
CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

71

SmartFactory – A Prototype for Model Oriented Software Engineering

Based on Eclipse Platform

E. Ţundrea*, P. Lahire**, D. Pescaru*, C. B. Chirilă*

* “Politehnica” University of Timişoara

Department of Computer Science, V. Pârvan no 2, Timişoara, România

emanuel@emanuel.ro, dan@cs.utt.ro, chirila@cs.utt.ro

** Laboratoire I3S (CNRS-UNS)

2000 Route des Lucioles, BP121, Sophia-Antipolis, France

Philippe.Lahire@unice.fr

Abstract - Emergent behavior is that which cannot be

predicted through analysis at any level simpler than that

of the system as a whole. Emergent behavior, by

definition, is what is left after everything else has been

explained. Also the complexity of a system is not usually

found inside components or at their interfaces, but errors

are more likely to be found in the interactions among

software components. This is one of the main concerns of

the Object-Oriented Programming (OOP) principles

which did not cure important issues faced by software

companies these days on developing complex software for

reuse and protecting the more and more evolving

applications against technological obsolescence.

The Model-Driven Architecture (MDA) project from

OMG promotes the use of meta-modeling in order to drive

the system’s design and implementation. In this context

the paper presents:

- an approach: it reviews the SmartModels approach

briefly introducing its principles, basic entities and main

elements when defining a business-model;

- a prototype: SmartFactory which is based on Eclipse

platform and its role is to validate the new approach. It

addresses the paradigm of how to practically implement

MDA principles and rules for software engineering.

Therefore, it deals with important implementation issues

based on Eclipse Platform.

Keywords software, model, prototype, factory,

generative programming

I. SMARTMODELS – AN APPROACH BASED ON MODELS

SmartModels aims to address in a practical way the MDE

[6] principles. It is an approach which integrates these

concepts and proposes a way of developing domain-

specific software based on models as a more flexible option

to the MOF [6] plus UML [6] aproaches. It gains know-

how from a previous research also on meta-modeling [5]

and together with it we developed a prototype called

SmartFactory in order to validate and get feed-backs from

possible users.

MDA approach, as OMG[6] established it, has the

advantages of stability and platform-independence through

defining business functionality and behavior in a base PIM

technology-independent way. This means that an approach

based on models has many advantages primarily form the

design point of view, but also from the future

implementation (application coding, management and

maintenance). There are many proven examples on

developing standards like SQL, GUI builders, HTML or

regular expressions.

One of the main problem the companies face today is that

even if we have a perfect model the programmers have to

make a lot of compromises when trying to implement the

model using a specific programming language and

mapping to a platform.

SmartModels tries to reduce this gap between the design

and implementation and to assure the independence

between the model, future family of applications and the

technology (which evolves so fast). Through its small

kernel and a set of basic entities, it provides a framework to

describe models and a software factory to generate code

automatically as much as possible. This means that the

applications may be re-generated at any time if the model

or the technology evolves and also the model instances can

drive the behavior of the application at code generation

time or at run-time. Therefore, SmartModels applies MDA

through reusing the know-how of promissing platforms for

building integrated development environments (IDEs) like

SmartTools [1] or Eclipse.

Figure 1. Elements of a business-model in SmartModels

The main objective of SmartModels is on the one hand, to

clearly identify, thanks to a metalevel, the semantics of

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

el

Atom

Generic

Atom

One Derived

Atom

One Derived

Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-

instance-of

R
eifica

tio
n

-L
ev

e
l

One Instance

of

Business-Model

In
sta

n
ce-L

ev
e
l

One Instance

of

Business-Model

One Instance

of

Business-Model

…

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

elcontains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

contains

contains

is-a

Parameters

&

Characteristics

Actions

&

Aspects

Concept

Generic

Concept

M
eta

-L
ev

el

Atom

Generic

Atom

One Derived

Atom

One Derived

Atom

One Atom

is-a
is-a

is-derived is-derived

…

…

is-an-instance-of

is-an-

instance-of

R
eifica

tio
n

-L
ev

e
l

One Instance

of

Business-Model

In
sta

n
ce-L

ev
e
l

One Instance

of

Business-Model

One Instance

of

Business-Model

…

CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

72

concepts used for the modeling of a given domain, and on

the other hand, thanks to approaches by separation of

concerns and generative programming [2], to equip, in a

modular way, the applications related to this domain ([9]).

