inherits

LONDON

NEW_YORK

feature

...

end

can not be overloaded within a class [28], each feature has a unique name, but even in languages
which support overloading (like C++ or Java) the con�ict persists for features with identical
signatures. Such a name clash situation is represented in example 1, taken from [27].

Name clash is produced if both classes LONDON and NEW_YORK have a same named
feature foo, for example. Because the problem appeared in the descendant class, it is motivated
that the solution's place is also in the descendant. So the renaming mechanism can be used to solve
such a con�ict. There are several solutions for the problem of the example: to rename the feature
inherited from LONDON, to rename the inherited feature from NEW_YORK or to rename both
inherited features. Of course, the new names chosen have to be unique at the subclass visibility
level, otherwise another name con�ict could be caused. It is worth mentioning that as long as the
con�icting features are not used there is no con�ict declared by the compiler.

In C++, multiple inheritance presents the same problem of name clashes, but a di�erent
solution is used, the one of explicit designation [42, 41]. The individual selection of one or another
inherited feature with the same name, is made with the help of the full quali�cation. So, the
resolution operator �::� is used in this sense. We will revisit the same example in the context of
C++ (example 2):

It can be noticed that in the subclass, using the name of the superclass for the inherited
features, they can be distinguished without any problems. In case of a more complex hierarchy
the resolution operator can be used repeatedly.

In Java[8] multiple inheritance is possible for types but not for classes. In other words this
means that interfaces can be multiply inherited while classes can not. For classes there can be
used only single inheritance, this being a way of avoiding the multiple inheritance problems. In

11

Example 2 Multiple Inheritance Con�ict Resolution in C++
class London

{

int foo;

};

class NewYork

{

double foo;

};

class SantaBarbara: public London, NewYork

{

// access example London::foo;

// access example NewYork::foo;

};

Example 3 Multiple Inheritance Con�ict Resolution in Java
interface BaseColors

{

int RED = 1, GREEN = 2, BLUE = 4;

}

interface RainbowColors extends BaseColors

{

int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;

}

interface PrintColors extends BaseColors

{

int YELLOW = 8, CYAN = 16, MAGENTA = 32;

}

interface LotsOfColors extends RainbowColors, PrintColors

{

int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;

}

the case of interfaces may appear some con�icts. If two superinterfaces declare a �eld1 with the
same name in each of them, then in the common subinterface any reference to that �eld causes
ambiguity errors [8]. Multiply inherited interface �elds through di�erent inheritance paths are
uni�ed into a single feature [8].

We took a sample from Java Language Speci�cation book [8] in order to exemplify the two
possible con�ict situations that may arise. Fields RED, GREEN, BLUE are multiply inherited
by both interfaces RainbowColors and PrintColors from BaseColors interface. Then they are
inherited into LotsOfColors interface through multiple paths. The access "CHARTREUSE =
RED+90" will not arise ambiguities since RED member is uni�ed at the subinterface level. It
is not the same case for YELLOW member de�ned in RainbowCollors and in PrintColors with
di�erent values. A potential reference to YELLOW member in the subinterface will determine a
name con�ict. It is not clear which features should be taken into account the one with value 3 or
the one with value 8.

1In Java all �elds declared in interfaces are public, static and �nal, meaning that they behave like constants.

12

Figure 2.2: Direct Repeated Inheritance

Figure 2.3: Indirect Repeated Inheritance

2.1.1 Repeated Inheritance

In the context of multiple inheritance we encounter the case of repeated inheritance, because a
class can be the descendant of another in several ways [28]. There are two cases of repeated
inheritance: direct repeated inheritance and indirect repeated inheritance, like in �gures
2.2 and 2.3:

Repeated inheritance arises when two or more parents of D have a common parent A. We have
to state that direct repeated inheritance is not allowed in all languages. For example in Ei�el it
is possible but in C++ it is not. Class D is the repeated descendant of A and A is the repeated
ancestor of D. There are two problems about repeated inheritance which must be solved: the
fate of the repeatedly inherited features and the solutions in the resolution of dynamic binding
ambiguities [28]. The repeatedly inherited features could be replicated meaning that there will
be one copy for each inheritance path or shared meaning that one unique copy will be inherited.
The solution proposed in Ei�el [28] is to be able to decide for each feature independently how to
deal with it. This can be done using the renaming mechanism in the following way: shared features
will have the same name in the subclass and replicated features will have di�erent names. If we
want to replicate repeatedly inherited features we have to change their names using the renaming
mechanism. The implicit behavior is the sharing of repeatedly inherited features. In [28] there is
an example about a situation where one feature should be replicated and one should be shared
(see �gure 2.4). Class HOUSE has two members street_address and insured_value. Then two
subclasses are created BUSINESS and RESIDENCE. Later a class HOMEBUSINESS is built as

13

Figure 2.4: Replicated and Shared Features in Repeated Inheritance

Example 4 Repeated Inheritance in C++
class L {...};

class A: L {...};

class B: L {...};

class C: A, B {...};

a subclass of both BUSINESS and RESIDENCE. It is a natural fact that one person can have a
business at his residence so the street_address can be unique in the HOMEBUSINESS subclass
but insured_value should be duplicated since two insurance policies have to be made one for the
residence and one for the business. In order to obtain such an e�ect feature insured_value will be
renamed, using names as business_value and home_value, in both BUSINESS and RESIDENCE
classes.

In C++ there is one global selection possibility for the multiply inherited features [34, 41]. Im-
plicitly multiple sub-objects are created when such a subclass is instantiated. Example 4 presents
such a situation where class L is the superclass of A and B. Later class C is created as a subclass
of A and B. Under these circumstances an instance of C will contain a sub-object L corresponding
to A and another sub-object L corresponding to B.

C++ o�ers also the other possibility of sharing features. This can be done by declaring the
base classes as virtual, so any virtual base class will generate a single sub-object [42]. In example
5 we studied the behavior of the virtual base classes mechanism. In this case we decided to obtain
in class C only one copy of the features from the base class L and in class D two copies: one
inherited from C and the other directly inherited from L.

This mechanism has two particularities. One is related to the lack of �exibility because it is
not possible to have at the same time features which are replicated and features which are shared.
The second observation is the fact that in order to obtain the sharing behavior in the subclass it is
necessary to a�ect the superclasses by declaring them as inherited virtually. The problem is that
not always such a decision can be foreseen.

Example 5 Virtual Base Classes in C++
class A : virtual L {...};

class B : virtual L {...};

class C : A, B {...};

class D : L, C {...};

14

Figure 2.5: Rede�ned Features in Repeated Inheritance

Example 6 De�ering Multiple Inherited Features
class D inherit

B undefine f end

C

end

Dynamic binding problems occur in situations like the one presented in �gure 2.5 where
the rede�nitions of a repeatedly inherited features are made. In Ei�el features can be redeclared
[28], this can imply rede�nition or e�ecting. Rede�nition means that a feature which lives in the
superclass, gets a new implementation or a new covariant signature or a new set of assertions in
the subclass. Redeclaration happens even if a deferred feature in the superclass is e�ected in the
subclass. The problem of dynamic binding appears when on an instance of class D, referenced
through a variable of type A, the feature f is called. Because feature f is rede�ned in B and C
classes it means that there are two implementations available and name con�ict arises. There can
be analyzed two cases: one in which features are intended to be shared and one in which features
are intended to be duplicated. When sharing features the only possibility to eliminate the name
con�ict is to de�er all con�icting features except maybe one. In this way only one implementation
will be available for feature f in class D.

In example 6 we show one possibility of de�ering feature f at the level of class D. It is unde�ned
the feature comming from class B while in class D the implementation of class C will be used.
So any call to feature f on a D instance will be linked to the implementation of its non-unde�ned
version. The choice of unde�ning all f features makes the class valid, but if there are at least two
implementations of feature f propagating in class D, it will be invalid. Of course, as an alternative,
there could be unde�ned feature f on the class C branch.

The second case, the one of duplication implies the renaming of the di�erent implementations
of feature f in D subclass (see example 7). In class D, the implementations written in classes B
and C are renamed as fb, respectively as fc. Thus there are no name clashes at the level of class
D.

Let's analyze all the possible dynamic linking possibilities depending on the reference used on
the D typed instance. Example 8 uses the same reference type as the type of the object. In this
case the possible calls are to fb and fc features which will be linked to the versions of class B and
respectively C.

Example 9 uses references of type B and C, so the versions called on theD object are determined
by the type of the reference.

15

Example 7 Replicating Multiple Inherited Features
class A

feature f

end

class B inherit

A redefine f

...

end

class C inherit

A redefine f

...

end

class D inherit

B

rename f as fb end

C

rename f as fc end

end

Example 8 Multiple Inheritance Dynamic Binding Case (1)
d:D;

create d;

d.fb; -- calls the version of f from class B

d.fc; -- calls the version of f from class C

Example 9 Multiple Inheritance Dynamic Binding Case (2)
d:D;

create d;

b:B;c:C;

b=d;c=d;

b.f; -- calls the version of f from class B

c.f; -- calls the version of f from class C

16

Example 10 Multiple Inheritance Dynamic Binding Case (3)
d:D;

create d;

a:A;

a=d;

a.f; -- this call is ambiguous

Example 11 Disabling Polymorphism
class D inherit

B

rename f as fb end

expanded C

rename f as fc end

end

Example 10 uses an A typed reference on a D typed object. The call to the f feature will be
ambiguous.

The dynamic binding problem is more severe in this case since there are two versions of the
feature in the subclass. A call to the f feature on a D typed object will remain ambiguous unless
some criteria is used in favouring one of the implementations. In [28] there are discussed several
solutions. The �rst solution is to use the implementation of the class which is the �rst listed in the
inheritance clause. This approach would change the semantics of a class when changing the order
of the inheritance clauses. On the other hand when dealing with more complicated class hierarchies
having several features it will lead to impossible situations of selecting di�erent implementations
from di�erent superclasses. The second solution is to use a special select keyword in the language,
which allows to declare directly the choice in the favor of one implementation. The third approach
comes with the idea of disabling polymorphism on the several inheritance paths, except one from
where the implementation will be achieved. In example 11 on the inheritance path corresponding
to class C the polymorphism is disabled using the expanded keyword. This means also that the
subtyping class relationship between instances of D and C are cut.

2.1.2 Implementations of Multiple Inheritance

In [10] there are presented several implementation techniques of the multiple inheritance concept in
di�erent type of programming languages. These techniques involve class hierarchy transformations
in order to integrate this concept in languages with single inheritance and even with no inheritance.
These transformations intend to maintain as much as possible the model of the original class
hierarchy, to respect the polymorphic behavior of strongly typed languages, avoid excessive code
repetition.

There are several basic transformations available for di�erent kind of inheritance models. For
languages having no inheritance there can be performed translations like emancipation, variant
types or simulation using �ags, composition. When dealing with a language having single inheri-
tance there are possible techniques of expansion or mixed techniques. In case of single subclassing
and multiple subtyping (which is the case of Java [8] and C# [11]) a mixed strategy has to be
used. In the case of languages with multiple inheritance the only concern is the resolution con�ict
mechanism. Of course, the techniques presented in the context of languages with no inheritance
can be applied also to languages with single inheritance, single subclassing and multiple subtyping,
multiple inheritance. These basic transformations will be exercised on a demonstrative multiple
inheritance class hierarchy.

In �gure 2.6 is presented a representative hierarchy which will be transformed using each of the
transformations previously enumerated. It can be noticed that there is a complex case of repeated

17

Figure 2.6: Multiple Inheritance Class Hierarchy

inheritance with multiply inherited features through several inheritance paths. Attribute atrA is
inherited from A to D through B and C classes. On the other hand method methA is overridden
and has di�erent implementations in each subclass of the hierarchy. We have to mention also
that from the typing system point of view there are some subtyping class relationship in this class
hierarchy: B and C are subtypes of A, and class D is a subtype of both classes B and C.

2.1.2.1 Emancipation
The strategy of emancipation [10] involves cutting all inheritance links between classes and in-
cluding all exhibited features as own resources. This strategy is also known as �attening [27]. A
special attention has to be given to the several versions of a method and its �super� like calls. All
these have to be renamed in order to keep the behavioral consistency of the methods. In �gure
2.7 we can see the e�ects of the transformation. Each class is independent, it has no inheritance
links, inherited attributes are duplicated for each class. Inherited methods are included in the
subclasses as own resources and renamed at the same time. The delegation of the �super� like calls
are not visible in this representation. One can notice that the natural subtyping class relationship
between the classes is lost by using such a transformation.

2.1.2.2 Composition
A di�erent approach to transform multiple inheritance into something more simple is to use com-
position [10]. This approach is based on the fact that if a class needs some services from another
class it is either a subclass or it is a client of that class [27]. The transformation consists in
transforming all inheritance links in composition links. The former subclass will be composed out
of references to instances of the former superclass. Obviously, all �super� like calls have to be
delegated to the corresponding component objects. The subtyping relationships between classes
is lost also with this kind of transformation. In �gure 2.8 it can be noticed that each inheritance
link is replaced with a composition link. This transformation is based also on the fact that a class
can have an unlimited number of composition links while the inheritance links could be limited
to one (in single inheritance based language) or even zero (in the case of procedural languages).

