
The Model of the Generic Mechanism for the Extension of
Object-Oriented Programming Languages

Reverse Inheritance for Eiffel

PhD Research Report #2

Author: asist. univ. ing. Ciprian-Bogdan Chirilă

PhD Supervisor: prof. dr. ing. Ioan Jurca
PhD Co-supervisor: prof. Philippe Lahire (University of Nice, France)

Faculty of Automation and Computer Science

University Politehnica of Timişoara

January 28, 2008

Contents

1 Introduction to the Approach 2
1.1 Motivative Reverse Inheritance Use Cases . 2

1.1.1 Designing in a More Natural Way . 2
1.1.2 Capturing Common Functionalities . 2
1.1.3 Inserting a Class Into an Existing Hierarchy 3
1.1.4 Extending a Class Hierarchy . 3
1.1.5 Reusing Partial Behavior of a Class . 4
1.1.6 Creating a New Type . 5
1.1.7 Decomposing and Recomposing Classes . 5

1.2 Outline of the Approach . 6

2 Creating a Class by Reverse Inheritance 7
2.1 Reverse Inheritance: Definition and Notations . 7

2.1.1 Definitions . 7
2.1.2 Notations . 8

2.2 Single/Multiple Reverse Inheritance . 11
2.2.1 Single Reverse Inheritance . 12
2.2.2 Multiple Reverse Inheritance . 14
2.2.3 Several Independent Reverse Inheritance Relationships 14

2.3 Feature Factorization . 15
2.3.1 Implicit Rules Regarding Feature Exheritance 15

2.3.1.1 Implicit Rules Regarding Attribute Exheritance 15
2.3.1.2 Implicit Rules Regarding Method Exheritance 16

2.3.2 Allowing Implicit and Explicit Common Feature Selection 18
2.3.2.1 Implicit All Common Feature Selection 18
2.3.2.2 Explicit Common Feature Selection 20
2.3.2.3 Implicit Common Feature Selection 20
2.3.2.4 No Feature Selection . 21

2.3.3 Influence of the Nature of Common Features 21
2.3.3.1 Factoring Features Represented by Attributes 21
2.3.3.2 Factoring Features Represented by Attributes and Methods 23
2.3.3.3 Factoring Features Represented by Effective and Deferred Methods 23
2.3.3.4 Factoring Implementation . 24

2.4 Type Conformance . 26
2.4.1 Conforming Reverse Inheritance . 26
2.4.2 Non-conforming Reverse Inheritance . 27
2.4.3 Genericity and the Foster Class . 28
2.4.4 Argument, Result Type and the Foster Class 29
2.4.5 Expanded vs. Non-expanded Foster Classes 29

2.5 Type Exheritance . 30
2.5.1 Exheriting Class Types . 30

2.5.1.1 Exheriting Class Types Referring Class Declarations 30

1

2.5.1.2 Exheriting Class Types Referring Formal Generics 32
2.5.1.3 Exheriting Class Types Referring Class Declarations and Having

Actual Generics . 32
2.5.2 Exheriting Expanded and Separate Types 32
2.5.3 Exheriting Like Types . 33

2.5.3.1 Exheriting Features Anchored to ”current” 33
2.5.3.2 Exheriting Features Anchored to Other Features 33
2.5.3.3 Exheriting Features Having Arguments Anchored to Other Argu-

ments . 35
2.5.3.4 Exheriting Features Having Arguments Anchored to Features . . . 35

2.5.4 Exheriting Bit Types . 36
2.5.5 Exheriting Various Types . 37

2.6 Behavior in the New Created Class . 37
2.7 Use of Exheritance Clauses for Factoring Features 39
2.8 Summary . 40

3 Adaptation of Exherited Features 42
3.1 Adaptation for Ordinary Inheritance Applied to Reverse Inheritance 42

3.1.1 Feature Redefinition . 42
3.1.2 Feature Undefinition . 43
3.1.3 Feature Renaming . 44
3.1.4 Conclusions . 44

3.2 Special Signature and Value Adaptations . 44
3.2.1 Scale Adaptation . 45
3.2.2 Parameter Order Adaptation . 48
3.2.3 Parameter Number Adaptation . 50

3.3 Classic Signature Adaptations . 52
3.3.1 Parameter Type Adaptation . 52
3.3.2 Return Type Adaptation . 55
3.3.3 Attribute Type Adaptation . 58

3.4 Generic Type Adaptation . 60
3.4.1 Unconstrained Genericity . 61
3.4.2 Constrained Genericity . 64

3.5 Redefining Preconditions and Postconditions . 65
3.5.1 Eliminating Non-Exherited Variables . 66
3.5.2 Combined Precondition and Combined Postcondition 68

3.6 Summary . 70

4 Dynamic Binding and Constraints on Exherited Features 71
4.1 Dynamic Binding of Common Features . 71

4.1.1 Multiple Inheritance of Features with No Common Seed 72
4.1.2 Multiple Inheritance of Features with Common Seed (Repeated Inheritance) 75
4.1.3 "select" Like Approach Does Not Solve All Ambiguities 76

4.2 Considering the Time Stamp When Defining a Class 79
4.2.1 Sharing Features . 80
4.2.2 Replicating Features . 81

4.3 Constraints on Factored Features and Foster Classes 83
4.3.1 Using the Keyword frozen for Features . 83
4.3.2 Impact of "Precursor" Keyword . 83
4.3.3 Exportation and Exheritance . 85
4.3.4 Exheriting "Creation" Procedures . 86
4.3.5 Exheritance of an Attribute with "Assign" Clause 86
4.3.6 Exheritance When There is an Alias . 87
4.3.7 Exheriting Obsolete Features . 88

2

4.3.8 Exheriting Features of Type once . 88
4.4 Constraints on Foster Classes . 90

4.4.1 Using the frozen Keyword . 90
4.4.2 Using the obsolete Keyword . 90

4.5 Combining Ordinary and Reverse Inheritance . 90
4.5.1 Inheriting From a Foster Class . 91
4.5.2 Inheriting in a Foster Class . 91
4.5.3 Exheriting From a Foster Class . 92
4.5.4 Allowing to Exherit Features from an Ancestor 92

4.6 Like-Type Relationship in Eiffel . 95
4.6.1 Motivation . 95
4.6.2 Definitions and Notations . 95
4.6.3 Cardinality . 96
4.6.4 Imported Feature Selection . 96
4.6.5 No Type Conformance . 96
4.6.6 Exherited Features . 97
4.6.7 Dependency Problems . 97
4.6.8 Possible Name Conflicts . 97
4.6.9 Exheriting the Inherited Behavior . 97
4.6.10 Adding New Features . 97
4.6.11 Conclusions . 98

4.7 Summary . 98

5 Related Works. Conclusions. Perspectives 99
5.1 Related Works . 99

5.1.1 Reverse Inheritance and Design Patterns . 100
5.1.2 Reverse Inheritance and Abstract Superclass Creation by Refactorings . . . 103
5.1.3 Reverse Inheritance and Other Related Works 106

5.2 Conclusions . 107
5.3 Perspectives . 108

Bibliography 115

3

Abstract

Reverse inheritance class relationship is a different kind of inheritance where the subclasses exist
first and the superclass is created afterwards. When designing an object-oriented system, it is
more natural to create first the specialized classes and then to notice commonalities and to factor
them into superclasses using reverse inheritance. Class libraries do not always fit into the context
of the developed software, the adaptation mechanisms of reverse inheritance can help in this
direction. Such a class relationship was never fully defined in the literature nor implemented in
a programming language. Because of concepts like adaptations, lack of overloading, equivalency
between attributes and methods, the most appropriate programming language to integrate reverse
inheritance is Eiffel.