Next sections will present each entity of SmartModels with

respect to the level it manifests. Figure 1 distinguishes

between the different levels of the architecture of our meta-

model: the main elements proposed by SmartModels in

order to define business models. The second chapter

presents the process of deploying this models using our

SmartFactory prototype.

A. SmartModels Meta-Level

First of all, the meta-level is the top level of SmartModels

business-model reification and it handles the meta-

information through concepts. A concept participates to the

definition and the management of the meta-information of

a business-model. A separation between the meta-level and

the reification-level is important in order to clearly identify

the relevant common and variable concerns of a family of

entities which compound a domain and even identify inter-

related concerns of a set of closely-related domains. The

meta-level contains the model’s entities information

(abstract) and rules which engineer their behavior and set

the foundation for describing their infrastructure

requirements.

The definition of the meta-information of a model is part of

the project engineering of the entities of a business domain.

Therefore it encapsulates the semantics of entities and their

treatments. It can be related to one or a number of atoms

and drives their behavior. Just as a forward-looking we

mention that in our approach an atom is the structure which

encapsulates the description of an entity.

The main entity which points out the clear separation

between the semantics (meta-level) and their reification

(reification-level) of the SmartModels model entities is the

Concept. The choice to encapsulate the meta-information at

the meta-level has a couple of very important advantages:

- the support for reuse of the semantics in other (closely

related) models;

- the maintenance of the semantics (updating and

redefining of the semantics) deals only with the meta-level

(concepts);

- the model transformation which is one of the goals of our

approach.

The semantics of a business-model stored in a concept are

reified through a set of hypergeneric parameters and

characteristics [5] (which form the meta-information) and a

set of actions (which perform treatments on the entities

according to their meta-information). The identification of

the parameters and characteristics and their possible values

is the job of the meta-programmer which addresses the

know-how of the business-domain. Based on the set of

parameters corresponding to a concept we can make a

differentiation between the families of entities of a domain

and based on their values we can distinguish the entities

within a family.

The hypergeneric parameters customize the behavior of the

entities (it refers to generic atoms – see section B., and not

their instances) of a business-model. Their role is to capture

and express the properties which compound the definition

of the generic entities. A parameter expresses a basic type

property, e.g. a boolean or an integer value, an

enumeration, a tuple type or a collection of those values. A

characteristic expresses a property whose value is defined

by atom(s) which are defined within the model

(enumeration, tuple or collection). The programmer has to

set those values to describe the behavior of a generic entity.

For example, a business-model built to encapsulate the

structures (entities) and semantics of chemical technology

product-line may present parameters like:

- timeBeforeTechnicalInspection which expresses the

time for next technical check up or

- temperature which specifies the optimum temperature

for a given recipe,

and characteristics like:

- attachedFilters which indicates the list of required

filters or

- ingredients which stipulates the list of substances

needed in the chemical process where both the filters and

ingredients are reified in the model through Atoms.

Actions are “first-class” entities described by concepts in

order to dynamically manage the behavior of atoms

according to their meta-information. The body of an action

encapsulates the execution which can be performed by that

action. This execution usually takes into account the set of

parameters and characteristics of the generic atom to which

the action is attached and optional can present a set of

aspects [4], invariants, preconditions and postconditions.

We arrived at the line of demarcation between semantics

(the meta-level) and data of a business-model (the

reification-level). As we anticipated in the previous section,

an atom is the reification of entities of a business-model.

Identifying the atoms of a domain is an important task of a

programmer.

B. SmartModels Reification-Level

The entity of a business-domain is encapsulated in a model

hierarchy through atom – a structure which holds the entity

data and which is similar to the MOF [6] “class” notion and

available in most of the object-oriented programming

languages (OOPL). It can be used to factorize the data of a

domain and has instances within the applications which

rely on the given business-model.

In this context it is important to learn about the

SmartModels distinction between basic and generic atoms.

An atom is generic if its meta-information presents

parameters and/or characteristics. If an atom does not need

CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

73

Built-In

Built-In.edit

MetaDataEditor

MetaDataEditor.edit

MetaDataEditor.editor

Transformer JetGenerator

org.eclipse.emf.ecore

SmartFactory

Built-In

Built-In.edit

MetaDataEditor

MetaDataEditor.edit

MetaDataEditor.editor

Transformer JetGenerator

org.eclipse.emf.ecore

SmartFactory

additional semantics besides its data-model, we call it basic

and it will have direct instances within applications.

