
SmartModels – A Model Oriented Approach
Validated by a Prototype Based on Eclipse Platform

E.
ł

undrea, D. Pescaru, C. B. Chirilă
“Politehnica” University of Timi� oara

Department of Computer Science, V. Pârvan no 2, Timi� oara, România
emanuel@emanuel.ro, dan@cs.utt.ro, chirila@cs.utt.ro

Abstract - Emergent behavior is that which cannot be

predicted through analysis at any level simpler than that
of the system as a whole. Emergent behavior, by
definition, is what is left after everything else has been
explained [6]. This is one of the main concerns of the
Object-Oriented Programming (OOP) principles which
did not cure important issues faced by software
companies these days on developing complex software for
reuse and protecting the more and more evolving
applications against technological obsolescence.

This paper presents:
- an approach: it reviews the state-of-the-art of

SmartModels approach briefly introducing its principles,
basic entities and main elements when defining a
business-model. It also addresses the Meta-Object
Protocol (MOP) which lays the foundation of
SmartModels’ mechanism to fill the gap between the
semantics and the reification of a model entity;

- a prototype: SmartFactory which is based on Eclipse
platform and its role is to validate the new approach.

Keywords - software, model, generative programming,

prototype, factory

I. SMARTMODELS – AN APPROACH BASED ON MODELS

SmartModels proposal relies on previous works which deal

on the one hand with meta-modeling [2], and on the other
hand with the design of a software factory called SmartTools
[1]. It intends to enrich both approaches in order to make
easier the development of domain-specific applications. It is a
first attempt to create our practical interpretation of MDA []
principles.

The main objective of SmartModels is on the one hand, to

clearly identify, thanks to a meta-level, the semantics of
concepts used for the modeling of a given domain, and on the
other hand, thanks to approaches by separation of concerns
and generative programming [3], to equip, in a modular way,
the applications related to this domain.

SmartModels is a set of domain specific models dedicated

to the development of software. This approach is original and
may be distinguished from other approaches by the following
characteristics:

- it introduces on top of the entities which structure the
model (reification level), a semantic layer which enables to
define and factorize the basic functionalities related to the
domain;

- it provides a set of facilities (in order to quickly build
applications related to the model), which strongly relies on
the two levels of the model (data and semantic models);

- it ensures a clear separation between the model and the
technologies which makes the model executable by a
software platform.

The main interest of such an approach is to provide the

power to define the semantics of the entities which are
addressed by a model, independently from any application. In
general, the semantics is spread out in the applications which
may directly handle the model.

SmartModels does not make any difference between the

modeling of the business model and the modeling of its
applications. Thanks to the semantics which is encapsulated
in the entities, related applications may handle directly this
knowledge without going through some implementation
phases (the generation process takes care of this).

It is very important to know that contributions of both

generative programming and separation of concerns are used
in order to achieve a better flexibility and modularity of the
applications related to the model.

II. MAIN ELEMENTS OF A MODEL IN SMARTMODELS

This section briefly introduces the main elements we can

use to describe a business-model in SmartModels. For a more
detailed presentation please see [13, 14, 15]. A business-
model is defined through the identification of its entities
according to the know-how of a specific domain. This
approach follows the Domain-Driven Development [4]
principles and therefore offers a framework for development
of domain-specific applications.

The process consist in producing an XML document (i.e.

by a parser of the domain specific language) compliant with
the AST (or DTD) which describes a model in our approach.
This document will drive the generation process of a class
(Java class in the current version) for each entity. Then this
set of generated classes, considered an implementation of the

business-model, is attached to our MOP as sub-hierarchies of
the built-in kernel. Our MOP encapsulates on one hand
features for handling access in the specialized / meta
hierarchies and its extension, and on the other hand for
loading/saving instances of entities from/into XML streams.

Figure 1. Elements of a business-model in SmartModels

Next paragraphs will present each entity of SmartModels

with respect to the level it manifests. Figure 1 distinguishes
between the different levels of the architecture of our meta-
model: the main elements proposed by SmartModels in order
to define business models. They will be used by generators in
SmartFactory in order to produce code attached to the MOP.

A. SmartModels Meta-Level

First of all, the meta-level is the top level of SmartModels
business-model reification and it handles the meta-
information through concepts. A concept participates to the
definition and the management of the meta-information of a
business-model. It encapsulates the semantics of entities and
their treatments. It can be related to one or a number of atoms
and drives their behavior. Just as a forward-looking we
mention that in our approach an atom is the structure which
encapsulates the description of an entity.