Acknowledgements
This research report is part of the PhD programme developed in the collaboration between Uni-
versity Politehnica of Timisoara, Romania and University of Nice from Sophia-Antipolis, France,
where I had two internships of three month each, one in 2003 and the other in 2005.

I would like to thank professor Ioan Jurca for his dedicated efforts in supervising my PhD
research activity, sustaining my research projects and making the reviews for this report.

I would like to thank professor Philippe Lahire and M.C. Pierre Crescenzo for their financial
and intellectual resources invested in the research around the subject of the thesis. I would also
like to express my gratitude to the french team who was motivating me thus making me advancing
on the subject.

I would also like to thank professor Markku Sakkinen from University of Jyvaskyla, Finland,
for showing points of interest for the developed problematics during one of my PhD internships,
especially for this research report.

Also I would like to thank my colleagues lecturer Dan Pescaru and teaching assistant Emanuel
Ţundrea for the realistic feedback and for the technical coaching. I want also to express my
gratitude to Ms. Monica Ruzsilla and Ms. Smaranda-Claudia Chirila for their implication in the
development of some prototypes based on ideas deriving from this research.

I would like to thank also the dean of our faculty, professor Octavian Proştean for granting the
financial support in one of my research internships and to the head of our department professor
Vladimir Creţu for the punctual advices and management information he gave me during the
research activity.

1

Chapter 1

Introduction to the Approach

In this report we propose a dual class relationship of reverse inheritance, in order to achieve the
goal of class reusability and behavior enhancement. The idea of dual relationship comes from
the fact that we use two conceptual links between classes: reverse inheritance (conforming and
non-conforming) and a feature importing, like-type class relationship. Further on we will explain
in details each class relationship semantics.

The approach of this work is built on [LHQ94], which we consider the most advanced approach
from the state of the art, in this direction [CCL+05b]. We keep the same restrictions of not affecting
the behavior of exherited classes when exheriting from them. The choice of Eiffel was taken
because its philosophy is closer to the concepts required by reverse inheritance e.g. the renaming
technique, the presence of conforming and non-conforming inheritance, the lack of overloading
for features. There are some attempts to implement reverse inheritance for Java programming
language [CPT05, CRC+06a] and even to ajust its semantics in order to solve a restricted set of
problems [CRC06b], but the resulted semantics is a great deviation from the philosophy of Java.

A secondary objective of the report is to prove that the integration of the reverse inheritance
class relationship in Eiffel comes naturally, will not complicate the language semantics and will
not break any already existing language rules. Reverse inheritance is also known in literature as
upward inheritance [SN88], exheritance [Sak02], generalization [Ped89, UML04].

Next, we will present some motivating examples to show why both reverse inheritance and
like-type class relationships are needed. The examples are not analyzed thoroughly, only a flavour
of what these class relationships are capable to do, is emphasized next.

1.1 Motivative Reverse Inheritance Use Cases
Reverse inheritance has several capabilities in the direction of adaptation and evolution of aplica-
tions [CCL05a, CCL07a, CCL07b].

1.1.1 Designing in a More Natural Way
In [Ped89] it is stated that reverse inheritance is a more natural way for designing class hierarchies.
When modeling classes, it is considered that it is more natural to design each class with its own
features and only then to notice commonalities and factor them in a common superclass. This
will lead to avoidance of data and code duplication, which in object-oriented philosophy is error
prone.

1.1.2 Capturing Common Functionalities
In [OJ93] is mentioned that it is more economical to refactor an existing application by extract-
ing the framework that otherwise should be created from scratch. In some applications classes
belonging to different contexts need to be used together. Sometimes they have even common

2

Figure 1.1: Capturing Common Functionalities

functionalities which could be factored in one place to avoid duplication. There are several ways
to achieve class adaptation and reuse. When the source code of classes is available and modifi-
cations are allowed, inheritance is the right choice1. An abstract superclass can be created by
ordinary inheritance and all common code can be placed in the newly created superclass. One of
the benefits of this solution is the type polymorphism and dynamic binding of common features.
Any instance of the subclass can be referred using references of the superclass type. Common
features can be called using superclass references and the code which will be executed, is chosen
at runtime.

We will address the situation of dealing with read-only code or precompiled class libraries
where no modifications are possible. In this case reverse inheritance could be one solution for
the unified management of the reused classes. In figure 1.1 we present the case of having three
classes Rectangle, Ellipse, Triangle which were supposed to be developed in different contexts. A
new abstract class AbstractShape was created which contains an abstract common feature draw().
The benefits discussed in the previous paragraph are still available in this solution, too. The
programmer can manipulate instances of shapes through AbstractShape references. Of course, in
practice, common features may exhibit different signatures, so they may need adaptations.

1.1.3 Inserting a Class Into an Existing Hierarchy
In this subsection is discussed the typical case of a class hierarchy which originally had two
abstraction layers and later on was decided that a new middle abstraction layer is necessary. One
choice is to affect the original classes and to make the modifications in order to reflect the new
hierarchy. Of course, if other clients are already depending on the old class hierarchy, another
solution must be considered. The use of reverse inheritance in such cases is recommended because
it implies no modification of the original classes.

In the use case from figure 1.2 we present a class hierarchy which at design time had only
two classes Shape and Rectangle in a subtype relationship. Later was decided that a new class
Parallelogram had to be added to the hierarchy. It is known that any parallelogram is a shape and
any rectangle is a parallelogram, so hierarchically class Parallelogram has to be between Shape
and Rectangle. The solution proposed is to inherit the new class Paralelogram from Shape and to
reverse inherit from Rectangle. This way the natural subtyping relations are preserved.

1.1.4 Extending a Class Hierarchy
In some applications the integration of a class hierarchy into a more general one could be of real
help. The idea of connecting two (or more) class hierarchies together under a common superclass
without affecting any of existing classes is achievable by reverse inheritance. The part of the system

1Even if the reused classes have superclasses, in Eiffel multiple inheritance is allowed and should be used in this
case. In programming languages like Java where no multiple inheritance between classes is allowed, the solution
would be more complicated.

3

Figure 1.2: Inserting a Class Into an Existing Hierarchy

Figure 1.3: Extending a Class Hierarchy

which is newly developed can use ordinary inheritance but the link to the read-only hierarchy has
to be made through reverse inheritance.

In the use case depicted in figure 1.3 we have a situation of class hierarchy modeling shapes.
Initially only the hierarchy rooted by class Parallelogram existed and it could not be modified.
As a first step of the redesign precess, an abstract superclass named AbstractShape is created
using reverse inheritance. Then the evolution of the hierarchy comes naturally using ordinary
inheritance for classes like Ellipse, Circle and Triangle.

1.1.5 Reusing Partial Behavior of a Class
Some classes in object-oriented systems exhibit a great quantity of behavior. Maybe in some
contexts only a subset of them needs to be reused. This could be useful in situations where binary
code size is critical or a supertype, containing a subset of features, is needed. On the other hand
it could be good that clients are restricted to use only a part of the interface of an object and not
all the features from it.

In the sample located in figure 1.4, a Dequeue class is analyzed. Originally it was designed as a
double ended queue, having operations for each end: push, pop, top (for one end) and push2, pop2,
top2 (for the other end). A new class Stack is created which is interested only in the operations

4

Figure 1.4: Reusing Partial Behavior of a Class

Figure 1.5: Creating a New Type

related to one end of the Dequeue class. A new class Queue is then created to get the operations
related to queue abstract data type. In conclusion the programmer has the choice of reusing
several parts of the code written in a class.

1.1.6 Creating a New Type
Another facility offered to the programmer by the use of reverse inheritance and like-type class
relationship (which will be presented in section 4.6) is the creation of a new type starting from
existing classes. Using reverse inheritance we can create a common superclass for the existing
classes, like it was presented in subsection 1.1.2. Ordinary inheritance allows only direct inheritance
of all features from the superclass while a like-type class relationship allows importing features
selectively from other classes. In figure 1.5 starting from two terminal classes Terminal1 and
Terminal2, it was built a TerminalANSI class which gathers all common behavior and data.
Later on a new type is created, and named Terminal3. This new type is created by ordinary
inheritance from class TerminalANSI. It can be noticed that class Terminal3 may import directly
some features from Terminal1 and Terminal2 through the like-type class relation.