18

Figure 2.7: Emancipation

19

Figure 2.8: Composition

Class D is exhibiting all inherited methods from superclasses implementing them by delegation.
The advantage of this transformation is that there will be no code or data duplication, subtyping
being lost though.

2.1.2.3 Expansion
The idea of this transformation is to use the bene�ts of single inheritance and to transform the
multiple inheritance DAG (directed acyclic graph) into a tree or forest in the general case. Each
inheritance path is isolated by duplicating the multiply inherited class. In �gure 2.9 the hierarchy
is transformed using expansion. Class D is duplicated into D1 and D2 on each inheritance paths.
It can be noticed that features which should be inherited normally from the other branch are
added as a own resource into the subclass. It is the case of method metC and metB of class C
and respectively B which has to be added into class D1 respectively D2. The other features are
inherited using the single inheritance: atrB, metA, metB for class D1 and atrC, metA, metC for
class D2. In conclusion we can say that some of the subtyping class relations are kept, naming
the ones between D1 and B or D2 and C, but the others not.

2.1.2.4 Variant Type
The variant type idea or simulation of variant type comes from procedural programming languages
where no polymorphism is available. Simulation is made using a single monitor class which has all
the features of all classes and using a �ag the di�erent types can be achieved [10]. Depending on
the current object type a certain set of features is exhibited. The obtained structure is relatively

20

Figure 2.9: Expansion

Example 12 Delegation Sample in C++
class B { int b; void f(); };

class C : *p { B* p; int c; };

complex and it involves no data or code duplication. In �gure 2.10 we have the transformation
applied and a monitor class is created instead of the whole multiple inheritance hierarchy. There
has been added a �ag called whoAmI which can set the di�erence between the several object types
simulated by this class. All the attributes and methods (including all variants) of the hierarchy
are centralized in this class. In order to emulate the original behavior of the multiple inheritance
hierarchy the set of exhibited methods metA, metB, metC, metD will call the appropriate versions
depending on the state �ag.

2.1.3 Delegation

As a similar concept with the concept of inheritance, we will discuss about the delegation class
relationship in C++ [4, 42]. The idea is that in the base class list of a class declaration there can
be speci�ed a pointer to some other class. Example 12 shows such a mechanism.

Class C is de�ned as having superclass class B, but this link is expressed using a pointer to the
superclass sub-object. Example 13 explaines that any call to an inherited member of the subclass
instance will be treated as if it would be de�ned in that subclass.

The advantage of this technique is the possibility of changing the superclass sub-object in
runtime. With normal inheritance there is no such facility, the superclass sub-object can be
referred using the this pointer which can not be assigned with the address of the new sub-object.
Because of the bugs and confusion encountered by the users of this mechanism, it was never

21

Figure 2.10: Variant Type

Example 13 Delegation Usage in C++
C* q;

q->f(); // is equivalent with q->p->f();

22

Figure 2.11: Incremental Modi�cation by Inheritance
Incremental Mechanism Class Relations
behavioral compatibility R subtype P or R is-a P
signature compatibility R subsig P
name compatibility R subclass P

cancellation R1 like R2

Table 2.1: The Four Incremental Mechanisms

included in the C++ language.

2.2 The �Like-Type� Class Relationship
Incremental modi�cations can be used in reusing conceptual or physical entities and in the con-
struction of new similar ones [47]. As natural and computational systems evolve there are necessary
incremental mechanisms to control this evolution. Inheritance class relationship is a particular
kind of incrementation mechanism which transforms the parent P with the help of a modi�er M
into a result entity R=P+M.

The �+� composition operator is asymmetrical since P and M have di�erent roles in this class
relationship. The features of M may overlap the features of P.

Compatibility rules can be set between subclass and superclass [47].
Cancellation allows that operations from the superclass to be deleted from the subclass.
Name compatibility allows changing the names of features but no features are deleted.
Signature compatibility guarantees the compatibility between superclass and subclass in-

terfaces.
The behavioral compatibility assumes that the subclass will not de�ne a radically di�erent

behavior from the one in the superclass.
The �rst three rules refer more to the syntactical part of inheritance and can be easily checked.

This form of inheritance is known as non-strict inheritance. The fourth rule can not be easily
guaranteed. There can be made some assumptions regarding the subclass behavior but not an
absolute veri�cation. Assertion mechanism is a step in this direction of guaranteeing behavioral
compatibility. This form of inheritance is known as strict inheritance.

In table 2.1 are presented the four incremental mechanisms and their corresponding class
relations [47]. It can be noticed that like is the most general relation which includes all the rest.
Types which are related by the like relationship are called liketypes, as subtypes is the name for
types related by the subset relation. The subtype relation is asymmetrical while the liketype is
symmetrical. If any type R1 like R2 then R2 will be like R1.

2.3 Mixins
Software complexity gave birth to methodologies which divide the problem in solvable parts after
they have to be composed in the �nal software product[38]. The mixin mechanism is based on

23

Example 14 General Form of Mixin in C++
template<class Super>

class Mixin : public Super

{

/* body of the mixin */

};

two other concepts: inheritance and genericity. Mixins are derived from generic programming
and they are generic classes which have as generic parameter types their superclasses. The basic
idea was to specify an extension without being obliged to specify the unit to be extended. This is
equivalent to specifying the subclass letting the superclass as a parameter which will be speci�ed
later.

Mixin in C++ is a high power technique for using multiple inheritance with abstract virtual
base classes to enable incremental development of both interfaces and implementations of classes
[37]. Mixins are considered the greatest achievement in C++ although it was not intended to
enable it in the language.

The advantage of this approach is in the fact that there is only one class used for a valid
incremental extension speci�cation for a variety of classes. In [46] it is shown how mixins are used
to create a role based design. Mixin layers is a derived mechanism from the mixin concept and it
was made for concern modeling. They are nested mixins in which the parameter of the external
mixin will determine the parameters of the internal mixin [39].

2.3.1 The Mixin Concept

In this subsection we will focus on the implementation of mixins in the C++ programming lan-
guage. The basic idea is to de�ne an extension without knowing a priori what is extended. This
implies the speci�cation of a subclass while the superclass will be speci�ed later using a generic
parameter [38]. Mixins can be implemented using parameterized inheritance. The superclass of
the mixin will be speci�ed as a parameter which will be speci�ed at the instantiation moment. In
C++ such a mechanism can be expressed like in example 14.

We will exemplify the counting operation on a graph data structure. The operation involves
counting how many nodes and edges were visited during the execution of the example.

Example 15 show how the operations of the designed mixin interfere with the operations of
the graph modeling class. The counting operations from the mixin in the sample can be applied
to all classes having the same interface (see example 16).

In example 16 there are instantiated two graph objects one undirected and the other directed.
Both object have the facility of counting nodes and edges. These counting facilities were not
included originally in the graph modeling classes but were achieved by setting the actual parameter
of the Counting mixin to UGraph and DGraph classes. The mixin is suitable to all classes which
have the same interface as the graph modeling classes.

2.3.2 The Mixin Layer Concept

In this subsection we will focus on the implementation of mixin layers in the C++ programming
language. Mixin layers are a particular form of mixins. They are designed to encapsulate re�ne-
ments for multiple classes [38]. They are nested mixins so the parameters of the external one
will determine the parameters for the internal mixin. The general form of a C++ mixin layer is
presented in example 17.

The conceptual unit here is not the object or parts of it. The mixin layer can specify re�nements
for more than one object. Inheritance is used in order to compose extensions. Mixin layers are
used for implementing roles. Each layer will capture one collaboration. The roles for all the
participant classes are represented by the internal classes of the mixin layer. Inheritance works

24

Example 15 Graph Counting Mixin Sample in C++
template <class Graph>

class Counting : public Graph

{

int nodes_visited,edges_visited;

public:

Counting():nodes_visited(0),edges_visited(0),Graph(){}

node succ_node(node n)

{

nodes_visited++;

return Graph::succ_node(n);

}

edge succ_edge(edge e)

{

edges_visited++;

return Graph::succ_edge(e);

}

...

};

Example 16 Using Mixins Sample in C++
Counting <UGraph> counted_ugraph;

Counting <DGraph> counted_dgraph;

Example 17 General Form of Mixin Layers in C++
template <class NextLayer>

class ThisLayer : public NextLayer

{

public Mixin1:public NextLayer::Mixin1{...};

public Mixin2:public NextLayer::Mixin2{...};

};

25

at two levels. First the layer inherits all the inner classes from the superclass. Then, the internal
classes inherit attributes, methods and even classes from the internal classes of the corresponding
mixin layer superclass. In this context the layer behaves like a name space.

2.4 Traits
Traits are simple mechanisms for object-oriented systems organization based on mixin components.
A trait is a parametric set of methods, which can be assembled in classes, representing the primitive
entity of reuse. Using traits, classes can be organized in hierarchies based on single inheritance
and can be used also in specifying the incremental di�erence between subclass and superclass. For
this mechanism, inheritance is not the composing operator like for multiple inheritance or mixins,
because it has its own composition operators.

2.4.1 Motivations

Motivations around this concept attack the weaknesses of the concept of inheritance [36]. First
of all inheritance can not factor common features from complex class hierarchies. This gave birth
to the multiple inheritance class relationship. Mixins, discussed in subsection 2.3, are a way of
composing classes incrementally starting from sets of members. It is admitted in [36] that in
practice there are a lot of problems with these mechanisms. One cause are the con�ict resolutions
when inheriting the same feature on several inheritance path. As it was presented in subsection
2.1 that the solutions involve linearization or renaming which makes the desired behavior hard
to achieve. It is stated also that reusable artifact are hard to design without con�icts. Class
hierarchies based on inheritance su�er also from the fragile base class problem [29]. Changes in
the class hierarchies a�ect the con�ict resolution mechanisms causing anomalies.

2.4.2 Classes and Traits

In [36, 33] is presented a solution to the earlier invoked problems. There is a separation between the
concepts of traits and the concept of class. Traits o�er a set of services (methods) which implement
the behavior but not state (attributes). Traits can depend further on other traits. Traits have no
direct access to state, but using accessor methods. In conformance with this model, a class can
be built starting from a set of traits and providing the necessary state and the missing services.
The missing services represent the linking code which speci�es how traits are connected and how
possible con�icts have to be solved.

The traits model can be applied to several types of programming languages. The traits de-
scription will be made in the context of a single inheritance programming language. The model of
traits is presented in �gure 2.12. In this model, traits are designed to be the most primitive reuse
code unit. Traits are designed to o�er and to request services. The requested services are named
connectors, while the o�ered services are named sockets. The sockets in the sample are area,
bounds, scaledBy, and the connectors are center, center:,radius, radius:.Between traits there is no
inheritance allowed. Connectors have to be connected in the moment of using the trait. A class
can be obtained by the composition of zero or several traits. The class will have to o�er the state
plus the extra functionality in order to assimilate such a trait.

From the semantical point of view the whole trait functionality will be incorporated in the
interior of the class as if it would be declared there initially. There are exceptions in the case of a
method which is implemented in a class and in a trait, the method implemented in the class has
the priority. It was decided that all traits have the same priority in case of name collisions.

2.4.3 Composing Traits Use Case

In �gure 2.13 is analyzed a sample from [36] of how traits can be composed. Also the case of a
con�icting features is considered.

26

Figure 2.12: Traits Model

Figure 2.13: Traits Use Case

27

In sample depicted in �gure 2.13 a class is built starting from three traits: TCircle, TVisual,
TColor. Each trait has embedded the necessary functionality to produce a ColoredVisualCircle
class. Trait TCircle has three sockets: area, bounds, scaledBy and three connectors center, center:,
radius, radius:. The center and radius related connectors will be plugged into the class de�ned
features. Trait TVisual has three sockets draw, refresh, scaledBy which are also exhibited at the
class level. In change, it needs services like bounds, which are provided by the TCircle trait and
a drawOn: method which is implemented in the class. The TColor trait connects only with the
class features rgb and rgb:. Separately from the already presented features, class ColorVisualCircle
has two features scaledBy: and initialize. There can be noticed that the scaledBy: glue feature is
provided by two of the traits TCircle and TVisual so in the composing class there will be de�ned
a new version, thus eliminating the name con�ict.

2.4.4 Traits vs. Multiple Inheritance

In this subsection we compare the traits mechanism with another reuse mechanism of the object-
oriented technology: multiple inheritance. Traits and inheritance can be combined together in
a constructive way. Since there is no inheritance between traits, any �super� like call from one
of its methods, is linked to the method of the composing class parent. Comparing the traits
mechanism with multiple inheritance it can be admitted that there are some similarities and some
di�erences. The starting point for both mechanisms is the combination of reuse entities. The
composing mechanism is semantically the same: feature reunion. It was admitted that features
from traits will be incorporated in the composing class. With multiple inheritance which involves
subtyping and also subclassing, the same feature composition can be obtained. There can be
noticed a di�erence from the technical point of view. A class in order to be valid is obliged to have
all its external calls resolved, while a trait will be connected in the moment of composition. A
potential problem of traits model is that it implies developing from scratch all the reuse artifacts,
there is no decomposition mechanism for the already existing classes. The �diamond problem� of
multiple inheritance analysed in subsection 2.1 in the case of traits model, the authors of [36] claim
that since there are no attributes in the structure of traits, there are no con�icts. The possible
method con�icts are solved by declaring the con�icted method in the composing class or allows
the programmer to favor one mixin to implement a certain service [36].

