SmartModels — A Model Oriented Approach
Validated by a Prototype Based on Eclipse Platform

E. Tundrea, D. Pescaru, C. B. Cliiril
“Politehnica” University of Timjoara
Department of Computer Science, V. Parvan no 2,sbana, Romania
emanuel@emanuel.ro, dan@cs.utt.ro, chirila@cs.utt.ro

Abstract- Emergent behavior is that which cannot be
predicted through analysis at any level simpler than that
of the system as a whole. Emergent behavior, by
definition, is what is left after everything else has len
explained [6]. This is one of the main concerns of the
Object-Oriented Programming (OOP) principles which
did not cure important issues faced by software
companies these days on developing complex software for
reuse and protecting the more and more evolving
applications against technological obsolescence.

This paper presents:

- an approach: it reviews the state-of-the-art of
SmartModels approach briefly introducing its principles,
basic entites and main elements when defining a
business-model. It also addresses the Meta-Object
Protocol (MOP) which lays the foundation of
SmartModels’ mechanism to fill the gap between the
semantics and the reification of a model entity;

- a prototype: SmartFactory which is based on Eclipse
platform and its role is to validate the new approach.

Keywords- software, model, generative programming,
prototype, factory

. SMARTMODELS —AN APPROACHBASED ONMODELS

- it introduces on top of the entities which structure the
model (reification level), a semantic layer which dasatio
define and factorize the basic functionalities rela@dhe
domain;

- it provides a set of facilities (in order to quickly build
applications related to the model), which strongly retias
the two levels of the model (data and semantic models);

- it ensures a clear separation between the model and th
technologies which makes the model executable by a
software platform.

The main interest of such an approach is to provige th
power to define the semantics of the entities which are
addressed by a model, independently from any application. In
general, the semantics is spread out in the applicatibith
may directly handle the model.

SmartModels does not make any difference between the
modeling of the business model and the modeling of its
applications. Thanks to the semantics which is encapsulat
in the entities, related applications may handle dirdbts
knowledge without going through some implementation
phases (the generation process takes care of this).

It is very important to know that contributions of both
generative programming and separation of concerns are used
in order to achieve a better flexibility and modularityttoé

SmartModels proposal relies on previous works which deal applications related to the model.

on the one hand with meta-modeling [2], and on the other

hand with the design of a software factory called SmaitTo

[1]. It intends to enrich both approaches in order to make

easier the development of domain-specific applicatidns.a
first attempt to create our practical interpretatdriviDA []
principles.

The main objective of SmartModels is on the one hamd, t
clearly identify, thanks to a meta-level, the semant

Il. MAIN ELEMENTS OF AMODEL IN SMARTMODELS

This section briefly introduces the main elements we ca
use to describe a business-model in SmartModels. Fara
detailed presentation please see [13, 14, 15]. A business-
model is defined through the identification of its eati
according to the know-how of a specific domain. This
approach follows the Domain-Driven Development [4]

concepts used for the modeling of a given domain, and on theprinciples and therefore offers a framework for development
other hand, thanks to approaches by separation of concernsf domain-specific applications.

and generative programming [3], to equip, in a modular way,

the applications related to this domain.

The process consist in producing an XML document (i.e.
by a parser of the domain specific language) compliart wit

SmartModels is a set of domain specific models dedicatedthe AST (or DTD) which describes a model in our appnoac

to the development of software. This approach is origindl

This document will drive the generation process ofas<l

may be distinguished from other approaches by the following (Java class in the current version) for each enfihen this

characteristics:

set of generated classes, considered an implementatiba of

business-model, is attached to our MOP as sub-hierarchie characteristics [2] (which form the meta-informati@and a
the built-in kernel. Our MOP encapsulates on one handset of actions (which perform treatments on the estiti
features for handling access in the specialized / metaaccording to their meta-information). The identificati of
hierarchies and its extension, and on the other Hand the parameters and characteristics and their possillesvis