A concept makes the clear distinction between the

semantics (meta-level) of the entities of a business-model and
their reification (reification-level). As a result there are a
couple of very positive consequences:

- the maintenance of the semantics (updating and
redefining of the semantics) deals only with concepts;

- the support for reuse of the semantics in other (closely
related) business models; and

- the model transformation which is one of the key points
of our approach.

The semantics of a business-model stored in a concept are

reified through a set of hypergeneric parameters and

characteristics [2] (which form the meta-information) and a
set of actions (which perform treatments on the entities
according to their meta-information). The identification of
the parameters and characteristics and their possible values is
the job of the meta-programmer which addresses the know-
how of the business-domain.

The hypergeneric parameters customize the behavior of the

entities (it reffers to generic atoms – see section B., and not
their instances) of a business-model. Their role is to capture
and express the properties which compound the definition of
the generic entities. A parameter expresses a basic type
property, e.g. a boolean or an integer value, an enumeration, a
tuple type or a collection of values. A characteristic expresses
a property whose value is defined by an atom or a set of
atoms (enumeration, tuple or collection). In order to describe
the behavior of a generic entity the programmer has to set
those values. For example, a business-model built to
encapsulate the structures (entities) and semantics of an
object-oriented programming language may define
parameters like: cardinality which expresses if there is
simple or multiple inheritance, generator which specifies if
the given entity can create or not its own instances; or
characteristics like: the collection of valid kinds of classifiers
for a given type of inheritance.

Actions are “first-class” entities addressed by concepts in

order to dynamically manage the behavior of atoms
according to their meta-information. The body of an action
encapsulates the execution which can be performed by that
action. The execution of an action depends on:
- querying the parameters and characteristics of the

generic atom to which the action is attached;
- a set of invariants, preconditions and postconditions;
- an optional set of aspects;
- additional information provided by the meta-

programmer.

An action must be completely independent from the

application related to the business model. Therefore a typical
scenario is that the behavior of a given application relies on
the semantic model, that is to say call those actions or query
hyper-generic parameters.

Thanks to AOP [7] paradigm, it is also possible to insert

new concerns (we call them aspects), with respect to the
semantics of business-model. This is completely independent
from the category of visit-entities [11] from the potential
applications (see section C.) and they were implemented in
order to easy add new pieces of behavior which are
orthogonal to the semantics.

We arrived at the line of demarcation between semantics

(the meta-level) and data of a business-model (the reification-
level). As we anticipated in the previous section, an atom is
the reification of entities of a business-model. Identifying the
atoms of a domain is an important task of a programmer.

contains

contains

is-a

Parameters
&

Characteristics

Actions
&

Aspects
Concept

Generic
Concept

M
e

ta
-Level

Atom

Generic
Atom

One Derived
Atom

One Derived
Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-
instance-of

R
eification-Leve

l

One Instance
of

Business-Model

Instance-Leve
l

One Instance
of

Business-Model

One Instance
of

Business-Model
…

contains

contains

is-a

Parameters
&

Characteristics

Actions
&

Aspects
Concept

Generic
Concept

M
e

ta
-Levelcontains

contains

is-a

Parameters
&

Characteristics

Actions
&

Aspects
Concept

Generic
Concept

contains

contains

is-a

Parameters
&

Characteristics

Actions
&

Aspects
Concept

Generic
Concept

contains

contains

is-a

Parameters
&

Characteristics

Actions
&

Aspects
Concept

Generic
Concept

M
e

ta
-Level

Atom

Generic
Atom

One Derived
Atom

One Derived
Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-
instance-of

R
eification-Leve

l

One Instance
of

Business-Model

Instance-Leve
l

One Instance
of

Business-Model

One Instance
of

Business-Model
…

B. SmartModels Reification-Level

The description of the business-model entities relies on
well-known concepts that may be found in most
programming languages or meta-models. In SmartModels
meta-model, the definition of an atom, the structure which
supports the description of an entity, it is very close to the
MOF [16] “class“ notion. However, the concept of class in
MOF is, from our point of view, too much related to
programming languages whereas business models require a
more abstract concept (that is why SmartModels defines the
meta-level).. But at reification-level, the features provided by
MOF to describe the contents of a class (such as attributes,
operations, generalization relationships) are sufficient to
define most of the reification of an entity.