1.1.7 Decomposing and Recomposing Classes
Sometimes, in object-oriented systems a part of a class could be used to create a new class. This
idea was presented also in subsection 1.1.5 where the reuse of the partial behavior of a class

5

Figure 1.6: Decomposing and Recomposing Classes

was discussed. In this use case it is proposed to facilitate better class design by decomposing
classes and creating new ones by recomposing with the decomposed parts. In figure 1.6 it is
presented such a situation where class CalculatorWatch was decomposed into two abstract classes
Calculator, which contains the mathematical functions and Watch, which includes the list of clock
functionalities. It was decided to exherit just the feature signatures into the abstract classes
but not the implementation because in the two abstract classes there can not be added new
functionalities. It is more natural to extract the behavior using the like-type class relationship
into classes CalculatorImplementation and WatchImplementation. Each implementation class is a
subclass of the corresponding abstract exherited class: CalculatorImplementation is the subclass of
Calculator andWatchImplementation is the subclass ofWatch. Next, classWatch is combined with
class Cronograph using multiple inheritance. Thus we showed a way of decomposing a class and
recomposing it back with another class. It can be noticed that any eventual new features required in
classes Calculator or Watch can be added in CalculatorImplementation or WatchImplementation.
Adding new functionalities directly in classes Calculator or Watch would be inherited in class
CalculatorWatch affecting its original behavior.

1.2 Outline of the Approach
The report has the following outline. Chapter 2 presents the basic elements of our approach
of reverse inheritance. There are discussed aspects like cardinality, feature factorization, type
conformance. In chapter 3 are presented main mechanisms through which feature adaptations
can be performed. In chapter 4 are discussed dynamic binding aspects in the context of reverse
inheritance and constraints which must be imposed on foster classes. In chapter 4.6 the semantics
of like type class relationship is discussed. In the final chapter 5 the approach is evaluated and
conclusions are drawn.

6

Chapter 2

Creating a Class by Reverse
Inheritance

2.1 Reverse Inheritance: Definition and Notations
In this chapter we intend to define the semantics of conforming reverse inheritance. In order to
do this, we will rely on the ordinary inheritance definition.

Inheritance allows the definition of new classes by adding or adapting features. Along with
inheritance, the definition of new types is supported, as specializations of the already existing
ones [Mey02]. In Eiffel there are two types of inheritance conforming and non-conforming. Con-
forming inheritance offers feature inheritance and subtype conformance between the subclass and
superclass. Non-conforming inheritance1 do not offer type conformance as conforming inheritance
does, but only inheritance of features. So it is more useful when data and code are needed to be
imported into a class without making it a subtype of the superclass.

In order to follow the philosophy of the language, we think that reverse inheritance should
behave in the same way. In this chapter we address conforming reverse inheritance because it
deals with all complex situations, but in section 2.4 we will point out the characteristics which are
specific to non-conforming reverse inheritance.

Reverse inheritance class relationship in general, conforming or non-conforming, has a target
class and one or more source2 classes. They will be referred further on also as the superclass and
respectively subclasses or exheritant class and respectively exherited classes.

When defining defaults in the semantics of reverse inheritance they will be defined as alterna-
tives. On the other hand they should not be declared explicitly because in Eiffel most defaults are
unnamed, for instance: there are no keywords for the alternatives of deferred or frozen.

Together with the notion of reverse inheritance we will use also an alternate name: exheri-
tance, denoting the same concept. The features which are the subject of reverse inheritance may
be called factored, reverse inherited or exherited.

In the next subsections we set the main principles which stand for the reverse inheritance class
relationship and we propose a notation.

2.1.1 Definitions
We want to build a class relationship which is completely interchangeable3 with its symmetrical
counterpart, naming the ordinary inheritance. This will happen in both conforming and non-

1We can think also about removing features in non-conforming inheritance since the subclass will not conform
to the superclass.

2By source classes we mean the classes which exist initially, and by target classes we mean the classes which are
created afterwards.

3By interchangeable we admit in this context that some modifications have to be made to feature clauses in
order to obtain the same behavior from the class hierarchy.

7

Figure 2.1: Reverse Inheritance

Example 1 Reverse Inheritance Example
class RECTANGLE
end
class ELLIPSE
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end

conforming cases.
From this derives the fact that reverse inheritance is not an absolute necessity. Then the

question arises whether this class relationship is good anyway. Adaptations which are used for
merging features are good arguments for sustaining such a class relationship.

As the target class is created the last, it should not affect the rest of the hierarchy from the
behavioral point of view. Using reverse inheritance we should not achieve structures which are
not possible with ordinary inheritance. Some rules will give an intuitive definition of reverse
inheritance:

Rule Equivalence with Ordinary Inheritance. Declaring a reverse inheritance relationship
from a class A to a class B is equivalent to declare an ordinary inheritance relationship from
class B to class A.

Rule Invariant Behaviour. Introducing an ancestor C to one or several classes C1, . . . , Cn

using reverse inheritance does not modify the behavior of C1, . . . , Cn.

2.1.2 Notations
In figure 2.1 we present a class diagram which shows how to represent the reverse inheritance class
relation in parallel with the ordinary inheritance. The UML representation selected for reverse
inheritance is the dashed line having a downward pointing triangle arrowhead. The intention of
this two class diagrams is also to show that reverse inheritance is the symmetrical relationship of
ordinary inheritance, the behavior of the two class diagrams is intended to be equivalent. This
class relationship can be expressed also using a syntax extension like in the following code:

In example 1 the classes RECTANGLE and ELLIPSE already exist, and the superclass SHAPE
is created afterwards. One can notice that the keyword exherit was used in order to reflect the
reverse inheritance relationship between the classes. On the other hand class SHAPE is a special
kind of class, the source of reverse inheritance, and the foster keyword is used to mark that
aspect. This code is semantically equivalent with the context in which class SHAPE is created
first, and then subclasses RECTANGLE and ELLIPSE (see the code which is described in the
next example 2).

8

Example 2 Reverse Inheritance Equivalent Sample
class SHAPE
end
class RECTANGLE
inherit SHAPE
end
class ELLIPSE
inherit SHAPE
end

Reverse inheritance4 allows the programmer to create a superclass out of one or several sub-
classes and to select the common features into that superclass.

In order to specify the common features we have several choices: either we specify them
explicitly, either we consider them implicitly selected. With features, some actions are possible
like: rename, undefine, adapt, moveup, select, export, redefine. These are illustrated in
the rules of example 3:

In the grammar from example 3 we provide the definition of the foster class which is the source
class of reverse inheritance class relationship. We can notice that it starts with the keyword
foster which denotes the special type of the defined class for better readability. In this rule
EXHERITANT_CLASS_NAME is the name of the foster class.

Common features from subclasses can be exherited (or factored). Exheritable features in the
subclasses are those features who have either the same signature or those for which the signature
may be adapted using the clauses presented in chapter 3. In the selection clause, the keyword
exherit is then used in different combinations to select the exherited features:

• using the all keyword denoting that all possible features from exherited classes will be
selected. If there are no common features in the subclasses the resulting foster class will be
empty. The effective list of selected features is not explicitly listed, being inferred by the
compiler, but it could be highlighted by the programming environment.

• using the nothing keyword denoting that no features from exherited classes will be selected.
This keyword can be useful for the creation of a new type.

• using the only keyword and a list of features explicitly selected from the subclasses. If
there are explicitly selected features which do not exist in all foster classes, the compiler will
consider it an error. This declaration alternative has the advantage of having an explicit list
of selected features thus increasing clarity of foster class code for the programmer.