loading/saving instances of entities from/into XML sinsa the job of the meta-programmer which addresses the-kno
how of the business-domain.
/ tions . \
& € cont ai ns Concept . i .
Aspect s S The hypergeneric parameters customize the behavibeof t
isa) entities (it reffers to generic atoms — see sedfigrand not
= e ; i ; .
Parar:t ers contains (Gnerc) ian | @ their instances) of a bu§|ness _model. Their rolee)lsaptqrg
har act ori st i cs Concept |1 ngt ance-of | © and express the properties which compound the definition of
\& .) J the generic entities. A parameter expresses a bgpiE t

rd

4
/ . . ’
i s-an-inst ance- of

N property, e.g. a boolean or an integer value, an enumeratio
tuple type or a collection of values. A characteriskipresses
a property whose value is defined by an atom or a set of
atoms (enumeration, tuple or collection). In ordedéscribe
the behavior of a generic entity the programmer haseto
those values. For example, a business-model built to
J encapsulate the structures (entities) and semantics of an

object-oriented programming language may define

parameterslike: cardinality which expresses if there is
simple or multiple inheritancegeneratorwhich specifies if
the given entity can create or not its own instana®s;
characteristicdike: the collection of valid kinds of classifiers
for a given type of inheritance.

i s-derived is-derived

One Derived] ,.. [One Derived
\ At om At om
One I nstance One | nstance One | nst ance\
of of e of
usi ness- Mbdel | Busi ness- Mdel usi ness- I\/bdeL

Figure 1. Elements of a business-model in SmartN4o

[onaT-uoieoIeY

Sjana-soueISU|

Next paragraphs will present each entity of SmartModels Actions are “first-class” entities addressed by concepts
with respect to the level it manifests. Figure 1 distingess order to dynamically manage the behavior of atoms
between the different levels of the architecture of roeta- according to their meta-information. The body of atioac

model: the main elements proposed by SmartModels in orderencapsulates the execution which can be performed by that
to define business models. They will be used by generiators action. The execution of an action depends on:

SmartFactory in order to produce code attached to the.MOP _ querying the parameters and characteristics of the
generic atom to which the action is attached;
A. SmartModels Meta-Level - a set of invariants, preconditions and postconditions;
First of all, themeta-levels the top level of SmartModels - an optional set of aspects;
business-model reification and it handles the meta- - additional information provided by the meta-

information through concepts. A concept participateshéeo t programmer.

definition and the management of the meta-informatioa o

business-model. It encapsulates the semantics of erditie An action must be completely independent from the
their treatments. It can be related to one or a nuf@oms application related to the business model. Therefoypieal
and drives their behavior. Just as a forward-looking we scenario is that the behavior of a given applicatilies on
mention that in our approach an atom is the structure whichthe semantic model, that is to say call those actiorggiery
encapsulates the description of an entity. hyper-generic parameters.

A concept makes the clear distinction between the Thanks to AOP [7] paradigm, it is also possible to inser
semantics (meta-level) of the entities of a busimesdel and new concerns (we call them aspects), with respechéo
their reification (reification-level). As a resulhaére are a semantics of business-model. This is completely indep¢nde

couple of very positive consequences: from the category of visit-entities [11] from the poiaht
- the maintenance of the semantics (updating andapplications (see section C.) and they were implemented
redefining of the semantics) deals only with concepts; order to easy add new pieces of behavior which are

- the support for reuse of the semantics in other (glose orthogonal to the semantics.
related) business models; and
- the model transformation which is one of the key fsoin We arrived at the line of demarcation between semsnti
of our approach. (the meta-levéland data of a business-mod#le(reification-
leve). As we anticipated in the previous section, an atm
The semantics of a business-model stored in a conaept arthe reification of entities of a business-model. |dgirtg the
reified through a set of hypergeneric parameters andatoms of a domain is an important task of a programmer.