The designer of a business model may create atoms either

for improving the structuring and factorization of information
within the model hierarchy, or for describing atoms which
have instances within applications. SmartModels provides a
way to address those two issues; MOF does it through the
notion of abstract class. If it means that the class must have at
least an abstract method or that all the methods must be
abstract, then we believe that this mechanism is not
sufficient. In particular, some applications may be interested
by some atoms whereas others are not; it is not the same
thing to say that whatever is the context of use, one atom may
not have instances because it is only partially defined. We
believe that a more accurate information according to the
atom status will improve the readability of the code produced
by generators, and the facilities that may be provided or not
to the programmer of application according to it. The interest
to be able to associate different status with an atom is even
greater if the business model may import atoms from another
business model.

Although not all atoms use this facility, each atom has its

meta-information in the corresponding concept. An atom is
seen as an instance of its concept (see figure 1). However,
there are two axes of co-ordinates that we use to distinguish
between atoms:

- atoms which are generic or not. The support of generic
entities (generic atoms) is an important issue for business
models. The genericity is a reflection of the semantic-level
which specifies if the meta-information of a given entity has
or not parameters and characteristics. A business-model
designer may define entities which need semantic
information (which becomes part of an atom definition) and
we call them “generic atoms”. There are atoms which do not
need additional customization besides their reification (their
behavior does not depend on parameters) and we call them
“basic atoms” or “atoms without parameters”; and

- atoms which have instances within applications or not.
The generic atoms may or may not have instances at the
application-level. We saw that MOF [16] makes this
distinction through the notion of abstract class. According to
the arguments from the previous paragraph, that is why

SmartModels has the notion of derived atom (see figure 1)
which is an instance of a generic atom obtained through
relevant combination of values associated with the sets of
characteristics and parameters which participate to the
definition of its generic atom.

To exemplify we turn again to the case of an object-

oriented language. Let us take an example of one business
model which is dedicated to record both the structures and
semantics of Java programs. Possible applications with
respect to this model may implement functionalities of
programming environments (metrics, various wizards or
editors, etc.). Possible atoms of this model represent, for
example, attribute, method, method parameters, modifiers,
etc.. But the most interesting ones deals with the different
kinds of classifiers and relationships (aggregation-like or
inheritance-like). Most semantics may be encapsulated within
classifiers and relationships and other atoms mentioned above
may have a very minimal semantics mostly represented by
their reification. This is possible because they are driven by
the semantics associated with classifiers and relationships. In
fact, there are several kinds of classifiers (e.g. class, inner
class, interface, etc.) and relationships (e.g. extends between
interfaces, extends between classes, implements between one
interface and one class) in this business model. Then it is
meaningful to be able to record their definitions as generic
atoms (One generic entity for modifiers, one for
inheritance-like relationships and one for aggregation-like
relationships). All this properties are recorded in their meta-
level through parameters.

Therefore, the genericity comes from a set of hyper-

generic parameters and a set of characteristics which records
the differences and the commonalities between all the
foreseen derived entities (This is the term which is quite often
used in the state of the art, to refer instances of generic
entities; e.g. all the Java classifiers). Intuitively, generic
atoms are quite similar to the concept of generic class in the
Eiffel language and derived atoms are obtained through the
relevant combination of values associated with the sets of
characteristics and parameters which participate to the
definition of the generic atom.

In [13, 15] we explained why we chose to use generic

atoms instead of inheritance relationships for modeling the
atoms and there are other interesting issues concerning them.
Applying appropriately the SmartModels principles described
in the previous sections should lead to a much more effective
application building process with SmartFactory. The next
paragraphs address the description of applications (and we
arrived at application-level in SmartModels) which capitalize
the atoms of the business model. As it has been mentioned
earlier, we can distinguish two kinds of application:

- those which describe model transformations and
- those which query, compute and update the instances of

the business model.

Built-In

Built-In.edit

MetaDataEditor

MetaDataEditor.edit

MetaDataEditor.editor

Transformer JetGenerator

org.eclipse.emf.ecore

SmartFactory

Built-In

Built-In.edit

MetaDataEditor

MetaDataEditor.edit

MetaDataEditor.editor

Transformer JetGenerator

org.eclipse.emf.ecore

SmartFactory

C. SmartModels Instance-Level

At this point, it is straightforward that the specification of
those applications will slightly differ from classical
object-oriented applications, even if both rely on the object
paradigm.

Intuitively, building an application it is a process which

consists of a set of traversals of the graph of atoms
corresponding to a business-model. During this traversal, the
behavior contained in application facets are performed
sequentially. While these facets are processed, it is possible
to trigger the execution of aspects which allows to integrate
orthogonal services. The reification of both the business
model and the application is handled by the meta-object
protocol which contains also additional functionalities.