Now is the time to introduce also the notion of derived

atom (see figure 1) which is an instance of a generic atom

obtained through relevant combination of values associated

with the sets of characteristics and parameters which

participate to the definition of its generic atom.

If we go back to the previous example of a chemical

technology product-line we can identify:

- basic atoms: filters, ingredients, fuels

- generic atoms: a kiln with hyper-generic parameters

and characteristics like those presented at section I.A, with

possible action like checkLastTechnicalInspection which

verifies the corresponding parameter and can send an

alarm.

- derived atoms: examples of product-lines with kilns

having different technical specifications - like what type of

fuel uses or which filters have to be connected to: i.e., a

white cement kiln derived atom is a kiln atom with the

following meta-information:

- temperature (fast heated up): 800
0
C.;

- fuleType (minimum): an enumaration of tuple

type [8] of COAL (120Kg/h), COKE (35 Kg/h), and

TIRE (7.7 Kg/h);

- attachedFilters (mandatory): O2 and NH3.

Actions will check the conformance of the derived atoms’

parameter values during the industrial processes

implementing the constraints (fast heat up, minimum or

mandatory).

C. SmartModels Instance-Level

At this point we can see the benefits of the SmartModels

approach. A possible application to the example mentioned

above can be a software system which controls and adjusts

the performance of a robot which coordinates a conveyor

of a product-line like that.

Briefly, building an application consists in writing a set of

facets – a set of traversals of the graph of atoms

corresponding to the business-model. A facet relies on the

Visitor pattern [7] and represents a thread of the execution

of the application defined by functionality provided by the

behavior of the atoms that compound each part of the visit.

Certainly, the sustenance for the behavior of the atoms is

given by the meta-level (its semantics) and reification-level

(data modeled in the atom or derived-atom).

Therefore, a facet integrates the model with the source-

code of an application in a very oriented environment: it

can have access to the meta-information (this proves the

openness of our platform), but it is not always neccessary

(this reduces the complexity: a facet just implements a

scenario and the handling of the meta-information is the

job of the actions in concepts).

This chapter summed up the design of our approach. Next

chapter presents SmartFactory – a practical implementation

of SmartModels principles.

II. SMARTFACTORY – THE PROTOTYPE

The SmartFactory prototype is built in the framework of

Eclipse Platform and it is the first step of the research

conducted in the Domain-Driven Development framework

[3]. It is a development environment generator that

provides a SmartModels entities’ editor, tools and features

to describe semantic information. It was built on Java and

XML technologies as a research project in the I3S

laboratory from Sophia-Antipolis, France. Therefore it

offers support to design new software development

environments for programming languages as well as

domain specific languages defined with XML.

Eclipse Platform, which is the support of SmartFactory’s

development, is designed for building integrated

development environments (IDEs). It also makes use of a

couple of Eclipse Tools Projects such as: Eclipse Modeling

Framework (EMF) - an open source code generation tool,

capable of creating complex editors from abstract business

models (OMG’s PIM); Graphical Editor Framework (GEF)

- designed to allow editing of user data, generally referred

to as the model, using graphical rather than textual format;

a set of code definition templates defined in a template

language called Java Emitter Templates (JET); Eclipse

Rich Client Platform (RCP) – a new proficient way to build

commercial quality Java programs to be used in non-

Eclipse IDE, and others. These tools were very helpful to

add value such as including a GUI for writing a model,

automated code generation and automated creation of rich

client applications.

Figure 2. SmartFactory Plug-ins

There are seven plug-in Java projects which work together

to implement the SmartModels MOP’s principles and rules.

Table 1 presents each one of them with the role they have

in the approach, the Eclipse features that they use and the

design choices we have made in order to build them.

Figure 2 presents the SmartFactory plug-ins architecture

which highlights the links and the dependencies between

them. From the very beginning it is important to observe

CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

74

that all the plug-ins make use of EMF Ecore

(org.eclipse.emf. ecore) tool plug-in:

- the Built-In and Meta-Data Editor use EMF ecore both

for their design and implementation;

- the Code-Generator uses EMF.CodeGen for

automation of the code-generation process for the

SmartFactory transformed model;

- the Transformer deals with EMF ecore model

transformation. From the design point of view it did

not really need to be described using ecore, but is still

used for reasons of unified development of the

prototype and for conformance with the way EMF

generated code for the other plug-ins.

TABLE 1. Description of SmartFactory Plug-Ins

Plug-in Name Description

Built-In - it is the kernel of SmartFactory prototype;
- it implements the Meta-Object Protocol approach;

- it reifies the SmartModels entities.