SmartModels has the notion dérivedatom (see figure 1)

B. SmartModels Reification-Level which is an instance of a generic atom obtained through
The description of the business-model entities relies o relevant combination of values associated with the sbts
well-known concepts that may be found in most characteristics and parameters which participate to the

programming languages or meta-models. In SmartModelsdefinition of itsgenericatom.

meta-model, the definition of an atom, the structuteckv]])
supports the description of an entity, it is very clasghe To exemplify we turn again to the case of an object-
MOF [16] “class* notion. However, the concept of class i oriented Igngqage. Let us take an example of one business
MOF is, from our point of view, too much related to model which is dedicated to record both the structures and

more abstract concept (that is why SmartModels defines
meta-level).. But at reification-level, the featupgsvided by

MOF to describe the contents of a class (such aguts,

operations, generalization relationships) are sufficiemt
define most of the reification of an entity.

The designer of a business model may create atones eith
for improving the structuring and factorization of infation
within the model hierarchy, or for describing atomsialth
have instances within applications. SmartModels provales

respect to this model may implement functionalities of
programming environments (metrics, various wizards or
editors, etc.). Possible atoms of this model repredent
example,attribute, method, method parameters, modifiers
etc.. But the most interesting ones deals with the differ
kinds of classifiers and relationships (aggregation-like o
inheritance-like). Most semantics may be encapsulatédnwit
classifiers and relationships and other atoms mentiormcab
may have a very minimal semantics mostly represented by
their reification. This is possible because they areedriby

way to address those two issues; MOF does it through thethe semantics associated with classifiers and rakttips. In

notion of abstract class. If it means that the chasst have at

fact, there are several kinds of classifiers (elgss, inner

least an abstract method or that all the methods must beflass, interfaceetc.) and relationships (e gxtendsbetween

abstract, then we believe that this mechanism is not
sufficient. In particular, some applications may beregted
by some atoms whereas others are not; it is notsdmee
thing to say that whatever is the context of use,atam may
not have instances because it is only partially defivéd.
believe that a more accurate information accordingh&o
atom status will improve the readability of the codedpiced
by generators, and the facilities that may be providealobr
to the programmer of application according to it. Tiiteriest
to be able to associate different status with an asoeven
greater if the business model may import atoms fronthano
business model.

Although not all atoms use this facility, each atoas lits
meta-information in the corresponding concept. An atem
seen as an instance of its concept (see figure 1). However
there are two axes of co-ordinates that we use to dissimg
between atoms:

- atoms which are generic or not. The support of generi
entities (generic atoms) is an important issue for lassin
models. The genericity is a reflection of the semalstiet
which specifies if the meta-information of a given gnkias

interfaces extendshetween classegnplementdetween one
interface and one class) in this business model. Then i
meaningful to be able to record their definitions as gene
atoms (One generic entity for modifiers, one for
inheritance-like relationships and one for aggregaticm-|
relationships). All this properties are recorded inrtiegta-
level through parameters.

Therefore, the genericity comes from a set of hyper-
generic parameters and a set of characteristics whadrds
the differences and the commonalities between all the
foreseen derived entities (This is the term which isequifiten
used in the state of the art, to refer instances okre
entities; e.g. all the Java classifiers). Intuitivebyeneric
atoms are quite similar to the concept of genericsdiaghe
Eiffel language and derived atoms are obtained through the
relevant combination of values associated with the skts
characteristics and parameters which participate to the
definition of the generic atom.