2.5 Role Programming
In this section are presented the main concepts of role programming: roles and collaborations.
Several implementation techniques are also discussed.

2.5.1 Roles

Role programming allows the decomposition of the object into several roles. Roles are abstracting
the concerns and formalizing their separation. From the collaboration point of view, roles are
parts of objects which ful�lls their responsibilities in the collaboration [17]. Roles are encountered
in many practical situations. Taking the example of a university student, sometimes he can be
a football and a basketball player. In some special situation he can became a member in the
university council. After a period he can quit this memberships. So objects in object-oriented
systems may behave the same way like real-world ones do. Dynamically, during their life time
several behaviors can be attached and detached to them [44]. Roles are a volatile concept in the
implementation since they do not generally exist as an identi�able component [17]. In [22] the
properties of roles are presented. Abstractivity facilitates the roles to be organized in hierarchies.
Aggregational composition is the property of roles which results from the fact that roles can
be composed with other roles. Dependency property states that a role can not exist without an
object. Dynamicity refers to the fact that roles can be added or removed during the lifetime of
an object. Identity of role is the same with the identity of object. Inheritance in the context of

28

Figure 2.14: Role Object

roles refers to the fact that a role for a class will be a role for any subclass. The locality property
gives meaning to a role only in a role model. Multiplicity property states that several instances
of a given role can exist for an object at a given time. Visibility property of roles means that a
role can restrict the access to an object.

2.5.2 Collaborations

In relation to roles collaborations also have to be discussed. Collaborations involve the cooperation
of a group of objects which perform a task or maintain an invariant [17]. The main objectives
of roles are to describe the collaboration of objects and to delimit well their boundaries [44].
Objects may be involved in multiple collaborations having di�erent roles. Initially collaborations
were described by specifying use cases and observable behavior of the objects. The use case idea
originated in [18] and then was adopted by UML [1]. In UML roles were denoting directions of static
associations (Association Roles) and afterwards they were related to collaborations (Collaboration
Roles). Roles by a set of behavioral functions are able to delimit the boundaries of objects and
thus their granularity is smaller, being very close to the level of methods.

2.5.3 Role Implementation Techniques

In the work of [12] are presented several role representations and corresponding design patterns for
implementation. A design pattern as presented in [14] is a general solution to a class of software
architectural problems. The proposed role representations are: single role type, separate role type,
role subtype, role object, role relationship. Single role type is a solution where all features of
the roles are combined in a single type. Separate role type imply that for each role a separate
type has to be created. Role subtype solution organizes the roles in a hierarchy. Each role has
its own type and common behavior can be put in the supertype. Role object pattern involves
the existence of a host object which has several sub-objects, one for each role. The clients will
ask the host object for a speci�c role feature. In �gure 2.14 is presented such a situation. Class
Person has several roles like manager, engineer and salesman. For this case a role class hierarchy
is designed having as superclass PersonRole. Class Person will have to use one reference of type
PersonRole which will refer any role instance. The interface of the PersonRole with polymorphism
and dynamic binding will allow transparent access to di�erent role implementations of the person's
behavior.

In role relationship pattern the idea is to make each role a relationship with an appropriate
object. Several techniques can help in implementing a role mechanism. We mention that there
are used only the ordinary features of a regular object-oriented programming language and no
other language extensions. All the implementations are based on interface, class inheritance and
polymorphism combined with dynamic binding. The methods proposed are: internal �ag, hidden
delegate, state object. Internal �ag pattern, as its name suggests, the object uses it to do the
behavior selection upon the selected role. Hidden delegate supposes that a subobject knows all
behaviors implied by roles and can be selected using appropriate messages.

Mixin layers are another way of implementing roles [39]. The model of the mixin layer and
its role implementation capabilities were presented in subsection 2.3. In the approach of [17], a

29

Example 18 Role Implementation
template <class ChildType,

class MotherType,

class Supertype>

class FatherRole : public SuperType

{

ChildType *child;

MotherType *mother;

};

model similar to mixins is presented. Roles are de�ned using parameterized types. In C++ the
implementation can be made with the help of templates. In example 18 class FatherRole has
two generic parameters ChildType and MotherType denoting the two collaborating roles. The
SuperType parameter is used with the same purpose as it is used in mixins, to have a link with
the class which will contain the father role.

In [15] in order to allow objectual database evolution, along with the class hierarchy of the
objectual paradigm, a role hierarchy is created. A role hierarchy is a tree of special types, named
role types. The root of the tree de�nes the invariant properties of an entity while the roles types
re�ect re�nements. An entity is represented by an instance of the root type and the instances of
every role type that the entity has at a given moment. So the traditional object-oriented concepts
are extended with the role hierarchy.

In [20] roles are implemented using the AOP of AspectJ and are indicated the relations be-
tween the role approach and the aspect-oriented technology. The approach of [44], the role model
is created on the base of some principles. One of them is the support adaptive evolution which
means that objects evolve in environments assuming their roles, the participation can be made
dynamically: objects can enter or leave environments freely, an object can belong to multiple
environments at a time. The second principle is related to the separation of concerns, each
concern is modelled by an environment. Concerns will interact using objects simultaneously as-
suming roles of di�erent collaboration environments. The third principle is the advanced reuse
of roles within environments. Environments and roles have the status of �rst block constructs in
EpsilonJ proposed programming language.

2.6 Composition Filters
In this section a brief presentation of composition �lter mechanisms is made. They address the
separation of concerns issue. Composition �lters are special objects that can be attached to the
normal instances in an application, having the role of intercepting incoming and outgoing messages.
These �lters can be combined freely as they are orthogonal. The �lters can change the behavior
of an object so concerns can be attached to objects using them.

2.6.1 Motivations

The concept of composition �lters appeared in the context of an object-oriented language database
integration model [6]. Motivations in this direction are given: duality in conception - language
and database models are kept separately, violation of encapsulation - object queries makes ob-
ject structure visible and are not accessed via send messages only as the object-oriented paradigm
requires, �xed views - relational databases support views on base tables while from the object-
oriented point of view there are methods of an object which are not of interest for any client.
The integration of database like features in the object-oriented programming language implied the
extension of the object model.

30

Figure 2.15: Composition Filters Model

2.6.2 The Composition Filters Model

In �gure 2.15 it is presented the model of the composition �lters mechanism. It can be noted
that the object model consists in own set of methods, interface objects and states. The interface
objects are of two types internal and external. A set of �lters are a part of the object model also.
The �lters are used to intercept the incoming messages and to dispatch them to the appropriate
methods. By methods are meant one of the set of own methods, or methods from the internal or
external objects. The states are used to control the behavior of �lters.

Composition �lters can be used as mechanism to separate concerns.

2.7 Views
A view is a description of the system relative to a set of concerns from a certain point of view
[16]. The motivation for multiple views is separation of concerns. They were introduced
to manage the complexity of software engineering artifacts like: requirements, speci�cation and
design. UML [1] is the most known language which respects the point of view modeling philosophy.

In the world of object database the notion of view has emerged from the relational view solution.
Views [23] in the relational model provide logical data independence and o�ers possibilities for
data to be repartitioned and restructured to �t particular applications. In addition, the database
object views o�er the introduction of new classes (called virtual) into the class hierarchy [3].
Virtual classes can be populated with objects in several ways: i) the virtual class is a superclass
of certain classes (generalization); ii) the virtual class contains all objects returned by a query
(specialization); iii) the virtual class contains all objects having a certain behavior.

We will discuss from the point of view of several domains how reusability can be achieved. In
the object-oriented database world, the reuse is focused intensively on objects. They try not to
reuse the structure of the object, meaning the class, but the object himself at runtime. This reuse
addresses the extension of the concept modelled through a certain object. In software design and
programming languages the tendency is to reuse the structure of the class at design time. This is
done in modeling using di�erent concepts like generalization, specialization, and in programming
languages by mechanisms like inheritance single or multiple, genericity. So, from these two points
of view, the software reuse can be seen at two levels: reuse of class or intension and reuse of objects
or extension. The �rst level is encountered in object-oriented programming languages, while the

31

Figure 2.16: Aspect Oriented Programming Main Principle

second level of reuse is exploited in object-oriented databases.

2.8 Aspect Oriented Programming
Aspect oriented programming [21] is a separation of concerns model based on object-oriented
paradigm. It deals with crosscutting concerns which can not be well separated by pure object
technology. The majority of object-oriented systems are composed out of crosscutting concerns
dispersed over several modules. By concern it is meant a concept, a goal in the context of a
given domain. For example a concern in the context of debugging a software system would be the
logging operations. Another functionality, which can be viewed as a crosscutting concern, needed
in the context of objects, is persistence.

There are several concepts of object-oriented programming which facilitate the separation of
concerns. First, the abstraction principle implies the creation of separate classes for each concept
from the real world [5]. On the other hand the information hiding principle allows interface
separation from implementation. Inheritance and delegation are ways of composing behavior. In
the context of inheritance, the behavior of the subclass is composed with the behavior of the
superclass [5].

In �gure 2.16 the main schema of aspect oriented programming is depicted [21]. Each appli-
cation has a main part where the basic functionality is captured. This part is supposed to be
written in a language that suits better to the application domain. Then each cross-cutting aspects
are described using several specialized languages. All these programs are taken by the weaver and
it produces the output code. The main property of this methodology is aspectual decomposition.
Thus, the aspectually decomposed program is easier to develop and to maintain.

Generally speaking, a software system is composed out of several concerns and it is responsible
for multiple requirements. In [24] the requirements are classi�ed as core module level require-
ments and system-level requirements. The system-level requirements are crosscutting several
modules. In example 19 taken from [24] it is presented a class implementing some business logic.

The �rst observation is that the other data members do not belong to the core concern of the
class. The performSomeOperation method includes along with the core concern, some other op-
erations like logging, authenti�cation, multithread safety, contract validation, cache management.

32

Example 19 Croscutting Concerns Sample
public class SomeBusinessClass extends OtherBusinessClass

{

// Core data members

// Other data members: Log stream, data-consistency flag

// Override methods in the base class

public void performSomeOperation(OperationInformation info)

{

// Ensure authentication

// Ensure info satisfies contracts

// Lock the object to ensure data-consistency in case other

// threads access it

// Ensure the cache is up to date

// Log the start of operation

// ==== Perform the core operation ====

// Log the completion of operation

// Unlock the object

}

// More operations similar to above

public void save(PersitanceStorage ps) { }

public void load(PersitanceStorage ps) { }

}

The two operations load and save having the role of persistence management should not be part
of the core concern.

There are two symptoms code tangling and code scattering which indicate the problematic
implementation of crosscutting concerns [24]. Code tangling happens in modules which interact
simultaneously with several requirements. Code scattering refers to concerns spread over the
software system modules.

AspectJ is an implementation of the aspect oriented paradigm in Java developed by Xerox Parc.
The concepts for describing the extensions are pointcuts, join points, advices and aspects [45].
Join points are certain well de�ned points in the execution of the programme. The pointcut is a
language construction that speci�es several join points. Advice is a piece of code executed when a
joint point is reached, it brings together a pointcut and a body of code, to run at each join points.
The aspect is a unit of modularity for the crosscutting concern.

2.9 Summary
In this section we talked about inheritance in general and multiple inheritance in particular focus-
ing on crucial aspects. There are opinions that multiple inheritance is bad and dangerous because
of the resolution mechanisms which are sensible to any eventual changes of the hierarchy. Other
authors consider that the approach of Java [8] is the right way of implementing the concept of
multiple inheritance by letting multiple inheritance of types but single inheritance of classes and
classes can implement many interfaces. Another important issue is the resolution mechanism
which could be assisted like in the case of C++ [42, 41] or Ei�el [28] or it could be automatic
like in CLOS [19]. In CLOS the class which appears �rst in the list of superclasses is the one
that has priority in the case of con�icts. In Ei�el the con�ict resolution decisions can be taken
for each con�icting feature separately, while in C++ the �all or nothing� approach is applied: one
decision applies to all the features involved. It can be noticed that the Ei�el renaming solution
for multiple inheritance name clashes in fact generates the problem of dynamic binding. Such
problem do not exist in C++. In C++ to switch between replication and sharing implies placing

33

the virtual keyword at a higher level than on which the e�ect occurs. It results that such con�ict
resolutions must be foreseen in advance, in practice this is not always possible. In Ei�el, in the
case of dynamic binding problems, the select keyword is used in the subclass where the ambiguity
arises. Regarding the implementation of multiple inheritance in several programming languages
are presented where some semantical implementation decisions can be learned. In each imple-
mentation solution there is a balance between several issues like data and code duplication, type
conformance, delegation code insertion which work together for maintaining the original semantics
of reverse inheritance.