Built-In.edit - it contains EMF content provider classes to describe

entities using the editor.

MetaDataEditor - it represents the SmartFactory meta-data editor;

- it customizes the EMF ecore entities in order to

support the SmartModels entities specific properties;
- it implements the SmartModels methodology to

describe a model.

MetaDataEditor
. edit

- it contains EMF content provider classes to describe
the meta-data editor specific entities for the editor.

MetaDataEditor

. editor

- it is the GUI of the meta-data editor;

- it provides a wizard and EMF panes to edit a

SmartModels model;
- it is an Eclipse RCP application.

Transformer - it performs a model transformation from the meta-

data editor format to an EMF ecore format so we can
reuse the EMF.CodeGen to leverage the code-

generation process;

- it uses annotations containing Java pure code to add
the SmartModels approach value to EMF entities.

JetGenerator - it updates the EMF.CodeGen to take into account,

when generating code, the SmartModels specific

annotations attached by the Transformer to the EMF
ecore model.

A. The Built-In Plug-In

The Built-In plug-in represents the starting point of the

implementation of SmartFactory. It is the reification of all

the entities of SmartModels and it can be distributed as a

library jar file called “SmartModels_BuiltIn.jar”. In order

to add value through our Meta-Object Protocol (MOP)

approach a part of the code of this plug-in adapts EMF

Ecore model.

MOP information is implemented as a Java static code and

it automatically and recursivelly updates the SmartModels

database of MOPs. Therefore, the decision was to forbid

the mop package generated – MopFactory, to create

instances of SmartModels_MOP or database objects.. By

default, EMF generates a factory for each package from the

business-model ecore file. In our approach the creation of

mop objects is exclusively the job of the database and it

provides a full set of methods in order that it can be queried

by the meta-programmer. Other factories are also

customized to support singleton classes (i.e. concepts).

It is also important to underline a major advantage of this

database due to the direct access of each entity which has

MOP information to its corresponding concept. This is

implemented through a method which is redefined in each

class in order to return the correct sub-type of concept

thanks to the new feature in J2SE 5.0 that allows covariant

return types. In this way, for each entity you can know

exactly who is the corresponding concept and manipulate

the semantic information (query the parameters/

characteristics or execute actions).

As a conclusion, the SmartModels_Built-In plug-in

encapsulates the reification of the SmartModels entities and

it produces a set of Java classes for our core model adapted

in order to conform to the SmartModels principles and

rules. Now we need to provide for our approach an editor

in order to be able to ease the description of the business-

models and then the creation of their applications.

B. The Meta-Data Editor Plug-In

The heart of the SmartModels_MetaDataEditor plug-in is

again an EMF ecore model file. Using just EMF framework

(its UML diagram editor) we do not have all the tools to

describe all the particularities of SmartModels’ entities so

we needed to create our own editor. However, in order to

reuse this flexible platform we decided to enrich the sample

EMF ecore editor with support for SmartModels entities.

It is also important to see the SmartModels methodology to

describe a business model. This is a five-step process:

1. to identify the basic atoms of the model,

2. to identify the generic atoms,

3. to define the criteria of genericity (the hypergeneric

parameters) - typically this is a step that must be performed

by an expert of the domain. It represents a part of the

knowledge of the business model;

4. to specify the actions attached to generic and non-

generic atoms,

5. to specify the instances of the generic atoms (derived

atoms).

The three last steps deals with the specification of the

metalevel (the concepts).

As a result we may conclude that there are three main

entities that we have to define in a SmartFactory model:

- to elaborate the list of Atoms;

- for those who are generic to add their semantic

information (the hypergeneric parameters, characteristics

and actions) in the list of Concepts;

- to compose the list of the DerivedAtoms setting their

semantic values.

Therefore we created the SmartModelsEditor which is the

root of the editor and acts as a database holder of

SmartModels entity reifications. It is the container of this

three lists and has only one constraint: the list of Atoms can

not be empty in order to have a valid model. The root

CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

75

Figure 3. The SmartModels Transformer

implements the org.eclipse.emf.ecore.ENamedElement

interface and this means it inherits all the properties of an

EMF EObject and we also can add annotations and the

name of the model.