In [13, 15] we explained why we chose to use generic
atoms instead of inheritance relationships for modefirey

or not parameters and characteristics. A business-modeftoms and there are other interesting issues concetfreny

designer may define entities which need semantic A

information (which becomes part of an atom definitiondl a
we call them “generic atoms”. There are atoms wihlichot
need additional customization besides their reificattbeir

pplying appropriately the SmartModels principles described
in the previous sections should lead to a much moretiefée
application building process with SmartFactory. Thetnex
paragraphs address the description of applications (a&nd w

behavior does not depend on parameters) and we call then@'Tived at application-level in SmartModels) which talpie

“basic atoms” or “atoms without parameters”; and

- atoms which have instances within applicationsair n
The generic atoms may or may not have instancebteat t
application-level. We saw that MOF [16] makes this
distinction through the notion of abstract class. Aditw to
the arguments from the previous paragraph, that is why

the atoms of the business model. As it has been medtion
earlier, we can distinguish two kinds of application:

- those which describe model transformations and

- those which query, compute and update the instances of
the business model.

C. SmartModels Instance-Level definition templates defined in a template language called

At this point, it is straightforward that the specificatiof Java Emitter Templates (JET); Eclipse Rich Clientféten
those applications will slightly differ from classical (RCP)—a new proficient way to build Java applications and

object-oriented applications, even if both rely on tgect others. These tools were very helpful to add value such as
paradigm. including a GUI for writing a model, automated code

generation and automated creation of rich client application
Intuitively, building an application it is a process which

consists of a set of traversals of the graph of atoms

corresponding to a business-model. During this travetsal,

behavior contained in application facets are performed Smanfactory

sequentially. While these facets are processed,pbssible [Buittin | | metaDataEdior|

to trigger the execution of aspects which allows togirate

orthogonal services. The reification of both the besin [Buit-nedit| [MetapawmEditor.ed]

model and the application is handled by the meta-object

protocol which contains also additional functionalities.
A type of traversal is the main entity which influengoon |Tranlmmer Jeﬁzneramrl

the way an application must be developed and we call it

facet The organization by facets of an application draws

Figure 2. SmartF Plug-i
from SOP [5] and ASoC [7]. gure 2. Smartractory Plug-ns

o) There are seven plug-in Java projects which work together
A facetrepresents one concern of the application with 4 jmplement the SmartModels MOP’s principles and rules.
respect to the business-model. This is a vertical -@uai$ig Table 3 presents each one of them with the role hiaey in

(this is itself defined as an independent business model, s {0 approach, the Eclipse features that they use antéign
that it may also be associated with a DSL) of the agfitin choices we have made in order to build them.
whereas inheritance relationship would provide an hioté&o

cross-cutting which introduces several levels of abtrac
into the business model or the application. The model
supports hierarchies of atoms, concepts, visit-entitéests
and more generally of any first-class entity. Eachetfac
corresponds to a part of the treatment to be processedeon
entity. Typically one facet of a given application wotdt¢her

Figure 2 presents the SmartFactory plug-ins architecture
which highlights the links and the dependencies between
them. From the very beginning it is important to observe tha
all the plug-ins make use of EMF Ecore
(org. eclipse. enf. ecore) tool plug-in.

address the same set of atoms as the other facets ife TABLE 1
there is no constraint). DESCRIPTION OFSMARTFACTORY PLUG-INS
IIl. SVARTFACTORY — THE PROTOTYPE Plug-in Name | Description
Built-In - it is the kernel of SmartFactory protps;,

. o - it implements the Meta-Object Protocol approach;
The SmartFactory prototype is built in the framework of - it reifies the SmartModels entities.
Eclipse Platform and it is the first step of the eesk Built-In.edit - it contains EMF content providemskes to describe
conducted in the Domain-Driven Development framework] : entities using the editor. __
[4]' Itis a development environment generator thatida.wa MetaDataEditor - it repres_ents the SmartFactor)aﬁc_dalta editor;

. . . - it customizes the EMF ecore entities in order to
strgcture editor and semantic toqls as main feattllrexsgg support the SmartModels entities specific propsytie
built on Java and XML technologies as a research privjec - it implements the SmartModels methodology to
the 13S laboratory from Sophia-Antipolis, France. T _ describe a model. _
it offers support for designing of new software development MetaDatakditor. | - it contains EMF content provider classes to dbecr