The mixin and mixin layer mechanisms are studied as possible vehicles for role programming
and collaboration based designs. The combination of inheritance and genericity of C++ leads
to a mechanism which allows the description of extensions which �t to several classes. In this
mechanism, inheritance is the composition operator while the class plays the role of the composable
module. The only reuse restriction for mixins is that they have to be �tted for the superclass
interface.

The traits concept which derives from mixins, adhere to the idea of eliminating attributes
from the composable modules and letting them building a class by composition. In this case the
composition operator is in fact a reunion of all the features from the composing traits. When
con�icts arise resolution is provided by redeclaring the feature in the class, thus ignoring the trait
originating con�icting features. It can be noticed that the traits based design has to be started
from scratch, reusing class libraries with such a mechanism is not possible. The main advantage
remains though that trait components, once de�ned, are simple and highly reusable.

Roles and collaborations are other issues developed in this chapter. Roles are represented in
several implementations as temporary features of an object during its life time. There are no
general identi�able components corresponding to roles. They are highly used in object-oriented
systems and in object-oriented databases. As role implementations there were presented design
patterns, mixins, aspect-oriented solutions, role hierarchies and a language with special roles
semantical extension.

In the last part of the chapter the separation of concerns issue is treated. First the composition
�lters are presented, explaining the basic functionality of the mechanism. Views is another mech-
anism for concern separation which has its origins in the relational databases. Aspect oriented
programming principles and concepts are presented at the end.

34

Chapter 3

Generalities About Exheritance

3.1 Main Approaches of Reverse Inheritance
The idea of upward inheritance was born in the database world from the concept of database
schema generalization [35]. A type corresponding to a database schema may be a generalization
of several specialized ones. It is also the case of generalization in a global multi database view
which provides a homogeneous interface to a set of heterogeneous databases. The basic idea of
reverse inheritance class relation is the generalization abstraction [40], which enables a set of
individual objects to be thought generically as a single named object. It is considered to be the
most important mechanism for conceptualizing the real world. Generalization helps the goal of
uniform treatment for objects in models of the real world.

From the development point of view of a software system, direct inheritance is a top-down
approach of construction while reverse inheritance o�ers the possibility of constructing software
in a bottom-up manner. We adhere to the idea that it is more natural to �rst create the sub-
classes, than to observe and analyze commonalities, and after that to de�ne the super classes
[30, 32]. The autonomous design of class hierarchies or database schema will give rise to inhomo-
geneities. Their reusability depends strongly on their capabilities of adapting their local interface
to a common global interface.

3.2 De�nition
The reverse inheritance class relationship is also known as exheritance [32], adoption [25],
generalization [30, 1] or upward inheritance [35]. The source class of reverse inheritance is
known as generalizing class [32] or as foster class [25]. In the state of the art there are several
approaches dealing with reverse inheritance issues in domains like object-oriented programming
and design, databases, arti�cial intelligence.

We start from the de�nition of reverse inheritance given by Pedersen [30, 32] which states
that a class G can be de�ned as a generalization of A1, A2, . . ., An previously de�ned classes.
If the value of n is 1 then we discuss about single generalization, otherwise about multiple
generalization. Informally it can be de�ned as another model of inheritance where the subclass
exists and the superclass is constructed afterwards.

3.3 Intension and Extension of a Class
In [30] is presented a simpli�cation of the object concept. The intension of a class is the set of
properties through which it is de�ned. An example is given in this sense. The "mammal" concept
is analyzed. The intension of this concept refers to real-world properties like: these animals have
mammae which secrets milk as nourishment for their young. By extension of a class we mean all

35

the phenomena1 that include those properties. Back to the analyzed example it can be considered
that the neighbor's dog belong to the extension of the mammal concept.

Specialization can be de�ned in terms of intension and extension of a concept. A concept
Cspecial is a specialization of a concept C, if all phenomena of Cextension

special belong to Cextension [30].
Concept worker is a single specialization of concept employee, since all workers have all properties
of employees and eventually some extra. A worker can take the place of an employee but not
necessarily the other way around. Formally this can be expressed like: a concept Cspecial is a
single specialization of a concept C i� x ∈ Cextension

special ⇒ x ∈ Cextension. There can be de�ned also
the notion of multiple specialization in the same way: a concept is a multiple specialization
of a set of other concepts if it is a single specialization of each concept in the set [30]. Concept
calculator-watch is a specialization of both concepts calculator and watch. Calculator-watch ful�ls
the properties of calculator and watch. Formally, a concept Cspecial is a multiple specialization of
C1, ..., Cn i� x ∈ Cextension

special ⇒ ∀i ∈ 1..n : x ∈ Cextension
i [30].

Generalization can be de�ned also in terms of intension and extension of a concept [30]: a
concept Cgeneral is a single generalization of a concept C if all members of Cextensionare members
also in Cextension

general . This means that all phenomena belonging to Cextension will belong also to
Cextension

general . Concept employee is a generalization of concept worker since every worker is an
employee. Formally Cgeneral is a generalization of concept C i� x ∈ Cextension ⇒ x ∈ Cextension

general .
As in the case of specialization there is multiple generalization. A concept is a multiple
generalization of a set of other concepts if it is a single generalization of every concept in the
set. For example the concept of employee is a generalization of worker, manager, security guard,
secretary, because all are employees. In formal notation Cgeneral is a generalization of C1, ..., Cn

i� ∀i ∈ 1..n, x ∈ Cextension
i ⇒ x ∈ Cextension

general .

3.4 Semantical Elements of Reverse Inheritance
It is proposed in [32] the idea that reverse inheritance should have an appropriate symmetrical
semantics in order to produce the same class hierarchy structure having the behavior as if it was
de�ned by direct inheritance. So, this class will include all the features (attributes and methods)
that are common to these classes. Also it can be speci�ed by the programmer which features
should be excluded from exheritance.

In [25] two rules are set for de�ning the semantics of reverse inheritance class relationship:
one sets the type conformance between subclasses and superclasses and the other de�nes the class
dependency which is oriented from superclass to subclass. The subclasses will conform to the types
of the newly designed superclass and the newly created superclass depends upon the subclasses.
Of course, the two rules are not su�cient and a set of restrictions are also de�ned to complete the
de�nition. These will be presented further.

As we already know from normal inheritance, subclasses depend and conform to their super-
classes. So both dependency and type conformance have the same direction from subclass to
superclass. In the analysis made in [25], the reverse inheritance concept changes their directions:
the type dependency remains in the same direction, but the dependency is now oriented from
superclass to subclass.

As presented in the Uni�ed Modeling Language description document [1], which is considered
the standard modeling language for the object-oriented development process, the generalization
relationship can be applied to several model elements like classes, associations, stereotypes, actors.
By de�nition, the role of generalization is to relate a more general element and a more speci�c
element, so the instance of the speci�c classi�er is also an instance of the general classi�er.

In the work of [31] an analysis is made on relation of generalization with other UML elements
and two aspects are emphasized: an incremental one and an overriding one. The former goes
along with classes and the latter �ts to associations, stereotypes, signals, use cases, actors. The
incremental aspect refers to subclasses which have a richer set of messages in their interface than

1By phenomena, in this context we refer to objects.

36

their parents. Overriding happens when two methods are created, one in the superclass and one
in the subclass, denoting the same message, but having di�erent parameter and return types or
di�erent behavior.

We can conclude that all semantical de�nitions include either the idea of intension intersection
or extension reunion of the generalized concepts. Next we will focus on the programming languages.

3.5 Reuse of Object vs. Reuse of Class
In this section we will refer to di�erent situations of reuse object and class.

Similar classes, database schema were build independently and so they achieved a degree of
inhomogeneity. The challenge is in which manner these classes or database schema can be reused.
In order to achieve the goal of reusability, a single set of messages should be available.

Some simple solutions seem to solve the uniformity problem. One is to make local changes in
the classes [35]. The disastrous consequence is a dramatic chain of modi�cations in the clients,
which will trigger a new cycle of software development [27].

Another solution is to create new views for these objects. This will determine an explosion of
variants of the original ones which can di�er slightly [35, 27]. So we created a huge con�guration
management problem.

Another possible solution is to create a union of the generalized class objects [35]. The common
messages of the generalized classes can be received uniformly by all subclass instances. This
solution involves inconsistencies when a foreign message is sent to an object which cannot execute
it, but it works immediately only for the features having the same name.

In [35] are discussed the several semantical relationships between classes: identity relationship,
role relationship, history relationship, counterpart relationship, category relationship. There are
investigated situations when two objects are equivalent: one possibility is for their classes to model
the same real-world object or their classes can model real world-objects which have some common
properties. The identity relationship between two classes stands when the real-world objects
modelled by those two classes are identical at all points of time. The role relationship occurs
when two objects may model the same real world object in di�erent situations or context. For
example a person could be at the same time university employee and company employee. This
person has two di�erent roles which could be modelled by di�erent classes. These classes are an
example of role related classes. The history relationship between classes occurs when these
classes model a real-world object at two di�erent real-world times. The counterpart relation-
ship hold between two non-equivalent objects which represent two di�erent real-world objects.
It is necessary for them to have some common properties and to represent alternate situations
in the real world. For example two classes modeling air connections and train connections are
counterpart related because both have properties like departure city, destination city and fare.
The category relationship holds between objects which share some common properties. Two
classes modeling coal plants and oil plants are category related because both share plant common
related properties.

3.6 Explicit vs. Implicit Declaration of Common Features
We think that the speci�cation of the excluded features in the de�nition of the reverse inheritance
relationship between two classes has a drawback, a�ecting clarity. If one wants to develop further
a reverse inheritance based class hierarchy, he has to know the list of all the common features
from exherited classes. Instead it would be better to have a list of them explicitly declared in
the foster class. The explicit list of features in the foster class will be of much more help to the
programmer, for example in the de�nition of a subclass derived directly from the foster class.
One more argument to sustain the a�rmation are the possible adaptations to be declared around
common methods having incompatible signatures. So the syntax will be easier. The exheritance

37

concept comports two essential aspects: interface2 exheritance and implementation exheritance.
Each aspect will be detailed in the next chapters.

3.7 Allowing Empty Class
In [32] the case of no exherited features is discussed. It can be useful in languages where there
is no default superclass for all the user de�ned classes. This practice �ts better to dynamically
typed languages. It involves mechanisms of runtime typechecking and casting operators. For
instance, in Java there is a class Object which is the absolute superclass of all classes. In the
de�nition of a new class, the relation with class Object is not explicit, it is implied automatically
by the semantics of the language. In Java we �nd two main types of classi�ers3: classes and
interfaces. Analyzing the problem, we draw the conclusion that Java presents an asymmetrical
semantics regarding interfaces: there is no primordial superinterface. The problem of lacking a
super interface in Java could be solved with the help of reverse inheritance. It is the same for
Ei�el language, having an absolute super class named "ANY"4.

C++ is di�erent from this point of view, it has no default superclass. In practice, in some
top-down developed class libraries there is de�ned a default class as root class of all the classes
in the library. This solution is non uniform, in such cases the name of the superclass di�ers from
hierarchy to hierarchy. Also di�erent default behaviors are provided to such classes. We draw the
conclusion that such solutions are highly parochial. Another possibility is to de�ne such a class
using the concept of reverse inheritance, without touching the target classes.

3.8 Source Code Availability
One important issue about reverse inheritance is the source code of generalized classes [32]. There
are several situations that have to be discussed. The most favorable situation is when source
code is available. This gives many choices in the implementation of a such a class relationship.
We can imagine an implementation by modifying original source code and generating equivalent
source code, compilable by the Java/Ei�el/C++ compiler. Another situation is when source code
is available but it is read-only. It cannot be modi�ed because of many reasons: copyright policy,
increased e�ort for maintenance. In this case it can be generated equivalent source code using
decoupling techniques to protect the original sources. The most problematic case is the one where
no sources are available, just the interface and the binaries of classes. In such case byte code
modi�cation techniques should be applied.

3.9 Single/Multiple Exheritance
Single exheritance is the most simple case of exheritance. It involves only one target class to be
exherited. It can be exherited both interface and implementation. In [30] an example of a double
ended queue is given to emphasize the semantics of single generalization. It is started from a class
named Dequeue having a set of methods which operates at one end of the dequeue pop, push, top;
methods for operating at the other end of the dequeue pop2, push2, and a separate method empty.

From the dequeue it is created a stack. Class Stack is declared as generalizing Dequeue and
excluding operations push2, pop2, top2 from its interface. From the point of view of interface
exheritance there are no con�icts. Name con�icts obviously cannot occur, because initially the
generalizing class has no features. Some name changes could be necessary to give a more suggestive
meaning to methods. For instance if we generalize a class Collection from class Stack instead of

2By interface we denote the set of public features in a class. It is di�erent from the concept of Java interface,
which technically is a pure abstract class [8].

3We refer to the classi�er de�ned in the sense of UML.
4We mention that, special class "ANY" has internally private superclasses.