For each of the three main entities of our editor we created

a correspondent model object and we named them after the

original entities adding the suffix “Editor”. They all have

org.eclipse.emf.ecore.EClass as a super-type and this

choice has many advantages:

- we can benefit from the EMF (UML oriented)

framework which is currently under a rapid development

and it is more than likely that we will have more rich

models in the future;

- it saves us of a lot of work to build a representation of

the entities of an object-oriented programming language;

- it draws the modeling phase closer to the

implementation language (which has to be an OOPL);

- the programmer is free to add other attributes,

references or methods that it may help him describe better

the model entities (using other Eclipse platform features).

By default, the EMF generated editor provides extension

points for all non-empty packages in the ecore model. In

SmartFactory there is no meaning to describe some entities

independent from a model. That is why the editor database

– SmartModelsEditor, is the only valid container for a

SmartModels model and all the other extension points are

suppressed.

C. The Transformer Plug-In

One of the main principles of SmartFactory software

factory is that it aims to maximize the use of the tools

provided by Eclipse framework. The Meta-Data Editor is

generated by the EMF CodeGen.Editor plug-in and we also

want to reuse this code-generator for our business-model.

In this way we can regenerate and reuse all the evolving

features that EMF will provide and we can drive the

evolution of SmartFactory at least at the speed of Eclipse

Tools development.

The problem is that the editor saves the resources in an

XML encoding stream, but not ecore format because our

entities add more information to the standard ecore entities.

Therefore, in order to use the EMF CodeGen for generating

code for SmartModels models they need to be transformed

according to the ecore format.

This role is accomplished by the SmartModels Transformer

Plug-In (from now on we will call it “the Transformer”)

which can be found as a runtime library

“SmartModels_Transformer_PlugIn.jar” in the

SmartFactory framework. This plug-in makes a

contribution to the menu bar which has the same name as

the plug-in and adds the action (called Transform) that will

do the job. Thus, the transformer performs an adaptation on

our editor output to construct a new customized ecore file

representing the target business-model. Then the last step

in order to generate a pure Java code, but which reflects the

SmartModels approach, is to use the JetGenerator plug-in

also mentioned in Table 1 and described below.

The architecture of the meta-model of the Transformer has

two parts:

- a hierarchy of classes which help the transformer to

handle the different types of model serialization;

- a set of six components each one of them dealing with

a part of the transformation (Atom, Concept, Derived-

Atom, Characteristic, Hyper-Generic Parameters, Action).

It does not matter the order of launching them, but it it

important to run all of them on a model in order to have a

valid transformation.

That is why in the next version of the SmartFactory

prototype we plan to better customize the use of the

Transformer and thus we will add on top of it a “manager”

which will organize the component action (now this role is

taken by the plug-in default action).

The last, but very important mention is the way the

Transformer deals with SmartModels features that the EMF

tools do not provide (we already assumed that the ouput

transformed model has to be an ecore model). The most

significant limitation SmartFactory has to deal with when

using EMF tools and Java programming language is that

there is no support for the meta-level (the semantic

information). SmartFactory makes the compromise to solve

this by:

- using the Transformer plug-in to add

org.eclipse.emf.ecore.EAnnotation in order to

encapsulate the semantic information. In actual fact these

comments encapsulate Java pure code generated by the

Transformer (in this way we are prepared to change this

approach for the day when EMF and Java will provide

support for meta-level);

- using the code-generator plug-in to adapt the

EMF.CodeGen in order to take into account the annotations

made by the transformer while generating the code.

In order to run the Transformer a

user has to specify two sources:

the Built-In ecore model file (the

kernel of SmartFactory), the

Meta-Data Editor model file (the

output of the editor) and one

target: the ecore resource where

the model is stored after

transformation.

To ease the utilization of the

Transformer (if a user needs to

run it as a standalone plug-in) we

designed a wizard similar to the

EMF editor (see

figure 3) where

he specifies this

three files before running the Transformer.

CONTI’2006
The 7th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8 - 9 June 2006, TIMISOARA, ROMANIA

76

D. The Code-Generator Plug-In

Afterwards, the code-generation process follows the same

rules like for a standard EMF ecore file and gain all the

advantages to reuse from such an evolutive platform like

Eclipse.

As earlier mentioned, the code-generator plug-in has the

role of adding value to the EMF ecore code-generator in

order to take into account the SmartModels specific

annotations attached by the Transformer. It does not

represent a phase in developing with SmartFactory (like

writing a business-model with the Meta-Data Editor or

transforming it), but it reuses the EMF.CodeGen to support

particularities of our approach. In order to clearly separate

the entry points where SmartFactory updated the JET

templates, they are organized as distinct emitter parts, each

one of them in distinct files which can be included in the

EMF templates when needed. This brings the advantage of

clearly identifying the parts to adapt when the platform

evolves.