. f . lanauages as well as doma edit the meta-data editor specific entities for theadit
envw_o_nments or prog_rammlng guag "'MetaDataEditor. | - it is the GUI of the meta-data editor;
specific languages defined with XML. editor - it provides a wizard and EMF panes to edit a

SmartModels model;
Eclipse Platform, which is the base of SmartFactory - itis an Eclipse RCP application.
development, is designed for building integrated developmer tTr"’meormer - it performs a model transformaticnirthe meta-

) p ! g g g) p data editor format to an EMF ecore format so we cah
environments (IDES). It also makes use of a couple & reuse the EMF.CodeGen to leverage the code-
Tools Projects such as: Eclipse Modeling Framework (EMF generation process; N
- an open source code generation tool, capable ofirmeat ;h'teusgsaﬁnMnooc}:f'sf’;‘;p‘i%r;fr']”\'/’;?uiat‘gaEpMu'Feecr?tg‘iee'“sb
Complex edlt'OI’S fro_m abstract business mOdels, (OMG $ JetGenerator - it updates the EMF.CodeGen to tatheaiccount,
PIM); Grgphlcal Editor Framework (GEF) - designed to when generating code, the SmartModels specific
allow editing of user data, generally referred taresmodel annotations attached by the Transformer to the EMi

using graphical rather than textual format; a set afeco ecore model.

The heart of th&&martModels_MetaDataEditgulug-in is The problem is that the editor saves the resourcesin
again an EMF ecore model file. Using just EMF framework XML encoding stream, but not ecore format because our
(its UML diagram editor) we do not have all the tools to entities add more information to the standard ecoritiemnt
describe all the particularities of SmartModels’ easitso we Therefore, in order to use the EMF CodeGen for gemegrati
needed to create our own editor. However, in order to reusecode for SmartModels models they need to be transtbrme
this flexible platform we decided to enriched the sangg- according to the ecore format.
ecore editor with support for SmartModels entities.

This role is accomplished by the SmartModels

It is also important to see the SmartModels methoddlogy Transformer Plug-In (from now on we will call ithe

describe a business model. This is a five-step process: Transformet) which can be found as a runtime library
1. to identify and to specify the basic atoms of the model “sSnart Mvbdel s_Transforner Plugin.jar” in the
2. to identify the generic atoms, SmartFactory framework. This plug-in makes a contribution

3.to define the criteria of genericity (the hypergeneri to the menu bar which has the same name as the plug-in and

parameters) - typically this is a step that must be padd adds the action (calletransforn) that will do the job.

by an expert of the domain. It represents a part of the

knowledge of the business model; The architecture of the meta-model of the Transfotmas
4.to specify the actions attached to generic and non-two parts:

generic atoms, - a set of six components each one of them dealing with a
5.to specify the instances of the generic atoms (d#rive part of the transformation;

atoms). - a hierarchy of classes which help the transformer to
The three last steps deals with the specificationhef t handle the different types of model serialization.

meta-level (the concepts).

In order to run [1a[=) M SmartModels Transfurmer@
As a result we may conclude that there are three mainTransformer a user has t®reansformer Wizard

entities that we have to define in a SmartFactory mode specify two sources: the BuUilt] pease specty the
- to elaborate the list gttoms In ecore model file (the kerne| felovingfies
- for those who are generic to add their semantic of SmartFactory), the Meta

. 3 . martMadels Euilt-In File
information (the hypergeneric parameters, charadtesiand Data Editor model file (the et T

actions) in the list o€oncepts output of the editor) and ong |tmiseimodelibuit-n.ecore

- to compose the list of thBerivedAtomssetting their target: the ecore resourcg Erawse..
semantic values. \t/vher?\ the Todel is stored aftel . . imadels Editor Model Fie

ransformation.