• using the except keyword and a list of features explicitly excluded from the selection. This
choice works better in cases where multiple features are exherited and just a few exceptions
must be stated. If there are excluded non-eligible features the compiler will produce a warn-
ing. As in the first declaration alternative, the programming environment could highlight
the effective list of the exherited features.

Rule Exheritable Features. A feature f contained in the subclasses C1.. Cn is exheritable if
one of the following assumption is satisfied:

• The signatures of f in all Ci (1≤i ≤n) are identical;

• The signatures of f in all Ci (1≤i ≤n) may be adapted in order to conform:

– either to the signature of f in one Cj (1≤j ≤n) ;

4When we do not mention conforming or non-conforming it means that we discuss about reverse inheritance in
the general sense.

9

Example 3 Syntax for Exheriting Features
foster_class_definition::=
foster class EXHERITANT_CLASS_NAME
...
exherit heir_list
exherited_feature_list
[foster_adaptation]
...

end
heir_list::= heir*
heir::=
EXHERITED_CLASS_NAME
[rename renaming_list]
[undefine feature_list]
[adapt feature_list]
[moveup feature_list]
[select selection_list]

end
renaming_list::=
rename identifier as new_identifier (, identifier as new_identifier)*

selection_list::=
select feature_name in class_name (, feature_name in class_name)*

exherited_feature_list::=
exherit (all | nothing | only feature_list| except feature_list)

feature_list::= feature_name (, feature_name)*
foster_adaptation::=

[export export_list]
[redefine feature_list]

10

– or to another signature to which all the signature of f in Ci (1≤i ≤n) may conform,
possibly after some adaptations.

Next, the foster class grammar contains exheritance clauses, which must be specified for each
exherited class. One exheritance clause specifies the condition for the feature exheritance from
one subclass and it has the following structure:

• EXHERITED_CLASS is the name of the exherited class;

• The rule variant rename renaming_list refers to the ordinary renaming mechanism of Eiffel.
In the context of foster class semantically equivalent features must have the same name.

• The undefine clause will have the same semantics as in the context of ordinary inheritance,
meaning that all exherited features will be deferred in the foster class. This is the implicit
behavior for both attributes and methods. The use of undefined keyword is not necessary
since it is the default behavior.

• The keyword adapt is used to list the features which need adaptations. The adaptations
will be provided in the implementation of the feature. It will be used for all adaptations that
cannot be performed by the clauses redefine and undefine. These issues are developed in
chapter 3.

• The clause moveup allows to specify the features from a subclass which come with their
implementation in the superclass. In other words, the keyword moveup is used for imple-
mentation exheritance (or concrete version exheritance).

• The clause select will be used to mark a feature to be used in special dynamic binding
situations of repeated inheritance. The semantics of select will be discussed in section 4.2.

After the specification of exheritance branches with their adaptation clauses there are some other
adaptations which belong to the foster class and not to the exheritance branches. They are placed
after the exheritance branches section of the foster class because, common features will be known
to the foster class by their final names:

• The export clause specifies lists of features and lists of client classes where the features are
exported to. The semantics is the same as in ordinary inheritance.

• The redefine clause has the same semantics as in ordinary inheritance of Eiffel and it is
used for signature redefinitions or for implementation redefinitions.

The compatible combinations of these clauses will be studied in a later chapter 4, as well as their
impact on dynamic binding.

Finally, the foster class contains feature declarations using the regular Eiffel syntax. Some
features can be adapted and their body will contain special syntactical elements which will be
presented in chapter 3.

2.2 Single/Multiple Reverse Inheritance
Eiffel supports multiple inheritance (so that it can be single and multiple); it seems quite natural
that we introduce multiple reverse inheritance. If we deal with only one subclass then we have
single reverse inheritance, while when having multiple subclasses we deal with multiple reverse
inheritance. Single exheritance seems to be useful especially when we already have a specialized
class and we want to reuse only a part of it, by creating a more general class. In figure 2.2 and
2.3 we will analyze the case of the Dequeue example taken from [Ped89].

11

Figure 2.2: Dequeue Sample

Figure 2.3: Dequeue Class Diagram

2.2.1 Single Reverse Inheritance
The sample proposed in figure 2.2, shows a class DEQUEUE which has two sets of features for the
operations related to each end of the dequeue: push, pop, top for one end and push2, pop2, top2
for the other end. There is a global method empty which conceptually belongs to the dequeue,
and equally to both ends. In figure 2.3, a new superclass STACK is created by reverse inheritance,
exheriting only the operations dedicated to one end of DEQUEUE like push, pop, top and empty.
This example shows a possible use case where single reverse inheritance can be useful. Class
STACK can be defined using the syntax extension like in sample 4.

Due to the flexible syntax we can have two ways for defining the foster class. One way is to
implicitly exherit everything except a certain list of features. The other way is to explicitly list the
features which are exherited. In both cases it is necessary to specify whether the implementation
is exherited or not along with the signature of exherited features. We may even create an empty
superclass using the reverse inheritance but in practice such a class does not seem to be very
useful.

When using single exheritance, since there is only one subclass, all features of the subclass may
be exherited, even with their implementation. In such a case no signature conflict may arise, since
the exherited feature in the subclass will have the same signature (even the same implementation,
if this is needed).

12

Example 4 Dequeue Class
class DEQUEUE
feature
push(p:INTEGER) is do ... end
pop: INTEGER is do ... end
top: INTEGER is do ... end
push2 (p:INTEGER) is do ... end
pop2: INTEGER is do ... end
top2: INTEGER is do ... end
empty: BOOLEAN is do ... end

end
foster class STACK -- variant 1
exherit
DEQUEUE
moveup
push, pop, top, empty

end
except push2, pop2, top2

end
foster class STACK -- variant 2
exherit
DEQUEUE
moveup

push, pop, top, empty
end
only push, pop, top, empty
end

13

Figure 2.4: Multiple Reverse Inheritance

Figure 2.5: Two Independent Reverse Inheritance Relationships

2.2.2 Multiple Reverse Inheritance
Multiple reverse inheritance is a special case of reverse inheritance where are involved multiple
source classes. Such a class hierarchy is equivalent to several ordinary inheritance relationships
having as superclass the foster class. We will rely on the exheritance clauses in order to resolve
possible conflicts or to perform the necessary adaptations5.

In figure 2.4 we intent to show how such a target class can be designed starting from two
concrete classes using multiple reverse inheritance. We propose an example based on terminals
adapted from [Ped89], in which starting from two terminal class implementations we decide to
design an abstract superclass to abstract the behavior of an ANSI terminal. The newly created
abstract class, TerminalANSI, will contain common feature signatures declaring the behavior of
the ANSI standard terminal.

2.2.3 Several Independent Reverse Inheritance Relationships

The case in which several superclasses exherit from a class, like in figure 2.5 are not multiple
reverse inheritance, it is just the fact that there are several reverse inheritance relationships which
happen to have the same target class. In figure 2.5, STUDENT is a subclass for both PERSON
and CLUB_MEMBER. This kind of architectural decision can be taken when the two different
superclasses are needed for a certain class hierarchy. This can be useful when we want to partition
a class for a better reuse or when different point of views on the same type are needed. The two
superclasses will exherit features independently from the common subclass. From the type point
of view, the two superclasses are supertypes for the subclass. The class hierarchy is equivalent to a
retroactive multiple inheritance structure. The common subclass will conform to each superclass
created by reverse inheritance. One ambiguity related to feature exheritance may arise if some

5This will be studied in details in chapters 3 and 4.

14

Figure 2.6: Several Independent Reverse Inheritance Relationships

features from a subclass are multiply exherited into two or several superclasses. As we specified
above, the two exheritance class relations are independent, so the same feature can be exherited
independently into several superclasses.

