
CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

1

Reverse Inheritance Features Applied in Coding Java Mobile Applications

Smaranda-Claudia Chirila
*
 and Monica Ruzsilla

*
 and Ciprian-Bogdan Chirilă

*

* Department of Computer Science, University “Politehnica” of Timişoara,

Faculty of Automation and Computer Science, Vasile Parvan no 2, Timişoara, Romania

Phone: (40-256) 403261, Fax: (40-256) 403216, E-mail: smaranda.chirila@siemensvdo.com,

monomi7@yahoo.com, chirila@cs.utt.ro WWW: http://www.cs.utt.ro/~chirila

Abstract – Reverse inheritance is a kind of inheritance

where the subclasses are created first and the superclass

afterwards. Reverse inheritance can be used as a

composing mechanism for classes in the context of mobile

coding. Some features of reverse inheritance can be used

to achieve systematic coding and restricted reusability.

The foster class, which is the superclass of the reverse

inheritance class relationship, can be used to encapsulate

particularities related to a certain mobile vendor.

Keywords: reverse inheritance, class hierarchy

reorganization, composing mechanisms,

aspects, mobile technology

I. INTRODUCTION

One of the most important factors on which the software

quality depends is reusability. Inheritance is one way to

achieve class reusability in object-oriented systems. A very

close concept to the concept of inheritance is the reverse

relationship, namely reverse inheritance. In this paper we

present several use cases in which reverse inheritance can

be used in writing Java code in the context of mobile

phones programming. In our days anybody can write

applications on their mobile phone. This facility is possible

because the operating system of the mobiles have features

that allow downloading and running Java applications. So

if one has the know how to write an application for his

mobile he can easily transfer it from his computer to his

cell phone.

A. Reverse Inheritance

The basic idea of reverse inheritance class relationship is

the generalization abstraction [8], which enables a set of

individual objects to be thought generically as a single

named object. It is considered to be the most important

mechanism for conceptualizing the real world.

Generalization helps the goal of uniform treatment for

objects in models of the real world. Generalization can be

defined in terms of intension and extension of a class. The

intension of a class is the set of properties that defines it.

The extension of a class we mean all the objects that

include those properties. A class Cgeneral is a single

generalization of a class C if all members of C
extension

 are

members also in or belong to
extension

generalC [6]. A class is a

multiple generalization of a set of other classes if it is a

single generalization of every class in the set. A definition

of reverse inheritance given by Pedersen [6] states that a

class G can be defined as a generalization of A1,A2,...,An

previously defined classes. If the value of n is 1 then we

discuss about single generalization, otherwise about

multiple generalization. Informally, it can be defined as

another model of inheritance where the subclass exists and

the superclass is constructed afterwards.

The source class of reverse inheritance is called

generalizing class [7] or as foster class [5]. Reverse

inheritance should have an appropriate symmetrical

semantics in order to produce the same class hierarchy

structure having the behavior as if was defined by direct

inheritance. So, this class will include all the features

(attributes and methods) that are common to these classes.

 Reverse inheritance is a more natural way for designing

class hierarchies [6]. When modeling classes, it is

considered that it is more natural to design each class with

its own features and only then to notice commonalities and

factor them in a common superclass. This will help

avoiding data and code duplication. In some applications

classes belonging to different contexts need to be reused

together. They can have even common functionalities

which could be factored in one place to avoid duplication.

Some classes in object-oriented systems exhibit a great

quantity of behavior. Maybe in some contexts only a subset

of them needs to be reused. This can be achieved with the

help of reverse inheritance very easy.

B. Aspect Oriented Programming

Aspect oriented programming [4] is a separation of

concerns model based on object-oriented paradigm. It deals

with crosscutting concerns which can not be well separated

by pure object technology. The majority of object-oriented

systems are composed out of crosscutting concerns

dispersed over several modules. By concern it is meant a

concept, a goal in the context of a given domain. For

example a concern in the context of debugging a software

system would be the logging operations. Another

functionality, which can be viewed as a crosscutting

concern, needed in the context of objects, is persistence.

There are several concepts of object-oriented programming

which facilitate the separation of concerns. First, the

abstraction principle implies the creation of separate

classes for each concept from the real world [1]. On the

2

other hand the information hiding principle allows interface

separation from implementation. Inheritance and delegation

are ways of composing behavior. In the context of

inheritance, the behavior of the subclass is composed with

the behavior of the superclass [1].

Each application has a main part where the basic

functionality is captured. This part is supposed to be

written in a language that suits better to the application

domain. Then each cross-cutting aspects are described

using several specialized languages. All these programs are

taken by the weaver and it produces the output code. The

main property of this methodology is aspectual

decomposition. Thus, the aspectually decomposed program

is easier to develop and to maintain.