We hope you will understand more at the live presentation

of the prototype which will accompany this article in the

conference.

CONCLUSIONS AND PERSPECTIVES

We have to acknowledge a very important principle in

software engineering: in the world of software everything

evolves: technologies, methodologies and applications.

We believe that in order to provide an approach centered

on models, which capture the know-how of a domain, it is

of primary importance to ensure the independence between

both the model and the software platform and between the

model and the possible applications. This article promotes

the idea that model-oriented programming is a better

approach to solve this new challenges.

These ideas have been around for a couple of years, but

today there is no major vendor which gets behind OMG’s

MDA initiave and make it happen in software

development. Our approach together with the prototype

want to form a possible and feasible way to apply this

principles. It can happen in JetBrains or Eclipse and based

on this last experience we propose a way to address meta-

modeling issues extending their know-how.

The first chapter introduces SmartModels, an approach

centered on models of the framework of Model-Oriented

Programming. It presents its principles, basic entities and

main elements when defining a model, which aim to match

the requirements of an approach centered on models. A

second contribution is the second chapter which addresses

the paradigm of how to practically implement this approach

through the proposal of SmartFactory prototype (it deals

with important implementation issues based on Eclipse

Platform) which is an interpretation and validation of

SmartModels.

The perspectives are twofold. Firstly, to experiment this

approach for the description of various business models

and their applications. We started to investigate the

business models of Romanian companies. The objective is

to get feedbacks in order to improve the expressiveness of

SmartModels – how to ease the job of a meta-programmer

to describe a model, as well as a better automation (in

SmartFactory prototype) of:

- the generation of the behavior, and

- the semantics transformation of both models and

applications when they evolve toward another model or

application.

Secondly, we want to improve the expressiveness of the

models for the description of derived atoms and

applications, and then to implement them with

SmartFactory. Through the definition of those models

which are dedicated to enrich the meta-model itself, we aim

to improve the quality and the percentage of the code

automatically generated so a software company can gain

competitive advantages like:

- preserving company investment (future legacy code);

- following rapid technology evolution;

- reacting faster to technology changes;

- improving productivity.

REFERENCES

[1] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, C. Pasquier and

C. Sacerdoti (May 2001), SmartTools: a development environment

generator based on XML technologies, XML Technologies and
Software Engineering, Toronto, Canada, ICSE'2001 workshop.

[2] K. Czarnecki, U. Eisenecker, June 2000, Generative Programming:

Methods, Techniques and Applications, AddisonWesley.
[3] K. Czarnecki, J. Vlissides (2003), DomainDriven Development,

Special Track OOPSLA'03, oopsla.acm.org/ddd.htm

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, M.

Loingtier, J. Irwin (June 1997), AspectOriented Programming,

ECOOP'97 – ObjectOriented Programming 11th European

Conference, Jyväskylä, Finland, vol 1241, Lecture Notes in

Computer Science, pages 220-242, SpringerVerlag.
[5] P. Lahire, D. Parigot, C. Courbis, P. Crescenzo, E. Ţundrea, An

Attempt to Set the Framework of Model-Oriented Programming, 6th

International Conference on Technical Informatics (CONTI 2004),
Timişoara, România, May 27-28, 2004, Proceedings Periodica

Politechnica, Transactions on Automatic Control and Computer

Science, Vol. 49 (63), 2004, ISSN 1224-600X.
[6] Object Management Group, ModelDriven Architecture (MDA) and

Meta Object Facility (MOF) Specification, www.omg.org/mda

[7] J. Palsberg, B. Jay (August 1998), The Essence of the Visitor
Pattern, COMPSAC'98, 22nd Annual International Computer

Software and Applications Conference, Vienna, Austria.

[8] E. Ţundrea, P. Lahire, D. Parigot, C. Chirilã, D. Pescaru, (May 25-
26, 2004), SmartModels – An Approach For Developing Software

Based On Models, 1st Romanian - Hungarian Joint Symposium on

Applied Computational Intelligence SACI'2004, Timişoara,
Romania, ISBN 963-7154-26-4, pages 231-240

[9] P. Crescenzo, P. Lahire, E. Ţundrea, SmartModels: la généricité

paramétrée au service des modèles métiers, LMO 2006, pages 151-
166, 22-24 March 2006, Nîmes, France