In order to be consistent with the semantics of ordinary inheritance we prove that such a class
hierarchy has an equivalent based on ordinary inheritance. In order to do this we will analyze a
more general case of several independent class relationships like those in figure 2.6.

In the general case of figure 2.6 we start from the initial situation in which several classes
A1, A2, . . . ,An have the same subclass X. This class hierarchy can be decomposed in multiple
reverse inheritance relationships between Ai and X where i=1..n. These reverse inheritance class
relationships can be transformed into ordinary inheritance equivalent relationships. All these
combined will form a configuration of an equivalent multiple inheritance relationship. So, we
proved that a configuration of several independent reverse inheritance relationships having the
same source class is equivalent with a multiple ordinary inheritance.

2.3 Feature Factorization
The need to exherit common features is present in both types of reverse inheritance (conforming
and non-conforming). By common features we mean the features which have the same semantics
in the context of the given class hierarchy [CCL+04c, CCL04a, CCL04b]. Common features having
the same signature can be automatically exherited, while features having different signatures have
to be adapted using a special syntax extension. Such situations which need adaptations are
discussed in chapter 3.

2.3.1 Implicit Rules Regarding Feature Exheritance
In this subsection we will learn how to declare the exherited features, when these features are
exherited implicitly or explicitly and what is the nature of the features in the foster class.

2.3.1.1 Implicit Rules Regarding Attribute Exheritance

When in several subclasses we have attributes with the same signature, or attributes whose sig-
nature may be adapted in order to conform to a common signature in the superclass and, if the
attribute is marked as exherited implicitly or explicitly, then the declaration of a deferred feature
with the same name is automatically inserted. This means that implicitly it will be a concrete
feature in the foster class.

In example 5, attribute a has the same signature in all subclasses A and B. In class C it will
be implicitly exherited as deferred feature having the same common type T.

Rule Attribute Exheritance - The Default. When an attribute is exherited, from several
subclasses it is deferred implicitly in the foster class.

If we want to create a concrete feature from the attributes of the subclasses, then we have to move
an instance from one subclass or to redefine the exherited attribute. In example 6, we have the same

15

Example 5 Implicit Rules for Attribute Exheritance (1)
class A
feature
a: T
end
class B
feature
a: T
end
deferred foster class C
exherit
A
B
all
feature
-- a: T is deferred end
-- is implicit

end

class configuration as in example 5, but the feature a is redefined in the foster class. Redefinition
in Eiffel serves for two purposes: one is related to the attachment of an implementation to a
deferred feature and the other is for covariant signature redefinition. In our case by redefinition
we aim its former purpose.

In example 7 we present the other possibility of exheriting the concrete version of an attribute,
by ”moving up” one concrete version from the exherited classes into the foster class.

On the other hand the rules of Eiffel do not allow to undefine an attribute neither to redefine
an attribute as a method. As a consequence in reverse inheritance we can exherit a concrete
attribute only if it is an attribute in all exherited classes.

Rule Attribute Exheritance. When an attribute is exherited from several subclasses but
should be effective in the superclass it has to be redefined in the foster class or moved up on
one exheritance branch. If we also want to adapt its signature it is necessary to provide a
conforming redefinition declaration in the foster class.

Rule Attribute Exheritance. An attribute can be exherited as concrete in the foster class if
it is a concrete attribute in all exherited classes.

2.3.1.2 Implicit Rules Regarding Method Exheritance

When there are methods which are exherited, we have to consider the signature and the body.
Because it is supposed that exherited classes are developed in different contexts, it is very likely
that methods will not have the same body. This is the reason why we decided that it is better to
exherit by default only the signature of the method. To do this we can proceed like in example 8.
Since method m has the same signature in both subclasses and it is marked as exherited in both
of them, it is implicitly exherited as deferred like it is shown in the last two commented lines.

Rule Method Exheritance - The Default. When exheriting a common method from sub-
classes implicitly the signature is exherited meaning that the corresponding feature in the
superclass is implicitly deferred.

To select the implementation from one of the subclasses for a given exherited feature6 we have
to use a moveup clause on one exheritance branch. The implicit behavior of exheriting common

6The conditions in which an implementation can be moved into the foster class are discussed in details in chapter
4.

16

Example 6 Implicit Rules for Attribute Exheritance (2)
class A
feature
a: T

end
class B
feature
a: T

end
foster class C
exherit
A
B
all
redefine a
feature
a: T
-- due to the redefine clause

end

Example 7 Implicit Rules for Attribute Exheritance (3)
class A
feature
a: T

end
class B
feature
a: T

end
foster class C
exherit
A
moveup a
end
B
all
feature
-- a: T
-- due to the moveup clause

end

17

Example 8 Implicit Rules for Method Exheritance (1)
class A
feature
m(p: T1): T2 is do ... end

end
class B
feature
m(p: T1): T2 is do ... end

end
deferred foster class C exherit
A
B
all
feature
-- m(p: T1): T2 is deferred end
-- is implicit

end

features as deferred will cause the undefinition of all the exherited features except the one being
moved up in the foster class. This is illustrated in example 9. The implementation of m from class
A has been selected for method m in foster class C. This was done by using in the exheritance
branch corresponding to class A in foster class C the moveup clause for the m method and the
undefine clauses in the rest of the exheritance branches works implicitly. In this case is left only
one exheritance branch to be undefined implicitly, the one corresponding to class B.

In the case of multiple inheritance [Mey02] a conflict arises when two or more features with the
same name and different implementations are inherited from several superclasses. One solution
is to undefine all features from superclasses, thus leading to a deferred feature in the subclasses.
Another possibility is to undefine all features except the one which will provide the implementation
in the subclass. To provide a new implementation in the subclass will require to redefine all the
inherited features from the subclasses.

Rule Method Implementation Exheritance - The Default. When a method is exherited
with its implementation from one subclass, in other words when it is moved up, all the
corresponding methods from the other subclasses are undefined by default.

2.3.2 Allowing Implicit and Explicit Common Feature Selection
In this subsection we discuss about the benefits and drawbacks of explicitly or implicitly declaring
the common features. It must be noted that the selection of exherited features is made globally
at the foster class level and not on each exheritance branch.

2.3.2.1 Implicit All Common Feature Selection

The exherit ... all keyword combination will denote that there are selected for factorization
all exheritable features. In example 10 foster class SHAPE will exherit features area and color
from RECTANGLE and ELLIPSE classes. Features boundary from class RECTANGLE and
circumference from class ELLIPSE do not belong to the set of exheritable features since they
have different names.

This selection choice is good in the case of multiple feature selection without excluding some
features. In the case of single exheritance the keyword combination will exherit all features from
the class since all are exheritable.

18

Example 9 Implicit Rules for Method Exheritance (3)
class A
feature
m(p: T1):T2 is do ... end

end
class B
feature
m(p: T1):T2 is do ... end

end
foster class C
exherit
A
moveup m
end
B
-- undefine m
-- is implicit
all
feature
-- m(p:T1):T2 (with the body of m from class A)

end

Example 10 Implicit All Common Feature Selection
class RECTANGLE
feature
area:REAL
color:INTEGER
boundary:REAL

end
class ELLIPSE
feature
area:REAL
color:INTEGER
circumference:REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end

19

Example 11 Explicit Common Feature Selection
class RECTANGLE
feature
area:REAL
color:INTEGER -- foreground color

end
class ELLIPSE
feature
area:REAL
color:INTEGER -- background color

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
only area
end

2.3.2.2 Explicit Common Feature Selection

We state in example 11, the syntax used for the explicit declaration of a common feature subset.
Class SHAPE exherits RECTANGLE and ELLIPSE having a common attribute named area,
this attribute being explicitly selected for exheritance. According to the rules related to attribute
exheritance, the exherited attribute in the foster class will be a concrete feature, an attribute
having the same common type, like in the subclasses.