A type of traversal is the main entity which influence upon

the way an application must be developed and we call it
facet. The organization by facets of an application draws
from SOP [5] and ASoC [7].

A facet represents one concern of the application with

respect to the business-model. This is a vertical cross-cutting
(this is itself defined as an independent business model, so
that it may also be associated with a DSL) of the application
whereas inheritance relationship would provide an horizontal
cross-cutting which introduces several levels of abstraction
into the business model or the application. The model
supports hierarchies of atoms, concepts, visit-entities, facets
and more generally of any first-class entity. Each facet
corresponds to a part of the treatment to be processed on one
entity. Typically one facet of a given application would rather
address the same set of atoms as the other facets (even if
there is no constraint).

III. SMARTFACTORY – THE PROTOTYPE

The SmartFactory prototype is built in the framework of
Eclipse Platform and it is the first step of the research
conducted in the Domain-Driven Development framework
[4]. It is a development environment generator that provides a
structure editor and semantic tools as main features. It was
built on Java and XML technologies as a research project in
the I3S laboratory from Sophia-Antipolis, France. Therefore
it offers support for designing of new software development
environments for programming languages as well as domain
specific languages defined with XML.

Eclipse Platform, which is the base of SmartFactory’s

development, is designed for building integrated development
environments (IDEs). It also makes use of a couple of Eclipse
Tools Projects such as: Eclipse Modeling Framework (EMF)
- an open source code generation tool, capable of creating
complex editors from abstract business models (OMG’s
PIM); Graphical Editor Framework (GEF) - designed to
allow editing of user data, generally referred to as the model,
using graphical rather than textual format; a set of code

definition templates defined in a template language called
Java Emitter Templates (JET); Eclipse Rich Client Platform
(RCP) – a new proficient way to build Java applications and
others. These tools were very helpful to add value such as
including a GUI for writing a model, automated code
generation and automated creation of rich client applications.

Figure 2. SmartFactory Plug-ins

There are seven plug-in Java projects which work together

to implement the SmartModels MOP’s principles and rules.
Table 3 presents each one of them with the role they have in
the approach, the Eclipse features that they use and the design
choices we have made in order to build them.

Figure 2 presents the SmartFactory plug-ins architecture

which highlights the links and the dependencies between
them. From the very beginning it is important to observe that
all the plug-ins make use of EMF Ecore
(org.eclipse.emf.ecore) tool plug-in.

TABLE 1

DESCRIPTION OF SMARTFACTORY PLUG-INS

Plug-in Name Description
Built-In - it is the kernel of SmartFactory prototype;

- it implements the Meta-Object Protocol approach;
- it reifies the SmartModels entities.

Built-In.edit - it contains EMF content provider classes to describe
entities using the editor.

MetaDataEditor - it represents the SmartFactory meta-data editor;
- it customizes the EMF ecore entities in order to
support the SmartModels entities specific properties;
- it implements the SmartModels methodology to
describe a model.

MetaDataEditor.
edit

- it contains EMF content provider classes to describe
the meta-data editor specific entities for the editor.

MetaDataEditor.
editor

- it is the GUI of the meta-data editor;
- it provides a wizard and EMF panes to edit a
SmartModels model;
- it is an Eclipse RCP application.

Transformer - it performs a model transformation from the meta-
data editor format to an EMF ecore format so we can
reuse the EMF.CodeGen to leverage the code-
generation process;
- it uses annotations containing Java pure code to add
the SmartModels approach value to EMF entities.

JetGenerator - it updates the EMF.CodeGen to take into account,
when generating code, the SmartModels specific
annotations attached by the Transformer to the EMF
ecore model.

Figure 3. The SmartModels Transformer

The heart of the SmartModels_MetaDataEditor plug-in is
again an EMF ecore model file. Using just EMF framework
(its UML diagram editor) we do not have all the tools to
describe all the particularities of SmartModels’ entities so we
needed to create our own editor. However, in order to reuse
this flexible platform we decided to enriched the sample EMF
ecore editor with support for SmartModels entities.

It is also important to see the SmartModels methodology to

describe a business model. This is a five-step process:
1. to identify and to specify the basic atoms of the model,
2. to identify the generic atoms,
3. to define the criteria of genericity (the hypergeneric

parameters) - typically this is a step that must be performed
by an expert of the domain. It represents a part of the
knowledge of the business model;

4. to specify the actions attached to generic and non-
generic atoms,

5. to specify the instances of the generic atoms (derived
atoms).