Therefore we created tf&martModelsEditomhich is the i e
root of the editor and acts as a database holder of To ease the utilization of thg Browse..
SmartModels entity reifications. It is the contairgdr this Transformer (if a user needs tl> SmartModsls Transformed File
three lists and has only one constraint: the list @i can run it as a standalone plug-in T
not be empty. The root implements thiey. ecl i pse. ent. we designed avizard similar s e

ecor e. ENanedEl enent interface and this means it inherits all to the EMF editor (see figure %
the properties of an EMF EObject and we also can add3) where he specifies this thre
annotations and the name of the model. fles before running the
Transformer.
For each of the three main entities of our editor watexk Figure 3. The SmartModels Transformer
a correspondent model object and we named them after the Afterward, the code-generation process follows the same
original entities adding the suffixEtlitor”. They all have rules like for a standard EMF ecore file and gain bd t
org.eclipse.enf.ecore. EClass as a super-type and this advantages to reuse from such an evolutive platform like
choice has many advantages: Eclipse. We hope you will understand more at the
- we can benefit from the EMF (UML oriented) presentation of the prototype which will accompany this
framework which is currently under a rapid development and article in the conference.
it is more than likely that we will have more richodels in

A1

Cancel |

the future: ACKNOWLEDGMENT

- it saves us of a lot of work to build a representation of This article is a synthesis of principles and prastitteat
the entities of an object-oriented programming language; were born in the midst of a joint research team \egpart of:

- it draws the modeling phase closer to the implemamati the team from the Laboratoire Informatique Signaux et
language (which has to be an OOPL); Systemes de Sophia-Antipolis, France (I3s:

- the programmer is free to add other attributes, refe®en http://ww.i3s.unice.fr) which belongs to Institut
or methods that it may help him describe better thdeino Universitaire de Technologie de Nice et de la Cote d'Azur
entities. department Informatique, under the coordination of professor

Philippe Lahire, and the team from Universitatea
“Politehnica” din Timsoara, Romania, Faculty of Automatics
and Computers, h{tp://ww.cs.utt.ro) under the
coordination of professor loan Jurca.

(1]

CONCLUSIONS 2]
We have to acknowledge a very important principle in
software engineering: in the world of software everything 1
evolves: technologies, methodologies and applications.

[4]
We believe that in order to provide an approach centared o
models, which capture the know-how of a domain, itfis o
primary importance to ensure the independence betwebn bot
the model and the software platform and between the model
and the possible applications. This research report giemm
the idea that model-oriented programming is a better
approach to solve this new challenges.

[5]

[6]
[7]

The first two chapters introduces SmartModels, an
approach centered on models of the framework of Model-
Oriented Programming. They present its principles,chas
entities and main elements when defining a model, whinh a [8]
to match the requirements of an approach centered on
models. A second contribution is the third chapter twhic
address the paradigm of how to practically implement this
approach through the proposal of SmartFactory prototiype (
deals with important implementation issues based on Eclipsel®]
Platform) which is an interpretation and validatiofi o [10]
SmartModels.

[11]
PERSPECTIVES

[12]
[13]

The perspectives are twofold. Firstly, to experiment this
approach for the description of various business moaels a
their applications. We started to investigate the bgsine
models of Romanian companies. The objective is to get
feedbacks in order to improve the expressiveness of
SmartModels — how to ease the job of a meta-progranomer t [14]
describe a model, as well as a better automation (in
SmartFactory prototype) of:

- the generation of the behavior, and

- the semantics transformation of both models and [15]
applications when they evolve toward another model or
application.

Secondly, we want to improve the expressiveness of the[16]
models [17] for the description of derived atoms and
applications, and then to implement them with SmattiFg.c
Through the definition of those models which are dedicate
to enrich the meta-model itself, we aim to improve giality
and the percentage of the code automatically generated so a
software company can gain competitive advantages like:
preserving company investment (future legacy code);
following rapid technology evolution;

reacting faster to technology changes;

improving productivity.