In this context the common features can be explicitly selected to be factored in the foster class
using the exherit ... only keyword combination. One of the advantages is that the explicit list of
features will increase the foster class code clarity. On the other hand if there are a lot of candidate
features to be exherited the other options have to be considered since the list of features will grow,
and the exclusion of non-exherited features is simpler. All the features listed for exheritance must
be eligible candidates for exheritance otherwise the code is semantically incorrect. In such case
the compiler will generate an error.

2.3.2.3 Implicit Common Feature Selection

In the other context where the exheritance is made implicit there should exist a possibility for
the programmer to avoid the exheritance of some features using the exherit ... except keyword
combination. This can be useful when features with the same signature have different semantics.
In this case the compiler will infer automatically the actual list of exherited features. This actual
list being implicit will affect code readability. This problem can be solved by the programming
environment by highlighting the actually exherited features.

In any case the features which do not have the same signature (or an adapted/redefined one)
will not be exherited automatically. In case the exclusion list contains features which are not valid
candidates for exheritance, the compiler will issue a warning.

In example 12 we consider that common features are automatically exherited, it would be the
case for the attribute area from both RECTANGLE and ELLIPSE classes. Since the attribute
color has different semantics in the two classes it should not be exherited. Attribute boundary of
class RECTANGLE will not be exherited because it appears only in class RECTANGLE. It is the
same case for the attribute circumference which is only declared in class ELLIPSE. If two features
have different names but represent the same feature (apparently boundary and circumference do
represent the same behavior let’s say perimeter) then they have to be mentioned explicitly in an
appropriate renaming clause.

20

Example 12 Implicit Common Feature Selection
class RECTANGLE
feature
area:REAL
color:INTEGER -- it is the foreground color
boundary:REAL

end
class ELLIPSE
feature
area:REAL
color:INTEGER -- it is the background color
circumference: REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
except color
end

2.3.2.4 No Feature Selection

In some cases the creation of a new type is necessary and no common features need to be exherited.
Such a selection can be achieved using the only keyword, an empty feature list and the except
keyword and the list of all features.

In example 13 the use of nothing keyword is more intuitive, for creating a new type SHAPE.

2.3.3 Influence of the Nature of Common Features
In this subsection are analyzed the nature of common features in the process of exheritance.
Common features in the exherited classes, regarding their nature, can be attributes, methods or
deferred features.

2.3.3.1 Factoring Features Represented by Attributes

If we deal with common attributes in the subclasses they can be exherited as deferred (implicitly)
or concrete (by moving up of by redefinition) features in the superclass. As it is mentioned in
[Sak02] only some type and name conflicts may occur. Types will be discussed in later sections
3.3.1 and 3.3.2, while name conflicts are analyzed in section 3.1.3. A basic situation of exheriting
attributes having the same signatures is presented in example 14.

The two original existing classes RECTANGLE and ELLIPSE have both one feature perimeter
with the same name. The case where features have different names is discussed in section 3.1.3.
About constant attributes, they can not be exherited as effective by moving one of them up even if
it happens to have the same type and the same values. This behavior is imposed because constant
features can not be redefined in the context of inheritance.

Rule Attribute Exheritance 1. Common attributes having the same type in the exherited
classes are exherited as a deferred feature in the foster class having the same common type.

Rule Attribute Exheritance 2. If attributes in exherited classes do not have the same type
and exists one having a common supertype for all the types in subclasses, that supertype
will be used as type for the implicitly exherited deferred feature in the foster class, in this
case some redefinition statements must be used.

21

Example 13 No Feature Selection
class RECTANGLE
feature
area:REAL
color:INTEGER
boundary:REAL

end
class ELLIPSE
feature
area:REAL
color:INTEGER
circumference: REAL

end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
nothing
end

Example 14 Factoring Features Represented By Attributes
class RECTANGLE
feature
perimeter: REAL
end
class ELLIPSE
feature
perimeter: REAL
end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
feature
-- perimeter:REAL is deferred end
-- this feature declaration is implicit

end

22

Example 15 Factoring Features Represented by Attributes and Methods
class RECTANGLE
feature
area:REAL
end
class ELLIPSE
feature
radiusA: REAL
radiusB: REAL
area is do Result:=3.1416 * radiusA * radiusB end
end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
feature
-- area: REAL is deferred end
-- this feature declaration is implicit

end

Rule Attribute Exheritance 3. If there is no common supertype for the exherited attributes
in the exherited classes then redefinitions must be applied using a new common supertype.

2.3.3.2 Factoring Features Represented by Attributes and Methods

Attributes and methods having the same signature7 are factored implicitly as a deferred feature
in the superclass. It is only the case of methods having the same return type and no arguments.
Conform to the philosophy of Eiffel there should be no difference between the implementation of
a feature by memory or by computation [Mey97]. This case is illustrated in example 15. The two
original existing classes RECTANGLE and ELLIPSE have the same feature area implemented
respectively by an attribute and by a method. Both represent the same feature in the given
context, so they are factored out implicitly as a deferred feature in the superclass.

Rule Attribute and Method Exheritance. In case of attributes and methods having no
arguments but return types, thus making their signature equivalent, they are exherited in
the foster class as a deferred feature. If the types of the exherited features are not the same,
redefinitions are allowed in order to achieve a common conforming signature.

2.3.3.3 Factoring Features Represented by Effective and Deferred Methods

Another case that we consider is the one where all subclasses have a method with the same name
whatever they are deferred or effective. If one or more methods from subclasses are deferred and no
suitable implementation can be found among them, then the resulting method in the superclass will
be deferred, only the signature which is common, will be factored. In example 16 we illustrate the
capabilities of reverse inheritance to factor both deferred and effective features through the case of
three classes RECTANGLE, POLYGON and ELLIPSE which exist initially. Only RECTANGLE
and ELLIPSE have implemented a method draw (class POLYGON declared draw as a deferred
feature). Obviously, the two implementations of method draw seem to be different, so a deferred

7It is probable that features even with the same semantics have different signatures. Some adaptations can be
performed during exheritance to get the same signature for the features. These adaptations will be presented in
one of the following chapters 3.

23

Example 16 Factoring Features Represented by Effective and Deferred Methods
class RECTANGLE
feature
draw is do -- rectangle implementation end
end
class ELLIPSE
feature
draw is do -- ellipse implementation end
end
deferred class POLYGON
feature
draw is deferred end
end
deferred foster class SHAPE
exherit
RECTANGLE
ELLIPSE
POLYGON
all
feature
-- draw is deferred end -- is implicit
end
...
RECTANGLE r
ELLIPSE e
SHAPE s
create r
create e
s=r
s.draw -- version of RECTANGLE
s=e
s.draw -- version of ELLIPSE
...

feature should be chosen in the superclass. Further, is illustrated the polymorphic behavior of all
SHAPE instances, so the draw method can be called on any of them.

Rule Effective and Deferred Method Exheritance. The effective and deferred features from
the subclasses are exherited implicitly as a deferred feature in the foster class.

2.3.3.4 Factoring Implementation

Another case is where both common signature and the implementation are factored as well [Ped89].
If we decide to exherit implementation, then exheritance is possible only when all methods that
are called and all attributes that are accessed, are exherited as well. Implementation exheritance
is made by selecting the feature having the implementation using the moveup keyword. The
programming environment tool could offer some help to the programmer regarding dependent
features: each time an implementation is chosen to be factored, the programmer can be informed
automatically about the dependencies. The most simple case is the one in which the methods
happen to have the same code, such cases are rare though. The most typical situation is to exherit
deferred features in the foster class.

Example 17 will illustrate such an implementation exheritance situation.