The three last steps deals with the specification of the
meta-level (the concepts).

As a result we may conclude that there are three main

entities that we have to define in a SmartFactory model:
- to elaborate the list of Atoms;
- for those who are generic to add their semantic

information (the hypergeneric parameters, characteristics and
actions) in the list of Concepts;

- to compose the list of the DerivedAtoms setting their
semantic values.

Therefore we created the SmartModelsEditor which is the

root of the editor and acts as a database holder of
SmartModels entity reifications. It is the container of this
three lists and has only one constraint: the list of Atoms can
not be empty. The root implements the org.eclipse.emf.

ecore.ENamedElement interface and this means it inherits all
the properties of an EMF EObject and we also can add
annotations and the name of the model.

For each of the three main entities of our editor we created

a correspondent model object and we named them after the
original entities adding the suffix “Editor”. They all have
org.eclipse.emf.ecore.EClass as a super-type and this
choice has many advantages:

- we can benefit from the EMF (UML oriented)
framework which is currently under a rapid development and
it is more than likely that we will have more rich models in
the future;

- it saves us of a lot of work to build a representation of
the entities of an object-oriented programming language;

- it draws the modeling phase closer to the implementation
language (which has to be an OOPL);

- the programmer is free to add other attributes, references
or methods that it may help him describe better the model
entities.

The problem is that the editor saves the resources in an
XML encoding stream, but not ecore format because our
entities add more information to the standard ecore entities.
Therefore, in order to use the EMF CodeGen for generating
code for SmartModels models they need to be transformed
according to the ecore format.

This role is accomplished by the SmartModels

Transformer Plug-In (from now on we will call it “the
Transformer”) which can be found as a runtime library
“SmartModels_Transformer_PlugIn.jar” in the
SmartFactory framework. This plug-in makes a contribution
to the menu bar which has the same name as the plug-in and
adds the action (called Transform) that will do the job.

The architecture of the meta-model of the Transformer has

two parts:
- a set of six components each one of them dealing with a

part of the transformation;
- a hierarchy of classes which help the transformer to

handle the different types of model serialization.

In order to run the

Transformer a user has to
specify two sources: the Built-
In ecore model file (the kernel
of SmartFactory), the Meta-
Data Editor model file (the
output of the editor) and one
target: the ecore resource
where the model is stored after
transformation.

To ease the utilization of the

Transformer (if a user needs to
run it as a standalone plug-in)
we designed a wizard similar
to the EMF editor (see figure
3) where he specifies this three
files before running the
Transformer.

Afterward, the code-generation process follows the same

rules like for a standard EMF ecore file and gain all the
advantages to reuse from such an evolutive platform like
Eclipse. We hope you will understand more at the
presentation of the prototype which will accompany this
article in the conference.

ACKNOWLEDGMENT

This article is a synthesis of principles and practices that
were born in the midst of a joint research team we are part of:
the team from the Laboratoire Informatique Signaux et
Systemes de Sophia-Antipolis, France (I3S:
http://www.i3s.unice.fr) which belongs to Institut
Universitaire de Technologie de Nice et de la Cote d'Azur,
department Informatique, under the coordination of professor

Philippe Lahire, and the team from Universitatea
“Politehnica” din Timi� oara, România, Faculty of Automatics
and Computers, (http://www.cs.utt.ro) under the
coordination of professor Ioan Jurca.

CONCLUSIONS

We have to acknowledge a very important principle in
software engineering: in the world of software everything
evolves: technologies, methodologies and applications.

We believe that in order to provide an approach centered on
models, which capture the know-how of a domain, it is of
primary importance to ensure the independence between both
the model and the software platform and between the model
and the possible applications. This research report promotes
the idea that model-oriented programming is a better
approach to solve this new challenges.

The first two chapters introduces SmartModels, an

approach centered on models of the framework of Model-
Oriented Programming. They present its principles, basic
entities and main elements when defining a model, which aim
to match the requirements of an approach centered on
models. A second contribution is the third chapter which
address the paradigm of how to practically implement this
approach through the proposal of SmartFactory prototype (it
deals with important implementation issues based on Eclipse
Platform) which is an interpretation and validation of
SmartModels.