C. Paper Structure

The paper structure is presented next. In section two the

anatomy of a foster class is described. In the third section

we discuss the way reverse inheritance can improve the

coding process for mobiles at class level. In forth section

we present the possibilities given by reverse inheritance in

coding methods. In section five conclusions are drawn and

future works are stated.

II. FOSTER CLASS MODEL IN A NUTSHELL

The foster class is the equivalent of the superclass in the

context of reverse inheritance. The presented model is

designed for Java programming language [3].

Fig. 1. Foster Class Anatomy

In figure 1 the structure of a foster class is presented.

Following all the components included by the anatomy of a

foster class will be explained. The name presumes a fully

qualified name including the package the class lives in. The

list of modifiers must include all the modifiers that come

with the definition of that class and may have one of the

following values: "foster", "public", "abstract". In the

definition of a foster class, the "foster" modifier is optional

because the reverse inheritance “exherits” keyword is

enough to mark a class as being foster.

From the architectural point of view, the foster class has a

list of superclasses (in Java the list consists in only one

element due to the fact that multiple inheritance is not

supported) and a list of subclasses (or exherited classes,

which come along with the reverse inheritance class

relationship).

The attribute is part of the foster class structure. It can be

of two types: regular and factored. It contains the entities

depicted in the UML diagram of figure 2:

Fig. 2. Attribute Anatomy (factored or non-factored)

Name is the simple name of the attribute, declared type is

the type used in its declaration. The type can be a primitive

one or a user defined one (like the name of class or

interface). The list of modifiers may contain the modifiers

found in the declaration statement and may have values

like: "factored", "public", "protected", "private", "static". In

a consistent modelled foster class, the list of referred

attributes is not empty if the attribute is factored, otherwise

it is. A static attribute can not be also factored, so the

combination of "factored" and "static" is forbidden. The

last component of an attribute is the referred attribute list.

A referred attribute must be declared using the “factored”

keyword. The list is empty in the case of a regular, non-

factored attribute. Otherwise, it contains all the names of

the referred attributes along with the names of the classes

they live in. The names of the classes that belong to this list

must belong also in the list of exherited classes of the foster

class, otherwise the foster class is inconsistent. The

references from the list of referred attributes, may be

omitted in case they have the same name and the same

declaration type. They are considerred to be implicit.

The method is the most complex part in the foster class

structure. It can be of two types like attributes: regular and

factored. It contains the following elements:

3

Fig. 3. Method Anatomy (factored or non-factored)

The list of parameters is a common entity which belongs to

the structure of the method. The parameter contains

information like: its name and its declaration type. The

same reason of referred classes independent development,

in the context of attributes, can be mentioned also in the

context of referred methods. A factored method is useful

for renaming or adaptation purposes. On the other hand, it

has the role of factoring the features from all exherited

classes. The considered methods in this sample have the

same semantics but they have different names. If a referred

class has a method having the same name with a factored

one from the foster class, the corresponding referred

method may be omitted from the list. We consider that

omitting a method reference in a foster class, implicitly a

method with the same signature must exist in the exherited

class. In the case of factoring methods having parameters,

we have to establish a link between the formal parameters

of the foster class and the formal parameter of the referred

classes. The model of the foster class has a set of rules that

must be checked before declaring a certain foster class

consistent. The foster class model is the blue print for

creating foster classes.

III. COMPOSING CLASSES

In coding mobile phone applications, there are common

operations which imply the same code in several similar

projects. For example in gaming applications, such

operations are: the loading of a frame image by pieces, the

loading or playing sounds. In this kind of applications

classes are not written in the real sense of object-oriented

programming paradigm. Practically, due to memory

restrictions, classes are used to group altogether sets of

methods and constants which contain the logic of the

application.

Sometimes, in an application, a part of a class could be

used to create future new classes. In this use case it is

proposed to facilitate better class design by decomposing

existing classes and creating new ones by recomposing

with the decomposed parts.

For example taking three classes: class A with attribute

att1, method meth1(), class B with attribute att2, method

meth2() and class C with attribute att3 and method meth3().

In such a hierarchy features from classes A and B are

combined in class C, the hierarchy being equivalent with a

class which includes all features from all the three classes.

This way we can create new classes with exactly the

features we want from already existing classes. In figure 4

this example is presented.

In this case the semantics of reverse inheritance includes

the semantics of multiple inheritance between classes

which is not present in Java [2].

Fig. 4. Composing Classes

IV. COMPOSING METHODS

There are software companies that are specialized in

designing mobile applications so there are invented special

techniques to develop them. These techniques were

required because in order to program applications for a

wide range of phones (from a wide range of vendors)

which have different particularities.

For example, the mobile phone Nokia S40 class allows

only 5 songs to be pre-fetched because of the memory

restrictions while Nokia S60 class has no such limitations.