[17]

REFERENCES

Isabelle Attali, Carine Courbis, Pascal Degennexahdre Fau, Didier
Parigot, Claude Pasquier and Claudio Sacerdoti (M2601),
SmartTools: a development environment generatoedam XML
technologies XML Technologies and Software Engineerifigronto,
Canada, ICSE2001 workshop.

Pierre Crescenzo, Philippe Lahire (2002), Usindhlsptecialisation and
generalisation in a programming language: Why amd?) vol. 2426,
Lecture Notes in Computer Scienpages 64-73.

Krysztof Czarnecki and Ulrich W. Eisenecker (Juf®@), Generative
Programming: Methods, Techniques, and Applications,
Addison-Wesley.

Krzysztof Czarnecki and John Vlissides (2003),
Development, Special Track
http://oopsla.acm org/ddd. ht m

William Harrison, Harold Ossher (October 1993), j@obOriented
Programming — A critique of pure object®roceedings ACM
Conference on Object-Oriented Programming Systelnasiguages,
and ApplicationsACM Press, pages 411-428.

Georges Dyson, Darwin Among the Machines, Allen eé-gublisher,
1997, page 9

Gregor Kiczales, John Lamping, Anurag MenhdhekarisCMaeda,
Cristina Lopes, Marc Loingtier, John Irwin (June 979,
Aspect-Oriented Programming, ECOOP'97 — Object-Oriented
Programming 11th European Conferencéyvaskyld, Finland, vol
1241, Lecture Notes in Computer Sciencegages 220-242,
Springer-Verlag.

Philippe Lahire, Didier Parigot, Carine Courbiseif¢ Crescenzo,
EmanuelTundreaAn Attempt to Set the Framework of Model-Oriented
Programming 6th International Conference on Technical Infaios
(CONTI 2004), Timjoara, Romania, May 27-28, 2004, Proceedings
Periodica Politechnica,Transactions on Automatic Control and
Computer Sciencd/ol. 49 (63), 2004, ISSN 1224-600X.

Object Management Group (March 2000), Meta Objecilfy (MOF)
Specification, Version 1.3, Technical Report, OMG.
Object Management Group, Model-Driven
http://www.omg.org/mda

Jens Palsberg, Barry Jay (August 1998), The Essehtke Visitor
Pattern COMPSAC'98, 22nd Annual International Computer \&axfe
and Applications Conferenc¥ienna, Austria.

Clemens Szyperski (1998), Component Software: B&yo®P, ACM
Press and Addison-Wesley.

Emanuel Tundrea (April 30, 2004), Modeling Complex Software
Systems: SmartModels - An Approach For Developiofivare Based
On Models, Research Report as a part of the doctorate program
research "Politehnica"” University of Tingoara, Automatics and
Computer Science Faculty, supervisor prof. dr. iogn Jurca

Emanuel Tundrea, P. Lahire, D. Parigot, C. Chirild, D. PescaruafM
25-26, 2004), SmartModels — An Approach For DevielgiSoftware
Based On Modelslst Romanian - Hungarian Joint Symposium on
Applied Computational Intelligence SACI'2Q0%imisoara, Romania,
ISBN 963-7154-26-4, pages 231-240

Emanuel Tundrea, loan Jurca (May 13-16, 2004), Proficiencies of a
new approach in software engineering: the Modek@gd Program-
ming, 2004 |EEE-TTTC International Conference on Autoorati
Quality & Testing, RoboticAQTR 2004 (THETA 14) Cluj-Napoca,
Romania.

Object Management Group (March 2000), Meta Objecilfy (MOF)
Specification, Version 1.3, Technical Report, OMG.

PierreCrescenzo, PhilippeLahifemanuel Tundrea, SmartModels: la
généricité paramétrée au service des modeles métiRIO 2006,
pages 151-166, 22-24 March 2006, Nimes, France

Doniariven
OOPSLA'03

Architecture,