38

Figure 3.1: Dequeue Sample

exheriting the push method with the original name we should better exherit it with another name,
like add for example.

3.10 Summary
This chapter encloses all general ideas about exheritance and its semantical elements. First the
motivation is presented, the exheritance concept being found in object-oriented databases and in
class modeling of the object-oriented paradigm. Formal de�nitions of single/multiple specializa-
tion/generalization, based on the notion of the intension and extension of a concept, are given.
Some exheritance basic semantical elements are discussed: common features, type conformance,
generalization and specialization. The reverse inheritance concept can be located at the inter-
section of object-oriented programming and object-oriented databases. Each domain has its own
interest of reuse: class reuse, respectively object reuse. Several contexts are presented in which
reverse inheritance is the main mean in achieving reuse. The issue of allowing the source class
of exheritance as empty is analysed in the context of several programming languages. Then the
problem of having available the source code of the reverse inheritance a�ected classes is discussed.
This issue belongs more to the implementation part where such decisions have to be discussed.
The decision to include the discussion in this chapter is to suggest the several implementation
semantics possibilities.

39

Chapter 4

Interface Exheritance

In this section we will discuss about the interface content of a generalizing class. Method imple-
mentations de�ned in subclasses are not taken into account from this point of view.

4.1 Concrete vs. Abstract Generalizing Classes
In [30] it is emphasized that this aspect of exheritance is the most simple. As mentioned in [32],
the integration of interface exheritance in Java can be done with minimum of e�ort because of
the notion of "interface" they introduced in the language. A Java interface consists in a set of
abstract methods [8]. It can be considered as a pure abstract class. An abstract class in Java may
contain abstract methods having no implementation, just signature and also concrete methods with
implementation. We note also that interfaces can be created by specialization of several multiple
interfaces, they can be implemented by several subclasses and their methods are all public. It is
suggested that interfaces could be de�ned by generalization of classes and other interfaces.

Not all languages possess such an interface concept like Java does, so we have to use the class
concept as generalization classi�er. For those languages is proposed [32] the idea of generalization
into fully abstract classes (e.g. Ei�el, C++, Java).

4.2 The In�uence of Modi�ers on Exherited Features
When exheriting method interfaces one question arises: should we consider just the public ones
or should we consider all of them, including non-public ?

In order to answer this question we have to analyze what happens if we exherit from non-public
methods. The positive reasons are: they can be better reused from the level of the generalized
class and they can be inherited later. Negative reasons are class encapsulation violation which
implies visibility modi�cation: clients may be a�ected, exposed methods can be overridden. So,
potential problems may be introduced at the implementation level too1. In [32] it is advised not
to distinguish between public and non-public in the exheritance of method interfaces.

It is mentioned in [32] that attribute exheritance does not involve big problems. Though,
some type and visibility problems may occur. Here we can take two cases: public and non-public
attributes. Although in the literature the use of public attributes it is not encouraged, still some
programming languages allow their use like C++, Java. In Ei�el attributes can be exported but
they can not be modi�ed, only read, because the access to an attribute involves an execution of a
query which provides the desired result.

We will analyze from the conceptual point of view each type of modi�er encountered in common
object languages. The problem of visibility consists in �nding the appropriate modi�ers for the

1Implementations issues are not the subject of this analysis, they will be discussed in another work.

40

exherited features in the superclass. The main idea is that we want to preserve or to a�ect as
little as possible the feature's visibility.

The most simple case is when we exherit public features because they will be treated as public
in the superclass. Any access to the exherited features is freely granted.

If we deal with package access type2 modi�ers in the subclasses then it means that features
have to be available in their package. We have to discuss several cases:

i) All classes are in the same package: the superclass and all exherited subclasses. In this case
the modi�er of the exherited features in superclass can remain the package access.

ii) The superclass is in a di�erent package than all the subclasses. In other words we can say
that the features migrates from one package to another. This case requires to change the visibility
of an inherited feature, to be accessible from the origin package. The possibilities are protected
if accesses to that feature are made from insight the class or public if other clients need access.
Unfortunately, the two choices violate encapsulation.

iii) The superclass is in the same package as some of the subclasses, but other subclasses are in
di�erent packages. This situation is a mix of the cases described above. The visibility modi�er in
this case should be computed for each feature in subclasses and the most visible modi�er should
be used. The price paid for homogeneity of reverse inheritance is breaking encapsulation.

If exherited features from subclasses are protected then it means that they are available to
all their subclasses. If the feature declared in the superclass of generalization is protected, then
no possible clients are a�ected.

If exherited features in subclasses are private then it means that they are accessible only in
their original classes. As a consequence their modi�er in the superclass of generalization should
be protected.

4.3 Status of Original Methods: Abstract/Concrete
When abstract methods are exherited from the generalized classes that means that they will
have to be declared abstract also in the foster class. The same should happen if we exherit both
abstract methods and concrete methods. So the foster class becomes abstract automatically. This
kind of behavior is seems to be fair from reverse inheritance conceptual point of view.

If we decide that we have a su�ciently general implementation we can put it in the superclass
without a�ecting the eventually abstract subclasses. These ideas are exempli�ed in two samples
one Java, the other C++ (See algorithms 20 and 21).

In the two samples class Sta�Member is abstract: in Java because of the abstract modi�er,
moreover it has an abstract method named print(); in C++ because of the virtual and equals zero
print()=0 method declared. Class Employee generalizes two classes in the parallel hierarchies one
abstract and one concrete: Sta�Member and SecurityAgent. The print method which equips all the
classes it could be either abstract, either concrete. If we posses a general enough implementation
that will �t to all subclasses from now on, then we can put it in the Employee class. Conversely, we
declare the print method as abstract, obviously leaving it without implementation. In either cases
subclasses like TeachingAssistant or Professor can override the print method with appropriate
behavior. If we create the same class hierarchy but using inheritance this time, then we will �nd
the same semantical behavior regarding the status of the print method.

In Java we can use also the �nal modi�er for the exherited method's status if we want to be
more imperative about the implementation put in the superclass. We remind that with normal
inheritance a method declared as �nal cannot be overridden in the subclasses, otherwise compiling
error is generated.

When concrete methods are exherited there is the possibility to exherit just the interface or
together interface and implementation. This choice should be available to the programmer who
uses the reverse inheritance class relation [32]. If it is chosen not to exherit implementation, then

2This is known also as default access type and it is speci�c to Java language. It has no dedicated keyword,
all features having no keyword have by default package access type. C++ and Ei�el do not consider visibility at
package, cluster or subsystem level.

41

Example 20 Examples in Java
// Java sample

abstract class StaffMember {

abstract public void print();

}

class SecurityAgent {

public void print(){ System.out.println("SecurityAgent"); }

}

class TeachingAssistant extends StaffMember {

public void print() { System.out.println("TeachingAssistant"); }

}

class Professor extends StaffMember {

public void print() { System.out.println("Professor"); }

}

class Employee exherits StaffMember, SecurityAgent {

public void print() { System.out.println("Employee"); }

}

Example 21 Examples in C++
// C++ sample

class StaffMember {

public: virtual void print() = 0;

};

class SecurityAgent {

public: void print() { printf("SecurityAgent"); }

};

class TeachingAssistant {

public: void print() { printf("TeachingAssistant"); }

};

class Professor {

public: void print() { printf("Professor"); }

};

class Employee exherits StaffMember, SecurityAgent {

public: virtual void print() { printf("Employee\n"); }

};

42

in the foster class just the corresponding abstract method can be speci�ed. The aspects dealing
with implementation exheritance will be discussed later, in a specially dedicated chapter.

4.4 Type Conformance Between Superclass/Subclass
Related to interface exheritance issue, in [30] it is demonstrated using an experimental language
that from the type conformance point of view, there are no con�icts introduced in a class
hierarchy having subclasses/superclasses introduced by inheritance/reverse inheritance. The main
idea of the demonstration is to prove using formalisms that the feature set of the generalizing class
contains at most the intersection of the feature subclasses sets.

Before proof, generally speaking, some notations are necessary:
Cmethods = {m1, . . . ,mn}

denotes the set of methods of class C.
Class A is de�ned as generalization of classes B1, B2, . . . , Bk removing methods r1, . . . , rn. To

prove that Bi(i ∈ 1 . . . k) conforms to A, means that class A method set is a subset of those of
any instance of class Bi(i ∈ 1 . . . k). We use the following formalism:

Amethods =
k⋂

i=1

Bmethods
i \ {r1, . . . , rn}

So it is demonstrated that A is a superclass of Bi(i ∈ 1 . . . k), so the conformance rule is valid.
In the [25] de�nition of semantics a type conformance rule is set. The type of subclasses

have to conform to the type of superclass. From their point of view the superclass type is a
generalization of the subclasses types. It can imply type intersection or type union, depending
on the type de�nition. In section 3.3 we discussed about the intension and the extension of an
object. Referring to these two conceptual aspects of an object they consider that if a type is a set
of features than the type of the superclass should be their intersection. If the type is considered
as a set of objects, then the superclass type of the generalizing class will be a least the union of
the subclass types.

4.5 Common Features and Assertions
In this paragraph we discuss ideas from state of the art regarding how common features are
de�ned. An attempt in this direction is made in [25] and two restrictions are set forth: i) common
features are those who have same name, ii) it is possible to de�ne a common signature to which
all signatures from the subclasses conform.

We present also some ideas of how preconditions, postconditions and invariants are a�ected by
reverse inheritance. We remind that predicates are the main concepts around which the Design
by Contract technique was built [27]. The purpose was to o�er to the programmer tools to
express and validate correctness of a program. The relation between a class and its clients may
be viewed as a formal agreement expressing rights and obligations for each of the parties.

A precondition states all the predicates that have to check when a routine is called. Post-
conditions are predicates which veri�es the properties that must hold when a routine returns
[27].

In [25] it is stated that assertions rules de�ned in [27] and [28] should be reversed. The
precondition for a feature in the foster class should imply all the preconditions in the generalized
subclasses. The postcondition of a feature in the superclass should be no stronger than any of the
corespondent preconditions from exherited classes.

There are also mentioned possibilities of building the precondition and postcondition for the
features in the superclass. For example the precondition could be the application of the AND
logical operator against all the preconditions from exherited subclasses. The result will be de�nitely

43

Example 22 Name Con�icts (1)
class OIL_PLANT

attributes:

PlantName

Produced: MWh {energy produced}

OilFired: BARRELofOIL

methods:

FireOn

PowerOff

FillOil

class COAL_PLANT

attributes:

PlantName

Produced: MWh {energy produced}

Consumed: TONofCOAL

methods:

Start

PowerOff

PutCoal

a stronger precondition. The postcondition could be obtain in the same manner using logical
operator OR against all the corresponding postconditions in subclasses. This approach assumes
that all variables involved in superclass predicates are de�ned in each subclass. Otherwise, for each
subclass missing variable we could choose not to evaluate the respective term. In other words we
could propose to evaluate the predicates only for the classes which have all the variables de�ned.

As a conclusion regarding assertions in [25] in the de�nition of common features has to be
mentioned that they depend on the possibility to de�ne a precondition other than False, which is
no weaker than the precondition of the feature in each class.

4.6 Possible Con�icts

4.6.1 Name Con�icts

In [35, 30, 25, 32] name con�icts are discussed. They occur when two methods have the same
semantics but have di�erent names. This con�ict is named lost friends in [32]. This kind of
con�ict can not be detected automatically, so this must be set by the programmer. A supporting
syntax is suggested to be used in order to indicate which methods should be exherited and which
method name to be kept.

We think that it has to be considered not just the name of the method but its entire signature.
This involves methods name, return type, parameter name, number and type, whether they are
implicit or not, invariants, preconditions, postconditions.

In [35] the problem of name con�icts is discussed in object-oriented database schema. The
con�ict takes place between the local and global interface of an object. Local interfaces refer to
the original interface of the object, which the object was designed with, while global interfaces
denote the common set of messages. The same semantical messages have di�erent names in the
two interfaces.

The two classes presented in the sample taken from [35] model two kinds of plants oil and coal.
Each of them has a name property, produced energy property, starting method, stopping method
and charging method. All these features are common to the two classes, some of them have the
same name, like PlantName or PowerO�, and others have di�erent names, although they have
the same semantics, like FireOn and Start. In this case name con�ict situation appears.

44

Example 23 Name Con�icts (2)
class POWER_PLANT

metaclass: CATEGORY_GENERALIZATION_CLASSES

generalization_of: OIL_PLANT, COAL_PLANT

attributes:

consumed: MJOULE

corresponding:

OIL_PLANT.OilFired

COAL_PLANT.Consumed

methods:

PowerOn

corresponding:

OIL_PLANT.FireOn

COAL_Plant.Start

Example 24 Name Con�icts (3)
deferred foster class SHAPE

adopt

BOX

rename

boundary as perimeter;

CIRCLE

rename

circumference as perimeter;

feature

perimeter: REAL;

end

So, they propose the solution of object coloring. It deals with the separation of the local
and global behavior. To objects is attached a color attribute which will determine which local
or global behavior should be followed in runtime. The switch between these two states is achieved
by adding an �as� message to the object model. This modi�cation is made by a�ecting the most
general class in each subsystem.