24

Example 17 Factoring Implementation
class RECTANGLE
feature
perimeter:REAL is do ... end
halfperimeter is do perimeter/2 end
end
class ELLIPSE
feature
perimeter:REAL is do ... end
halfperimeter is deferred end
end
foster class SHAPE
exherit
RECTANGLE
moveup
halfperimeter

end
ELLIPSE
all
feature
-- perimeter:REAL; (is implicit)
-- halfperimeter:REAL is
-- (RECTANGLE implementation)
-- end

end

In example 17 the two original classes have both a method halfperimeter. It is implemented in
RECTANGLE but deferred in ELLIPSE. So the decision what was taken is to exherit the body
of the RECTANGLE implementation into class SHAPE. This is possible only if all references
within this method are also exherited. In our case the only feature which needs to be exherited
is perimeter. Any potential subclass of SHAPE will benefit from the exherited behavior with
the condition of providing an implementation for feature perimeter. Of course, for ELLIPSE the
feature halfperimeter remains deferred.

In the general case implementation exheritance induces several problems. The first problem
deals with the dependency of exherited features. The dependency analysis process should not be
recursive at compile time. The selection of features which have to be exherited can be made when
analyzing each feature in the compilation process. Another issue related to this subject is whether
to import automatically by the compiler the dependencies or to let them be selected by the pro-
grammer. Dependencies must be either exherited as effective from one of the exherited classes or
provided in the foster class by redefinition. It would seem natural to implicitly exherit dependen-
cies as deferred if possible. If dependencies problem can not be solved by another implementation
exheritance or redefinition then implementation exheritance is not allowed. Implementing a de-
pendency which is not present in all the exherited classes would change the behavior of those
classes and we do not allow such thing.

Another problem can arise when we decide to exherit several implementations from different
subclasses. From the technical point of view there can be no problem. In practice, groups of
methods which belong tightly together may have been designed differently in those classes. The
chance that they can be reused in the foster class are very small.

25

Example 18 Conforming Reverse Inheritance
class RECTANGLE
...
end
class ELLIPSE
...
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end
...
RECTANGLE r
ELLIPSE e
SHAPE s
create r
create e
s=r
s=e
...

2.4 Type Conformance
In this section we address the impact of reverse inheritance on existing regular type conformance
of Eiffel. Eiffel entities have different kinds of types which include reference type or an expanded
type [Mey02]. A class implicitly is considered to be a reference type.

Type conformance definition can be found in [Ped89] where is stated that a type T conforms
to a type S if instances of type T can be used as if they were instances of type S. It is referred
also as instances of type T conforming to S.

As in ordinary inheritance there is type conformance between the subclass and superclass, with
reverse inheritance we keep the same restriction, but this time all subclasses must be conform to
the foster class. As Eiffel is a covariant language, a redefined feature can have a signature in
the subclass which can have covariant types. In the signature of a feature, types can interfere as
parameter types and return types. Reverse inheritance keeps the same rules regarding covariance.
All the types used in the foster class can be supertypes of all the corresponding types in the
subclasses.

2.4.1 Conforming Reverse Inheritance
In particular conforming reverse inheritance ensures type conformance between the subclass types
and superclass types.

Example 18 shows that instances of the subclasses conform to the type of the superclass.
This fact is expressed by the possibility of referencing the subclass typed objects using superclass
typed references. The syntax and the examples presented until now addressed conforming reverse
inheritance.

Rule Type Conformance. Conforming reverse inheritance ensures that all subclasses conform
to the foster class.

26

Example 19 Non-conforming Reverse Inheritance
foster class SHAPE
exherit
{NONE} RECTANGLE
{NONE} TRIANGLE
{NONE} ELLIPSE
all
end

Example 20 Non-conforming Reverse Inheritance (2)
foster class SHAPE
exherit
RECTANGLE
TRIANGLE
{NONE} ELLIPSE
all
end

2.4.2 Non-conforming Reverse Inheritance
In order to keep the symmetry with ordinary inheritance the reverse inheritance class relationship
will have to provide also the semantics for the non-conforming reverse inheritance.

It is known that non-conforming ordinary inheritance in Eiffel is used in the context of feature
reuse without keeping conformance between subclass and superclass. This class relationship is
known also as "facility inheritance" or "implementation inheritance". In [Mey97] the notion of
class is defined as both a software module and a type; this class relationship exploits the module
property from the class definition.

With non-conforming reverse inheritance common features are exherited into the target class
but without its type to be a supertype8 of the subclasses. We have to state regarding the semantics
of this class relationship that all rules apply from the conforming reverse inheritance except those
related to type conformance. Reverse inheritance conforming and non-conforming can be combined
freely together, without any side effects. Such combination can be used when we want to organize
a set of classes, but we want to restrict type conformance only to a set of them. This could
be considered as a benefit only from the design point of view. We are using the same syntactic
elements as Eiffel for specifying non-conforming inheritance:

The syntactical extension proposed implies the usage of the NONE keyword in front of every
subclass which is non-conform to the declared one. Like its conformance pair, this class relationship
can be single and multiple.

Rule Non Conformance. Non-conforming reverse inheritance obeys to all the rules related
to conforming reverse inheritance except the rule regarding type conformance between the
subclasses and the foster class.

In Eiffel conversions work between non-conforming classes. In the case of non-conforming reverse
inheritance we preserve the same behavior, classes related with non-conforming reverse inheritance
can be the subject for conversions.

Reverse inheritance branches conforming and non-conforming can be combined easily like in
example 20 where we decided that the ELLIPSE shapes should not conform to class SHAPE, so
we specified reverse inheritance as non-conform. All other involved shapes will conform to the
foster class.

8In fact the superclass is a subtype, but the language rules disables the conforming behavior.

27

Example 21 Genericity and the Foster Class
class RECTANGLE
...
end
class ELLIPSE
...
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end
class LIST[G]
...
end
...
RECTANGLE r;
ELLIPSE e;
SHAPE s;
create r;
create e;
s=r;
s=e;
...
LIST[RECTANGLE] lr;
LIST[ELLIPSE] le;
LIST[SHAPE] ls;
create lr;
create le;
ls=lr;
ls=le;
...

Rule Reverse Inheritance Combinations. Conforming and non-conforming reverse inheri-
tance can be used together within the same foster class.

2.4.3 Genericity and the Foster Class
In this subsection we will discuss about the relation between genericity and the foster class in the
context of type conformance. In ordinary inheritance any generic class C[U] conforms to C[T] if
U conforms to T. Class U may conform to T because of ordinary inheritance (U is a subclass
and T is a superclass in the same inheritance hierarchy), but also because of reverse inheritance
(T is foster class and U is a subclass in the same inheritance hierarchy).

In example 21 class SHAPE is the foster class for RECTANGLE and ELLIPSE. So any instance
of RECTANGLE or ELLIPSE can be referred using a reference of type SHAPE. Combining this
type conformance idea in the context of genericity, we created a generic class LIST[G] which
was instantiated three times with RECTANGLE, ELLIPSE, SHAPE generic parameters. The
instances lr and le can be referred also with ls reference, denoting that classes LIST[RECTANGLE]
and LIST[ELLIPSE] conform to LIST[SHAPE].

Rule Genericity and the Foster Class. Two instantiated, generic classes using the same base
class will conform if their generic parameters conform through reverse inheritance.

28

Example 22 Argument, Result Type and the Foster Class
class RECTANGLE
end
class ELLIPSE
end
class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end
class A
feature f(x,y,z:SHAPE):SHAPE is
...
end
end
class B inherit
A
redefine f
end
feature f(x,y,z:ELLIPSE):ELLIPSE is
...
end
end

2.4.4 Argument, Result Type and the Foster Class
In this subsection we discuss the interaction between feature redeclaration and reverse inheritance.
To be more exact the point of interest is argument and result type redefinition in the context of
feature inheritance. Redeclaration means redefinition or effecting. Redefinition may change an
inherited feature’s implementation, signature or specification [Mey02]. Effecting means providing
a concrete implementation for a feature originally declared as deferred in the super class. By
argument we refer to procedure/function parameters and by result we refer to function return
values or attribute types9. The signature of a feature consists of name, parameter number and
type, return type. In the redeclaration of a feature, the original arguments and results types can
be replaced in the subclass with conformant ones. We intend to show that even types related
through reverse inheritance can be used in feature redefinition in a very natural way, as if they
would be designed using ordinary inheritance.