PERSPECTIVES

The perspectives are twofold. Firstly, to experiment this

approach for the description of various business models and
their applications. We started to investigate the business
models of Romanian companies. The objective is to get
feedbacks in order to improve the expressiveness of
SmartModels – how to ease the job of a meta-programmer to
describe a model, as well as a better automation (in
SmartFactory prototype) of:

- the generation of the behavior, and
- the semantics transformation of both models and

applications when they evolve toward another model or
application.

Secondly, we want to improve the expressiveness of the
models [17] for the description of derived atoms and
applications, and then to implement them with SmartFactory.
Through the definition of those models which are dedicated
to enrich the meta-model itself, we aim to improve the quality
and the percentage of the code automatically generated so a
software company can gain competitive advantages like:

- preserving company investment (future legacy code);
- following rapid technology evolution;
- reacting faster to technology changes;
- improving productivity.

REFERENCES
[1] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier

Parigot, Claude Pasquier and Claudio Sacerdoti (May 2001),
SmartTools: a development environment generator based on XML
technologies, XML Technologies and Software Engineering, Toronto,
Canada, ICSE'2001 workshop.

[2] Pierre Crescenzo, Philippe Lahire (2002), Using both specialisation and
generalisation in a programming language: Why and how?, vol. 2426,
Lecture Notes in Computer Science, pages 64-73.

[3] Krysztof Czarnecki and Ulrich W. Eisenecker (June 2000), Generative
Programming: Methods, Techniques, and Applications,
Addison-Wesley.

[4] Krzysztof Czarnecki and John Vlissides (2003), Domain-Driven
Development, Special Track OOPSLA'03,
http://oopsla.acm.org/ddd.htm

[5] William Harrison, Harold Ossher (October 1993), Subject-Oriented
Programming – A critique of pure objects, Proceedings ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, ACM Press, pages 411-428.

[6] Georges Dyson, Darwin Among the Machines, Allen Lane publisher,
1997, page 9

[7] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Marc Loingtier, John Irwin (June 1997),
Aspect-Oriented Programming, ECOOP'97 – Object-Oriented
Programming 11th European Conference, Jyväskylä, Finland, vol
1241, Lecture Notes in Computer Science, pages 220-242,
Springer-Verlag.

[8] Philippe Lahire, Didier Parigot, Carine Courbis, Pierre Crescenzo,
Emanuel ł undrea, An Attempt to Set the Framework of Model-Oriented
Programming, 6th International Conference on Technical Informatics
(CONTI 2004), Timi� oara, România, May 27-28, 2004, Proceedings
Periodica Politechnica, Transactions on Automatic Control and
Computer Science, Vol. 49 (63), 2004, ISSN 1224-600X.

[9] Object Management Group (March 2000), Meta Object Facility (MOF)
Specification, Version 1.3, Technical Report, OMG.

[10] Object Management Group, Model-Driven Architecture,
http://www.omg.org/mda

[11] Jens Palsberg, Barry Jay (August 1998), The Essence of the Visitor
Pattern, COMPSAC'98, 22nd Annual International Computer Software
and Applications Conference, Vienna, Austria.

[12] Clemens Szyperski (1998), Component Software: Beyond OOP, ACM
Press and Addison-Wesley.

[13] Emanuel ł undrea (April 30, 2004), Modeling Complex Software
Systems: SmartModels - An Approach For Developing Software Based
On Models, Research Report as a part of the doctorate program
research, "Politehnica" University of Timi� oara, Automatics and
Computer Science Faculty, supervisor prof. dr. ing. Ioan Jurca

[14] Emanuel ł undrea, P. Lahire, D. Parigot, C. Chirilã, D. Pescaru, (May
25-26, 2004), SmartModels – An Approach For Developing Software
Based On Models, 1st Romanian - Hungarian Joint Symposium on
Applied Computational Intelligence SACI'2004, Timi � oara, Romania,
ISBN 963-7154-26-4, pages 231-240

[15] Emanuel ł undrea, Ioan Jurca (May 13-16, 2004), Proficiencies of a
new approach in software engineering: the Model-Oriented Program-
ming, 2004 IEEE-TTTC International Conference on Automation,
Quality & Testing, Robotics AQTR 2004 (THETA 14), Cluj-Napoca,
Romania.

[16] Object Management Group (March 2000), Meta Object Facility (MOF)
Specification, Version 1.3, Technical Report, OMG.

[17] PierreCrescenzo, PhilippeLahire, Emanuel ł undrea, SmartModels: la
généricité paramétrée au service des modèles métiers, LMO 2006,
pages 151-166, 22-24 March 2006, Nîmes, France