In fact the mechanism proposed resembles very much to the polymorphism mechanism. The
substitution principle and the dynamic linking can be achieved by coloring an object. One can say
that the coloring practice is even closer to the type casting facility o�ered in most object-oriented
programming languages.

At runtime a cp named object, instance of COAL_PLANT receiving an "as" message like
cp as POWER_PLANT will switch to the global behavior of POWER_PLANT . Now if this
instance will receive the PowerOn message will choose automatically the Start method to be
executed.

We think that the choice of referencing di�erent names with a unique global one could solve
this kind of con�icts. This idea should be adapted in order to match attribute names and also
method signatures.

In [25] the renaming facility from Ei�el [28] it is used in solving name clashes (see example 24).
It is motivated that semantically equivalent features developed in di�erent classes by di�erent

programmers will have di�erent names. In the example of example 24, boundary feature from
BOX and circumference feature from CIRCLE have the same semantical value, and they are
mapped to a unique name.

45

Example 25 Scale Con�icts
class MJOULE

metaclass: DATA_TYPE_CONVERSION_CLASSES

generalization_of: BARRELofOIL, TONofCOAL;

transformation_methods:

FromBarrelOfOil {convert from Barrels of Oil to MJoule}

FromToneOfCoal {convert from Tones of Coal to MJoule}

ToBarrelOfOil

ToTonOfCoal

4.6.2 Value Con�icts

Value con�icts are encountered when features with di�erent semantics have identical names. They
are referred in [32] as false friends con�icts. Implicitly it is suggested that features should
not be exherited and such situations should be speci�ed by the programmer. They can not be
automatically detected and a syntax support for con�ict declaration is needed. It is suggested not
to exherit such features because they are not the same.

There are cases when name con�icts can be detected automatically. Two classes having a same
ancestor can have renamed methods using renaming techniques like those in Ei�el. Both kind of
con�icts can happen [32]. In the case of lost friends con�ict, the features seem to have the same
seed but have di�erent names because of renaming. A solution at compiler level is given: they
should be organized as the same feature by the compiler.

The Solution of Renaming Renaming is considered to be a solution in the case name and
value con�icts. Also there are some negative e�ects: it in�uences clarity in the declaration of
features, through the inheritance path it can have several names. On the other hand renaming it
is considered to be a good way to change the linguistic meaning from a too restricted to a more
general one. So the names will be more suggestive in the generalized class.

4.6.3 Scale Con�icts

Another type of con�icts could be considered the scale con�icts. They can appear when numerical
values are involved. This happens more in object-oriented systems. The problem is that features
representing values do not use the same scale.

It is discussed in [35] on a sample presented by us in section 4.6.1 how this kind of con�ict can
be eliminated. We remind the reader that the common attribute named OilFired is expressed in
barrels of oil while Consumed attribute is expressed in tons of coal. In the generalizing class the
desired member should have the same name and the same scale, meaning MegaJoule.

In their work [35], in order to solve the problem of scale di�erences, they proposed the concept of
object transformation. This concept is implemented with the help of conversion classes. These
classes contain a set of methods representing the necessary conversion protocol between several
scales. The main idea of the solution is to switch between the local and global representation
of an object. The local representation uses one scale, while the global one uses another. A
conversion class that solves the presented problem can like the one presented in example 25.

In example 25 class MJOULE encapsulates all the transformation routines between barrels,
tons and MJOULE. This transformation methods represent the adaptation behavior from a scale
to another. To be more explicit they adapt values. This technique as it is presented in the sample
can be applied only to attribute instances which are values or maybe to methods which return
values. We think that with the help of some modi�cations this could be also applied to methods
not just attributes. In our opinion the place of such an adaptation behavior code should be in the
generalizing class, close to the adapted feature, because of clarity reasons.

46

Example 26 Parameter Order Con�icts
deferred foster class SHAPE

adopt

BOX

rename

zoom(center: POINT,factor: REAL) as scale(factor: REAL, center: POINT);

CIRCLE

feature

scale(factor: REAL,center: POINT) is deferred end

end

Example 27 Parameter Number Con�ict
class B

{

void foo(int x,int y,int z = 0,long g = 10){}

}

class C

{

void foo(int x, int y, double t = -1, float pi = 3.14){}

}

class A exherits B, C

{

virtual void foo(int x,y);

}

B b;

C c;

A * pab=&b;

A * pac=&c;

pab->foo(1,2); // equivalent with pab->foo(1,2,0);

pac->foo(2,3); // equivalent with pbc->foo(2,3,-1,3.14);

...

4.6.4 Parameter Con�icts

4.6.4.1 Parameter Order
In [25] another kind of con�ict is emphasized brie�y. In exherited methods the order of parameter
may vary. This con�ict can be solved by a mechanism for binding arguments dynamically.
For Ei�el, an appropriate syntax it is proposed:

In example 26 it is speci�ed the mapping between the method zoom(center:POINT,factor:REAL)
and method scale(factor:REAL,center:POINT). We notice that besides renaming, parameter or-
der is set also. In order to perform such parameter reorganization, the number of parameters in
all the exherited methods and in the superclass must be all equal.

4.6.4.2 Parameter Number
The number of parameters is an important criteria in order to match methods when exheriting
them. Of course, it is desired that the number of parameters to be equal in superclass and
subclass methods. In languages like C++ which permits the declaration of methods having implicit
parameters it is possible to declare a general signature in the superclass and a conforming signature
in the subclass, in addition it can have as many implicit parameters as needed.

As a remark the position of the default parameters is always after the non-implicit ones. Also

47

Example 28 Parameter Type Con�icts (1)
class A {}

class B extends A {}

class Parent

{

void foo(A argument){}

}

class Child extends Parent

{

void foo(B argument){}

}

the order of the default parameter is important, because you cannot use implicit pi parameter
unless you specify �rst an actual parameter for t in foo method of class C.

4.6.4.3 Parameter Type
The type of parameters can cause problems in exherited features. This kind of con�ict has simi-
larities with the one discussed in section 4.6.3. The problem is how can we unify two parameters
having di�erent types. First of all we start our parameter type analysis with a small discussion
about the parameter transmission mechanisms encountered in Java, C++, Ei�el object-
oriented programming languages. So in Java we have value transmission mechanism for primitives
and object references. The value of the actual parameter is copied into the formal parameter.
Changes on primitive typed formal parameters will not a�ect the actual parameters. When deal-
ing with object references, they cannot be a�ected, but the referred objects, obviously, can be
modi�ed.

In C++ we have types like primitives, objects, pointers and references. The transmission of
primitives it is the same like in Java. What is interesting in C++ is the implicit call of the
copy constructor3 when transferring object value parameters [41]. The situation in Ei�el [28]
regarding parameter transmission is the same like in Java. There are transferred primitive values
and reference values.

Another issue which have to be discussed before trying to get to parameter uni�cation problem
of reverse inheritance, is the variance in the analyzed programming languages. There are three
possibilities of parameter variance: covariant, nonvariant and contravariant. A programming
language is covariant if in the rede�nition of a method in the subclass, the types of parameters
vary along with the type of the class in which is declared in.

On example 28 we can discuss covariance issues. Method foo in class Child is a rede�nition
of method foo in class Parent if: i) the language is covariant and B is a subtype of A; ii) the
language is contravariant and B is a supertype of A; iii) the language is nonvariant and A and B
represent the same class.

One situation is when we deal with primitives types in object-oriented languages supporting
them4. If we deal with compatible types we could perform type casting implicitly like in the
example 29.

In our experiment (see example 29) we have two methods setX with two di�erent argument
types: int in the superclass and double in the subclass. For instance if we replace in C++ or Java
a parameter's int type with a long type, arithmetical computations are not a�ected. But if bit
level operations are executed, the result will not be the same. The conclusion is that primitive
type substitution implies potential risk to the a�ected code, a runtime casting mechanism, which

3The copy constructor can be implicit and then byte copy of the object it is performed, or the programmer can
override this default behavior, by providing an explicit copy constructor.

4It is know that in the object-oriented paradigm the type system should be uniform, so every object should be
instance of a class [27].

48

Example 29 Parameter Type Con�icts (2)
class Point2D

{

void setX(double x){}

}

class Point exherits Point2D

{

void setX(int x){}

}

Point p = new Point2D();

p.setX(3);

can sometimes a�ect values (e.g. precision loss) and knowing the compatibility rules between the
primitives. The most radical solution that can be applied is not to allow the feature exheritance,
unless parameters have the same type.

4.7 Summary
In this chapter the focus was on interface exheritance in the reverse inheritance class relationship.
The �rst analyzed issue is the abstract/concrete status of the exheritance source class. Then the
in�uence of modi�ers is discussed. In this sense the protection mechanism is considered as subject
for the analysis. Abstract/concrete status of method is an important point of discussions. When
discussing about the interface of the generalization class, type conformance has to be demonstrated
using formalisms. Common feature and assertions problematics are discussed in the context of
Ei�el language. A big section is dedicated to con�icts caused by inhomogeneities of common
features. They are classi�ed as name con�icts, value con�icts, scale con�icts and parameter
con�icts. In this sense several possible adaptations techniques are presented.

49

Chapter 5

Implementation Exheritance

5.1 Impact of Polymorphism in the Generalization Source
Class

In the state of the art there are studied two di�erent situations: when exherited methods in the
superclass are virtual or non-virtual. When there are no virtual methods in the foster class in [30]
there are proposed two unsatisfactory solutions.

Principal Subclass Implementation Pedersen [30] proposes that one of the generalized classes
should be chosen as main subclass. It is also motivated that the choice should be made by the
programmer because he knows better the implementations of subclasses and because in some
languages interface inheritance means also implementation inheritance.

New Implementation The other proposed possibility to deal with exherited implementations
is to provide a new implementation in the foster class. Both solutions proposed by Pedersen
[30] are criticized in [32] because the semantics of generalization is broken. Because methods are
non-virtual or non-polymorphic, the specialized behavior of all subclasses become unusable. In
some special cases such a class construction can be useful. One of them is presented in the next
paragraph.

Non-Virtual Methods Can Be Useful Sometimes If exherited methods in superclasses
are not virtual there is no problem from technical point of view (one can build such a class
hierarchy without compiler errors), but it does not express the desired semantics of generalization.
Exceptions may occur in the situations where a more general implementation is available and the
specialized one from the subclasses can be overridden without a�ecting the consistency of the class
hierarchy, like in example 30.

Generally speaking a virtual method is a method that has a polymorphic behavior. Depending
on the type of the object at runtime, a polymorphic method call may exhibit di�erent behaviors.
Here we refer only to the dynamic linking component of polymorphism. No matter if the original
method is abstract or concrete, generally, the exherited method speci�ed in the foster class should
be made virtual [32]. It is known that in any language virtual methods can be overridden in the
subclasses.

Empty Method The �rst solution discussed in [30] is to equip the exherited method in the
foster class with empty body in the case of no common behavior. This method could be easily
overridden by specialized subclasses. In languages like Java we could de�ne it concrete with empty
body, except triggering an exception in case someone calls this method, or abstract with no body,
meaning that all the concrete subclasses are obliged to implement it. In Ei�el we can declare it

50

Example 30 Impact of Polymorphism
class Rectangle

{

double a,b;

public double area(){return a * b;}

}

class Rhombus

{

double a,theta;

public double area(){return a * a * sin(theta);}

}

class Parallelogram exherits Rectangle, Rhombus

{

double a,b,theta;

public double area(){return a * b * sin(theta);}

// the most general method for area computation

}

in the superclass as deferred method. In C++ we have two possibilities by declaring it abstract
or as pure virtual. A pure virtual method is a method declared with the "virtual modi�er" and
having also "=0" su�x meaning that it is a pure method.

Main Class Behavior The second proposition and the default one made in [30] is to exherit
implementation from the selected main subclass, when all implementations exhibit the same be-
havior. In practice it seems a rare case that a set of classes to be equipped with exactly the same
body.

Some Common Behavior The idea promoted in this case by [30] is a manual selection of the
common behavior from subclasses and the de�nition of a new method in the generalizing class.
This is motivated due to the fact that later on this implementation could be inherited in other
subclasses of the generalizing class.

Selective Method Exheritance In the case of virtual methods in foster class, [32] proposes an
alternative solution to method body exheritance. It is encouraged the idea of exheriting methods
from di�erent subclasses. The solution given seems more �exible and attractive. We think that
some adaptations are still necessary to provide a more advanced degree of class reuse.

In practice it does not seem probable that one subclass can provide all the suitable behavior.
Assertions which deal with predicate abstraction do not describe completely the behavior of a
routine. So in general we can say that even if we �nd a method in a subclass which has assertions
which conform against all the assertions from the other subclasses, it is not sure that the behavior
of that method will be �tted to all the subclasses.

The two classes in example 31 have the same precondition and postcondition for method
increment(), but di�erent behaviors.