In this context some specific instructions are needed in

order to manage the memory. So, it is necessary to

combine vendor specific code with general use code for

several types of mobile phones. An immediate solution

implies the use of compiler directives to separate the code

specific to each mobile vendor from the general code of the

application. This technique makes the code very hard to

understand, maintain and reuse.

Reverse inheritance can help in this matter. Special classes

containing vendor specific code organized in methods can

be combined by reverse inheritance with the core of the

application. For example a snippet of code using compiler

directives used to mix implementations for more vendor

types is the following:

class Application {

m() {

#ifdef VENDOR:Nokia

InstructionSet1;

#endif

 InstructionSet2;

 #ifdef VENDOR:Sharp

 InstructionSet3;

 #endif

}}

At compile time if we choose the vendor Nokia method m()

will be composed by InstructionSet1 and InstructionSet2,

otherwise when choosing Sharp it will contain

InstructionSet2 and InstructionSet3. This is a way to

4

manage multiple projects starting from the same source

code.

If we would like to reuse only the code dedicated to Nokia

or Sharp in this way, it is impossible. But if we would have

two classes Nokia and Sharp, having a method m()

including InstructionSet1 in class Nokia and a method m()

including InstructionSet3 in class Sharp, this would be very

much possible. Starting from the two vendor specific

classes Nokia and Sharp, and using reverse inheritance we

show that we can compose those classes to obtain the same

code like in the snippet having preprocessor directives.

The reverse inheritance solution implies the following

design: the common code InstructionSet2 has to be factored

in the m() method of class Application, each specific

vendor code should be encapsulated in the m() method of

the Nokia and Sharp classes. The specific vendor m()

method should call the common code from the subclass

(see figure 5). This is facilitated by the inferior() call

feature of reverse inheritance. The inferior() call is the

opposite of the super() call in the context of ordinary

inheritance.

Fig. 5. Composing Methods

V. CONCLUSIONS AND FUTURE WORKS

We can conclude that each foster class will contain all the

functionalities required by the corresponding vendor, thus

foster classes represent a specific concern, like in AOP. So

using foster classes, the code will be more readable and

reusable.

There are also some limitations of the reverse inheritance

based solution in coding mobile software. A first restriction

is given in the following example:
m()

{

InstructionSet1

#ifdef VENDOR:Nokia

…

#endif

InstructionSet2

#ifdef VENDOR:Sharp

…

#endif

InstructionSet3

}

The main problem is that InstructionSet1 comes before the

specific part for Nokia and InstructionSet3 comes after the

specific part for Sharp vendor. In this case where the

vendor code is enclosed before and after with application

code, reverse inheritance can not be applied. The inferior()

mechanism can not be used to provide the desired behavior.

One possible solution is to split method m() so the

application code to be able to be invoked by the inferior()

mechanism.

Another problem arises in the situation of code containing

nested compilation directives, like in the following

example:

#ifdef …

 …

 #ifdef …

 …

 #endif

 …

#endif

In this case reverse inheritance based solutions are

possible, but the implied semantics of the class relationship

it would be too complex and hard to use in practice.

ACKNOWLEDGMENTS

This paper is a natural consequence of the cooperation

between Politehnica University of Timişoara and

University of Nice, France. We would like to thank M.C.

Philippe Lahire and M.C. Pierre Crescenzo for the

opportunity of developing this collaboration.

REFERENCES

[1] M. Aksit. Separation and composition of concerns in the object

oriented model. ACM Comput. Surv., 28(4es):148, 1996.

[2] K. Arnold and J. Gosling. The Java Programming Language. Sun

Microsystems, 3rd edition, USA, 2000.
[3] Ciprian-Bogdan Chirila, Dan Pescaru, Emanuel Tundrea. Foster Class

Model, SACI 2005 2nd Romanian-Hungarian Joint Symposium on

Applied Computational Intelligence, ISBN 963-7154-39-6, pp. 265-

272, Timisoara, Romania, May 12-14, 2005.

[4] Marc Loingtier, and John Irwin. Aspect-oriented programming. In

Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume 1241, pages

220-242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[5] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The
potential for reverse type inheritance in Eiffel. In Technology of

Object-Oriented Languages and Systems (TOOLS'94), 1994

[6] C. H. Pedersen. Extending ordinary inheritance schemes to include
generalization. In Conference proceedings on Object-oriented

programming systems, languages and applications, pages 407–417.

ACM Press, 1989.
[7] Markku Sakkinen. Exheritance - Class generalization revived. In

Proceedings of the Inheritance Workshop at ECOOP, Malaga, Spain,

June 2002.
[8] John Miles Smith and Diane C.P. Smith. Database Abstractions:

Aggregation and Generalization. In ACM Transactions on Database

Systems, volume 2, pages 105-133, June 1977.