Adaptive Approach We think that in many situations an adaptive approach is more suitable.
We propose to analyze a mechanism which allows to use the code from subclasses in a more �exible
manner. Calls to the original version of the code are possible using the inferior calling mechanism,
like in Beta programming language.

In the proposed sample we can �nd two classes modeling Alcatel and Nokia phones. We need
to treat these classes in a uniform manner, so we decided to create a foster class generalizing

51

Example 31 Selective Method Exheritance
class Iterator1

{

int value=0;

void increment()

assume value >= 0

{value = value + 1;}

guarantee value > 0

}

class Iterator2

{

int value = 0;

void increment()

assume value >= 0

{value = value + 2;}

guarantee value > 0

}

Example 32 Adaptive Approach
class AlcatelPhone

{

void ring()

{

// original Alcatel implementation

}

}

class NokiaPhone

{

void ring()

{

// original Nokia implementation

}

}

class GeneralizedPhone exherits AlcatelPhone, NokiaPhone

{

void pre_ring()

{/* pre ring operations */}

void post_ring()

{/* post ring operations */}

factored void ring()

{

pre_ring();

inferior.ring();

post_ring();

}

}

52

them. There can be noticed that the two classes have implemented ringing behavior1. It is quite
natural that the new created class, baptized GeneralizedPhone, to exhibit the ringing behavior.
So we exherit the signature of method ring() from both classes. We suppose that each subclass
has speci�c ringing behavior. We need to reuse this behavior but in a di�erent way. For example
we would like to add actions before and after the each ringing operation. This can be done with
the help of a descendant access. It can be imagined an implementation of method ring() having
a call to the pre_ring() operations, a call to the original speci�c method from the subclass and a
call to the post_ring() operations. The main drawback of this approach is that the semantics of
the original classes may be changed by adding the new features.

5.2 Adding New Behavior
Referring to the example 32 we showed that new behavior added into the foster class can be useful.
The pre_ring() and post_ring() methods added to the GeneralizedPhone foster class were used
to create an enhanced ringing method. Other advantages of this feature will be presented in the
section dealing with the mixing of inheritance with reverse inheritance. Still the classes are in
danger of having the semantics changed. Such a capability would be a valid option in a poten-
tial reengineering tool based on the concept of reverse inheritance, but not in the programming
language semantics.

5.3 Exheriting Dependencies Problem
In [32] the problem of dependency exheritance is mentioned. It is stated that exherited methods
dependencies have to be exherited too in order to be usable in the foster class. There are two
possible solutions for this problem. One would be to exherit the dependencies as well. In practice
this would mean to exherit almost all the features in a class. The other approach is to provide
the missing dependencies in the class where the exherited methods were exported. Such an idea
is used in the traits mechanism presented in section 2.4.

5.4 Type Invariants Assumptions
It is noted in [32] that type assumptions executed in the context of an exherited method in the
generalizing class can be broken. This can happen not only in assertions but in the code of a
regular method. Example 33 presents such a situation. The type assumptions, investigated in the
condition of the if instruction, were designed to work in the context of the original class. The
�rst branch of the if instruction is taken. If the code of method f would migrate in a potential
generalizing class A, then the f method semantics would change. In this case the second branch
of if would be taken.

From this sample results that a use of the re�ection mechanism in the implementation of a
method would make exheritance impossible. Related to this problems the solution would be to
choose not to exherit the methods having such assumptions. In order to do so, these assumptions
have to be detected �rst, so a dedicated technique would be required.

5.5 Summary
In this chapter implementation exheritance problems were discussed. The most severe problem
is the one of polymorphism impact on the generalizing class. When there is no polymorphism
implementation exheritance is problematic. In the case of polymorphic methods there is no prob-
lem since they can be very easily overridden in the subclass. The adding of new behavior in the

1For clarity and simplicity reasons we suppose that these methods have the same signature. In practice it seems
quite improbable to be so. The problem of signature adaptation was treated in a di�erent section.

53

Example 33 Type Invariant Assumptions
class A

{

void f()

{

if (this instanceof A)

{

// do some actions

}

else

{

// do other actions

}

}

}

generalizing class is studied in the context of exheritance. This capability is a disabled options
since the semantics of reverse inheritance do not include feature inheritance and the semantics of
exherited classes is changed, which is a severe aspect. Then dependencies problems are analysed
when implementations are exherited and two solutions are discussed. A special aspect related to
type veri�cations is discussed in the context of implementation exheritance.

54

Chapter 6

Mixing Inheritance With

Exheritance

In this chapter we analyze some interesting combinations of inheritance and reverse inheritance
in class hierarchies, looking carefully at the restrictions which have to be considered in order to
avoid potential problems.

6.1 Fork-Join Inheritance
We begin with the analysis of a conceptual sample from the state of the art. In [32] is presented a
case of fork-join like inheritance scheme. There are considered two cases: i) class A is de�ned then
classes C and D are de�ned as inheriting from A. Class B is de�ned by generalization of classes C
and D; ii) classes A and B are de�ned �rst, then class C is de�ned as a generalization of the two.
Class D �nally inherits multiply from A and B.

The arrows with up direction denotes specialization and conversely, the down directed arrows
denote the generalization relationship.

In case 1 features from class A are propagated through inheritance into classes C and D. Then,
by reverse inheritance from C and D, they are propagated into class B. Classes A and B may have
some common features but at the same time each class may have speci�c features which were not
propagated from one to another. So there is no subtype relation between A and B.

In case 2 the features of class C are propagated via multiple reverse inheritance to classes A
and B, then they are inherited directly into class D by normal multiple inheritance. A subset1
from class C message set are transferred to A and B and from there, the subset is included in the
class D message set by the multiple inheritance. Again, there is no subtype relation between C
and D.

In [32] two particular sub-cases are analyzed: if there are no features excluded in the gener-
alization and more if there are no features added in inheritance. In the �rst sub-case features in
class B will have all the common features of C and D obtained by inheritance from A but it will
also have speci�c exherited features. If both generalization and specialization have not excluded
or added new features it is created an e�ect of cloning class A in class B of case 1 or class C in
class D of case 2.

6.2 Reusing Common Behavior
Another interesting idea is presented in [30] about how common behavior resulted using reverse
inheritance, can be reused. For exempli�cation, a real world case is analyzed dealing with ter-
minals. Given two classes Terminal1 and Terminal2, which model two di�erent terminals, the

1It is a subset because not all the features are exherited, some may be excluded.

55

Figure 6.1: Fork-Join Inheritance Sample

Figure 6.2: Terminal Sample

decision of creating a more general class of the two is taken, in order to group their commonalities
for reusing purposes.

In the given context both terminals are ANSI terminals so a generalizing class TerminalANSI is
created through generalization from Terminal1 and Terminal2. Class TerminalANSI will contain
all the common interface and implementation from the exherited classes and conform to the
standard ANSI speci�cation. Of course there could be features speci�c to subclasses which are
excluded, being not subject for exheritance. A new class baptized Terminal3, modeling a new
terminal is created as inheriting from foster class TerminalANSI. Thus all the common interface
and behavior will be inherited. Of course speci�c behavior can be added too.

The conclusion that can be drawn from this sample is that using the two concepts together we
can bene�t from already de�ned classes. An alternative to this approach would be to de�ne class
Terminal from scratch and to rewrite or copy the standard behavior of ANSI terminal from one of
the two classes. This is an error-prone practice and it should be a avoided. There are two reasons
for this: it increases the entropy of the system and it is bad for the code management. We discuss
what happens when the ANSI standard evolves a new version is released and software components
have to keep the step with the up to date modi�cations. We analyze the possibility of feature
adding in reverse inheritance on this example without loosing generality. The new enhancements
required by the standard will be the same for all three classes.

56

Figure 6.3: Terminal Enhancement (1)

6.2.1 Specialization - The Classic Solution

One possibility is to create three subclasses for each terminal class using direct inheritance and
to equip them with the enhancing behavior. The class hierarchy describing this solution is pre-
sented in �gure 6.3. The three new added classes are: EnhancedTerminal1, EnhancedTerminal2
and EnhancedTerminal3. So we created three more classes in the system which will contain the
enhancements. There are two possibilities for the enhancements to be contained: either are copied
directly in all the subclasses or are encapsulated in a new class, and a member of this type will be
declared in all the three subclasses. The �rst possibility involves code duplication while the second
one implies the creation of a new class and the usage of composition. The second possibility can
be used only if the enhancements are the same for all the three terminals, still the code dealing
with the manipulation of the component object is duplicated.

6.2.2 Feature Adding in Foster Class

Another possibility is to put directly the enhancements directly in the foster class TerminalANSI
and then they will be automatically inherited in all the subclasses. In other words this means
foster class revision creation. This solution addresses the "fragile base class problem" [29]. This
type of problem appears when acceptable revisions of the base classes are created which damage
the extensions. In [29] this problem is viewed as a �exibility problem and restrictions can be set
in order to discipline inheritance. On the other hand, a conceptual drawback is noticed because
reverse inheritance should not imply feature inheritance but only feature exheritance.

6.2.3 Setting Superclass for Foster Class

An alternative to the previous solution is to create a new foster class having as target the Ter-
minalANSI class and containing the enhancing behavior discussed earlier. So, we don't have to
touch the base class of the hierarchy, this solution could be used in situations where source code
is not available or no class maintenance responsibilities are accepted. The idea of adding features
to a base class using reverse inheritance still su�ers from semantical breaking and contamination
with fragility. In �gure 6.4 such a situation is depicted.

6.3 Dynamic Binding Problems
It is demonstrated in [30] that multiple generalization con�icts are the same as for multiple inheri-
tance thus the solution to the second problem could be applied to the �rst. Con�ict resolutions in
multiple inheritance were analyzed in section 2.1.1. In [25] a similar problem of accessing a uni�ed

57

Figure 6.4: Terminal Enhancement (2)

feature, which is multiply inherited, is discussed. In this case the multiple inheritance mechanism
for Ei�el is used and it is combined with renaming.

In example 34 which was presented in a di�erent manner in section 4.6.1 it is now created a
class that derives from both BOX and CIRCLE. The problem is which implementation will be used
when having a reference to class SHAPE and perimeter feature is called. This is an ambiguous
situation which has the following alternatives: boundary from class BOX or circumference from
class CIRCLE. A proposal is made in [25] to take as implementing feature the one present in the
�rst declared subclass. In our case it is boundary from class BOX, because class BOX is the �rst
in the inheriting list of class CIRCULAR_BOX. This approach is wrong because the selection
method does not allow any con�guration of selection in more complex class hierarchies. Such an
example is given in �gure 6.5 where classes A, B, C were created �rst and have features x, y, z.
Then the generalizing class F is created having A, B, C as subclasses. Later on the AB, BC and
AC classes are created having the �rst superclass in the list the class denoted by the �rst letter in
their name. So for class AB the �rst superclass is A while B is the second. In this con�guration
if one wants to select feature x for AB, feature y for BC and feature z for AC it is not possible.
The �rst two choices are valid while the third one is not possible. The order selection solutions
does not work in all cases.

The approach of Ei�el in the case of dynamic binding problem apparently could be used. This
implies using the select keyword for each feature we want to dynamically bind in ambiguous cases.
Such an approach has the drawback that the feature corresponding to the selected features in the
subclasses, can be non-exherited in the generalizing class.

6.4 Architectural Restrictions
From class relations point of view, in any common object-oriented language a class hierarchy
based on inheritance cannot be cyclic. So in reverse inheritance based hierarchies the same rule
is applied. This rule is applicable also to hierarchies containing both inheritance and reverse
inheritance. Any further architectural restrictions can be set only in the concrete context of
a programming language. Depending on the philosophy of the language it will decide whether
repeated reverse inheritance is possible or not and what happens in the presence of ordinary
inheritance and reverse inheritance having the same target class.

58

Example 34 Exheritance Dynamic Binding Problem
class BOX

feature

draw is do end

height, width, area, boundary: REAL

end

class CIRCLE

feature

draw is do end

radius, circumference: REAL

end

deferred foster class SHAPE

adopt

BOX

rename

boundary as perimeter

CIRCLE

rename

circumference as perimeter

feature

perimeter: REAL

end

class CIRCULAR_BOX inherits

BOX, CIRCLE

end

s: SHAPE

cb: CIRCULAR_BOX

r: REAL

!!cb;

s := cb;

r := s.perimeter;

59

Figure 6.5: Exheritance Dynamic Binding Solution

6.5 Summary
In this chapter we analysed one combination of ordinary and reverse inheritance. The fork-join
inheritance shows the bene�ts of using together the two class relationships. Next, was presented
an evolution problem, which was solved using reverse inheritance as the basic mean in several
solutions: using specialization, adding features in the foster class and setting superclass for the
fosterclass. Dynamic binding problems were tackled presenting two unsatisfactory solutions. At
the end of the chapter several architectural restrictions are discussed.

60

Chapter 7

Conclusions and Future Work

From the study presented in this report results clearly the fact that a general semantics for
reverse inheritance to �t in all object-oriented programming languages it is not possible. Even
its counterpart, ordinary inheritance has several implementations in each programming language.
This is because every language has its own particularities and a general compromise can not be
found.

In conformance to the ideas studied in this report we can draw conclusions related to the most
suitable programming languages to implement the reverse inheritance concept. If we decide to
implement it in Java we have to take into consideration the fact that there is no multiple inher-
itance between classes in consequence we cannot design a reverse inheritance class relationship.
Because there is multiple inheritance between interfaces we could introduce the concept of reverse
inheritance between interfaces. This decision is based on the fact that it is not a good thing
to allow the creation of class hierarchies with the help of reverse inheritance which can not be
obtained using ordinary inheritance. In order to avoid semantical inconsistencies it is better to
keep the symmetry of the language.

C++ programming language has the advantage of having multiple inheritance, thus favoring
reverse inheritance between classes. There are no adaptation mechanisms for the features, adding
them with the new concept would break the philosophy of the language. There is a great di�erence
between class features: attributes and methods from the client point of view. This aspect can
introduce potential problems at the implementation level.

In Ei�el the implementation of such a concept like reverse inheritance would �t better because
of several reasons. One main reason is the fact that the language supports multiple inheritance.
Another big advantage is the philosophy of the language which includes feature adaptations.
Reverse inheritance needs such adaptation mechanisms. Another argument in favor of Ei�el is the
uniqueness of the feature names. This is due to the fact that no overloading is possible. From
the class client point of view there is no di�erence between a method or an attribute query. In
other words a feature can be implemented by computation or by storage in a free way. A possible
problem related to the other programming languages is the existence of assertions which can easily
prevent potential features from being exherited.

As an immediate future work in order to experiment the reverse inheritance concept it would
be appropriate to de�ne a semantics for a certain programming language. As presented earlier the
Ei�el programming language would �t better to this research. In this direction, the de�nition of a
reverse inheritance semantics would imply setting rules and syntax constructions, giving examples
and explanations. The semantics has to contain all the interactions and side e�ects of the reverse
inheritance concept and the rest of the language mechanisms.

A second future work would be the implementation of a prototype which will allow using the
reverse inheritance class relationship between already existing classes, thus building new class hi-
erarchies. In fact this prototype will implement the semantics of reverse inheritance. One way of
doing this is to transform class hierarchies using reverse inheritance in an IDE (Integrated Devel-
opment Environment). From this point there are several possibilities for obtaining the executable

61

system: either by writing a compiler capable of generating binary code for the reverse inheritance
class relationship, or by writing a translator to convert the source code using reverse inheritance
extension with equivalent pure source code.

62

List of Algorithms

1 Multiple Inheritance Name Clashes . 11
2 Multiple Inheritance Con�ict Resolution in C++ 12
3 Multiple Inheritance Con�ict Resolution in Java 12
4 Repeated Inheritance in C++ . 14
5 Virtual Base Classes in C++ . 14
6 De�ering Multiple Inherited Features . 15
7 Replicating Multiple Inherited Features . 16
8 Multiple Inheritance Dynamic Binding Case (1) . 16
9 Multiple Inheritance Dynamic Binding Case (2) . 16
10 Multiple Inheritance Dynamic Binding Case (3) . 17
11 Disabling Polymorphism . 17
12 Delegation Sample in C++ . 21
13 Delegation Usage in C++ . 22
14 General Form of Mixin in C++ . 24
15 Graph Counting Mixin Sample in C++ . 25
16 Using Mixins Sample in C++ . 25
17 General Form of Mixin Layers in C++ . 25
18 Role Implementation . 30
19 Croscutting Concerns Sample . 33
20 Examples in Java . 42
21 Examples in C++ . 42
22 Name Con�icts (1) . 44
23 Name Con�icts (2) . 45
24 Name Con�icts (3) . 45
25 Scale Con�icts . 46
26 Parameter Order Con�icts . 47
27 Parameter Number Con�ict . 47
28 Parameter Type Con�icts (1) . 48
29 Parameter Type Con�icts (2) . 49
30 Impact of Polymorphism . 51
31 Selective Method Exheritance . 52
32 Adaptive Approach . 52
33 Type Invariant Assumptions . 54
34 Exheritance Dynamic Binding Problem . 59

63

List of Figures

1.1 Capturing Common Functionalities . 3
1.2 Inserting a Class Into an Existing Hierarchy . 4
1.3 Extending a Class Hierarchy . 4
1.4 Reusing Partial Behavior of a Class . 5
1.5 Creating a New Type . 6
1.6 Decomposing and Recomposing Classes . 7
2.1 Multiple Inheritance . 11
2.2 Direct Repeated Inheritance . 13
2.3 Indirect Repeated Inheritance . 13
2.4 Replicated and Shared Features in Repeated Inheritance 14
2.5 Rede�ned Features in Repeated Inheritance . 15
2.6 Multiple Inheritance Class Hierarchy . 18
2.7 Emancipation . 19
2.8 Composition . 20
2.9 Expansion . 21
2.10 Variant Type . 22
2.11 Incremental Modi�cation by Inheritance . 23
2.12 Traits Model . 27
2.13 Traits Use Case . 27
2.14 Role Object . 29
2.15 Composition Filters Model . 31
2.16 Aspect Oriented Programming Main Principle . 32
3.1 Dequeue Sample . 39
6.1 Fork-Join Inheritance Sample . 56
6.2 Terminal Sample . 56
6.3 Terminal Enhancement (1) . 57
6.4 Terminal Enhancement (2) . 58
6.5 Exheritance Dynamic Binding Solution . 60

64

List of Tables

2.1 The Four Incremental Mechanisms . 23

65

Bibliography

[1] UML Superstructure version 2.0. www.omg.org/uml, October 2004.
[2] Ei�el analysis, design and programming language, June 2005.
[3] Serge Abiteboul and Anthony Bonner. Objects and views. In SIGMOD'91 Conference Pro-

ceedings, International Conference on Management of Data, pages 238�247, San Francisco,
California, March 1991. ACM Press.

[4] Gul Agha. An overview of actor languages. In Proceedings of the 1986 SIGPLAN workshop
on Object-oriented programming, pages 58�67, New York, NY, USA, 1986. ACM Press.

[5] M. Aksit. Separation and composition of concerns in the object-oriented model. ACM Com-
put. Surv., 28(4es):148, 1996.

[6] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented language-database
integration model: The composition-�lters approach. In Ole Lehrmann Madsen, editor, Pro-
ceedings of the 6th European Conference on Object-Oriented Programming (ECOOP), volume
615, pages 372�395, Berlin, Heidelberg, New York, Tokyo, 1992. Springer-Verlag.

[7] Walid Al-Ahmad and Eric Steegmans. Integrating extension and specialization inheritance.
Journal of Object-Oriented Programming, December 2001.

[8] K. Arnold and J. Gosling. The Java Programming Language. Sun Microsystems, 3rd edition,
USA, 2000.

[9] Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition.
Addison-Wesley, 1994.

[10] Yania Crespo, Jos Manuel Marques, and Juan Jos Rodryguez. On the translation of multiple
inheritance hierarchies into single inheritance hierarchies. In In European Conference on
Object-Oriented Programming, 2002.

[11] Je� Ferguson, Brian Patterson, Jason Beres, Pierre Boutquin, and Meeta Gupta. C# Bible.
Wiley Publishing, Inc., 10475 Crosspoint Boulevard, Indianapolis, IN 46256, 2002.

[12] Martin Fowler. Dealing with roles. In Inproceedings of the 4-th Annual Conference on the
Pattern Languages of Programs, Monticello, Illinois, USA, September 1997.

[13] Peter H. Frohlich. Inheritance decomposed. In Proceedings of the Inheritance Workshop at
ECOOP 2002, Malaga, Spain, June 2002.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1997.

[15] Georg Gottlob, Michael Schre�, and Brigitte Rock. Extending object-oriented systems with
roles. In ACM Transactions on Information Systems, volume 14, pages 268�296, July 1996.

66

[16] Rich Hillard. View and viewpoints in software systems architecture. In First Working IFIP
Conference on Software Arhitecture (WICSA 1), pages 22�24, San Antonio, Texas, February
1999.

[17] Michael Van Hilst and David Notkin. Using role components to implement collaboration-based
design. In Proceedings of Conference on Object-Oriented Programing, Systems, Languages and
Applications (OOPSLA'96), California, USA, 1996. ACM Press.

[18] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engi-
neering: A Use Case Driven Approach. ACM Press, 1992.

[19] Sonja E. Keene. Object-Oriented Programming in Common Lisp. A Programmer's Guide to
CLOS. Addisson Westley, 1989.

[20] Elisabeth A. Kendall. Role model designs and implementations with aspect-oriented pro-
gramming. In Proceedings of the 1999 Conference on Object-Oriented Programming Systems
Languages and Applications (OOPSLA), Denver, Colorado, USA, November 1999.

[21] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Ak³it and Satoshi
Matsuoka, editors, Proceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220�242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[22] B. B. Kristensen. Object-oriented modelling with roles. In Object Oriented Information
Systems, Dublin, Ireland, 1996.

[23] Harumi A. Kuno and Elke A. Rundensteiner. Developing an object-oriented view management
system. In IBM Centre for Advanced Studies Conference archive Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborative research: software engineering,
volume 1, pages 548�562, Toronto, Ontario, Canada, July 1993.

[24] Ramnivas Laddad. I want my AOP. January 2002.
[25] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The potential for reverse type

inheritance in Ei�el. In Technology of Object-Oriented Languages and Systems (TOOLS'94),
1994.

[26] Barbara Liskov and Jeanette Wing. A behavioural notion of subtyping. In ACM Transactions
on Programming Languages and Systems, November 1994.

[27] Bertrand Meyer. Object-Oriented Software Construction 2nd ed. Prentice Hall, 1997.
[28] Bertrand Meyer. Ei�el: The language. http://www.inf.ethz.ch/ meyer/, September 2002.
[29] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In Proceed-

ings of the European Conference on Object-Oriented Programming (ECOOP), volume 1445,
pages 355�382. Springer-Verlag, 1998.

[30] C. H. Pedersen. Extending ordinary inheritance schemes to include generalization. In Confer-
ence proceedings on Object-oriented programming systems, languages and applications, pages
407�417. ACM Press, 1989.

[31] Claudia Pons. Generalization Relation in UML Model Elements. In Inheritance Workshop of
European Conference on Object-Oriented Programming, 2002.

[32] Markku Sakkinen. Exheritance - Class generalization revived. In Proceedings of the Inheri-
tance Workshop at ECOOP, Malaga, Spain, June 2002.

67

[33] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Com-
posable units of behavior. In Proceedings of the Inheritance Workshop at ECOOP 2003,
Darmstadt, Germany, July 2003.

[34] Herbert Schildt. C++ The Complete Reference, Third Edition. McGraw-Hill, 1998.
[35] Michael Schre� and Erich J. Neuhold. Object class de�nition by generalization using upward

inheritance. In IEEE Transactions, 1988.
[36] Nathanael Schärli, Stéphane Ducasse, and Oscar Nierstrasz. Classes = traits + states + glue

(beyond mixins and multiple inheritance). In Proceedings of the International Workshop on
Inheritance, Malaga, Spain, June 2002.

[37] John Max Skaller. Mixin article from the comp.lang.c++ newsgroup.
http://cpptips.hyperformix.com/cpptips/mixins, 1993.

[38] Yannis Smaragdakis and Don Batory. Mixin-based programming in C++. In Proceedings
of the International Conference on Generative and Component-Based Software Engineering
(GCSE), 2000.

[39] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementation tech-
nique for re�nements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215�255, 2002.

[40] John Miles Smith and Diane C.P. Smith. Database Abstractions: Aggregation and General-
ization. In ACM Transactions on Database Systems, volume 2, pages 105�133, June 1977.

[41] Bjarne Stroustrup. The C++ Programming Language Third Edition. Addison-Wesley, 1997.
[42] Bjarne Stroustrup. Multiple inheritance for c++. In European UNIX Users' Group Confer-

ence, Helsinky, Finland, May 2002.
[43] Antero Taivalsaari. On the notion of inheritance. In ACM Computing Surveys, No. 3, vol-

ume 28, September 1996.
[44] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama. An adaptive object model with

dynamic role binding. In ICSE '05: Proceedings of the 27th International Conference on
Software Engineering, pages 166�175, New York, NY, USA, May 2005. ACM Press.

[45] The AspectJ Team. The aspectj programming guide. Technical report, Xerox Corporation,
Palo Alto Research Center, Incorporated, 2003.

[46] Michael VanHilst and David Notkin. Using c++ templates to implement role-based designs.
In ISOTAS '96: Proceedings of the Second JSSST International Symposium on Object Tech-
nologies for Advanced Software, pages 22�37, London, UK, 1996. Springer-Verlag.

[47] P. Wegner and S. B. Zdonik. Inheritance as an incremental modi�cation mechanism or
what like is and isn't like. In on ECOOP '88 (European Conference on Object-Oriented
Programming), pages 55�77, London, UK, 1988. Springer-Verlag.

68