In example 22 we consider that class SHAPE exherits classes RECTANGLE and ELLIPSE.
Superclass A declares feature f having arguments and result of type SHAPE. Class B, subclass of A
redefines feature f having arguments and result type ELLIPSE. The redefinition involves covariant
arguments and result which have been achieved due to reverse inheritance. Class ELLIPSE is a
subclass of class SHAPE linked by reverse inheritance class relationship.

Rule Argument, Result Type and the Foster Class. In the context of feature redefinition,
covariant arguments or result types can be linked by ordinary or reverse inheritance.

2.4.5 Expanded vs. Non-expanded Foster Classes
Following the definition of what expanded and non-expanded classes mean in the context of Eiffel
language, the main idea is that the expanded / non-expanded status of a class is not transmitted

9It is known that in Eiffel, a feature of the superclass can be redefined as an attribute in the subclass, but the
reverse is not allowed.

29

Example 23 Expanded vs. Non-expanded Foster Classes
class A
end
class B
end
expanded foster class C
exherit
A
B
all
end

through inheritance. The implicit status of a class is non-expanded, if the expanded keyword is
not specified. The non-expanded class object declarations will represent object references, while
the expanded ones will represent objects.

In example 23 any instance of class C will be an object and not a reference to object.

Rule Implicit Status of Foster Class. The foster class implicitly is considered as non-
expanded.

Rule The Status of the Descendants. The status of the descendant classes in a reverse
inheritance class relationship is not affected by the status of the foster class.

As a consequence, it can be stated that there is no restriction about the use of the expanded
keyword in the foster class.

2.5 Type Exheritance
In this chapter we will show how the type system of Eiffel can be exherited. In the analysed
examples we exherit features having several kinds of return types. The same examples are valid in
the case of formal argument types. The types taken into account are class types with all its forms,
separate and expanded types which are very similar from the exheritance point of view, like types
with all its forms and finally bit types.

2.5.1 Exheriting Class Types
Class types seem to be the most complex types of Eiffel because they can refer class declarations,
formal generics and can have recursive actual generics. Class types referring class declarations can
have actual generics while class types referring formal generics can not have. The actual generic
types can be any type of Eiffel type system. Each one of these situations is analysed in the next
subsections.

2.5.1.1 Exheriting Class Types Referring Class Declarations

In example 24 we have a classic situation in which a feature f is using a class type referring a class
declaration T. As expected the feature will be exherited implicitly as deferred using the same type
T in the foster class FC.

Rule Exheriting Class Types Referring Class Declarations Features having class types
referring class declarations in their signatures can be exherited if the correspondent class
types are identical in all exherited classes.

30

Example 24 Exheriting Class Types Referring Class Declarations
class EC1
feature f:T is do ... end
end
class EC2
feature f:T is do ... end
end
class T end
foster class FC
exherit
EC1
EC2
all
feature
-- f:T is deferred end
end

Example 25 Exheriting Class Types Referring Formal Generics
class EC1[H]
feature f:H is do ... end
end
class EC2[I]
feature f:I is do ... end
end
foster class FC[G]
exherit
EC1[G]
EC2[G]
all
feature
-- f:G is deferred end
end

31

Example 26 Exheriting Class Types Referring Class Declarations and Having Actual Generics
class EC1
feature
f:T[T1,T2,T3] is do ... end
end
class EC2
feature
f:T[T1,T2,T3] is do ... end
end
class T[G1,G2,G3] ... end
class T1 ... end
class T2 ... end
class T3 ... end
foster class FC
feature
-- f:T[T1,T2,T3] is deferred end
end

2.5.1.2 Exheriting Class Types Referring Formal Generics

In example 25 we deal with class types referring formal generics. In such cases because of genericity
problems discussed in section 3.4 the class configurations are limited. The example taken is a valid
one and the exherited feature in the foster class will have the type G. Features f from EC1 and
EC2 are of type H, respectively I, which are instantiated by G from the foster class. So the final
types of features f are both G, that is why the feature is exheritable.

Rule Exheriting Class Types Referring Formal Generics Features having class types re-
ferring formal generics in their signatures can be exherited if the correspondent class types
are instantiated with the same type in all exherited classes.

2.5.1.3 Exheriting Class Types Referring Class Declarations and Having Actual
Generics

In example 26 a composed type example is taken. Class T takes three actual generic parameters.
In each exherited classes, type T is equipped with the same types T1, T2, T3 in the same order.
Because class types may have actual generics which can be any type of Eiffel we can consider it
as a type composing mechanism. In order that such a type to be exherited it is necessary that
the types represented by the actual generics to be exheritable upon the rules of this chapter. The
types can be composed on multiple levels thus the process of exheritance may become recursive.

2.5.2 Exheriting Expanded and Separate Types
In this section we will present expanded and separate type adaptations together since they must
obey the same rules. The expanded keyword attached to a class type creates a new type and
the behavior of the original class instances is changed. All the instances will be objects and not
references to objects. This is the default behavior of objects in C++. Separate types are used for
the thread mechanism of Eiffel. The interaction between exheritance and concurrent programming
of Eiffel will not be discussed, but still some type rules will be issued in the context of reverse
inheritance.

In example 27 we have two exherited classes EC1 and EC2. The f1 features are using expanded
types in their signatures and the exherited feature in the foster class has the same expanded types.
The f2 features from the exherited classes use separate type and is natural that the correspondent
type in the superclass to be the same separate type.

32

Example 27 Expanded and Separate Type Exheritance
class EC1
feature
f1(a:expanded T):expanded T is do end
f2(b:separate T):separate T is do end
end
class EC2
feature
f1(x:expanded T):expanded T
f2(y:separate T):separate T
end
class T end
foster class FC
exherit
EC1
EC2
all
feature
-- f1(a:expanded T):expanded T is deferred end
-- f2(x:separate T):separate T is deferred end
end

Rule Exheriting Expanded Types Features having expanded types can be exherited if the
correspondent expanded types are equal in all exherited classes.

Rule Exheriting Separate Types Features having separate types can be exherited if the cor-
respondent separate types are equal in all exherited classes.

2.5.3 Exheriting Like Types
Anchored types (or like types) were introduced in Eiffel in order to avoid the covariant redeclaration
of the inherited features. In this section we analyze how features which are anchored can be
exherited. Therefore we consider the following cases regarding anchored features: features which
are anchored to other features, features which are anchored to current and features which are
anchored to arguments. When a feature in a class is anchored to current it means that it is
anchored to the local class type.

2.5.3.1 Exheriting Features Anchored to ”current”

In the example 28 we consider the case of features anchored to the special anchor current. Such
an anchor refers to the local class in which it is written. For example feature f of class B is of
type B, while feature f of class C is of type C.

Exheriting such a feature like f in class A means that it will be of type A. This behavior obeys
to the conformance rules of reverse inheritance. Type A is a supertype of types B and C.

Rule Exheritance for Anchored Feature. The features anchored to current in the subclasses
can be exherited keeping the same anchored type.

2.5.3.2 Exheriting Features Anchored to Other Features

In this case we deal with features anchored to other features, like those in the next sample:
In example 28, the anchors are attributes. We can set the following rule:

33

Example 28 Exheriting Anchored Features (1)
class B
feature

f: like current
end
class C
feature

f: like current
end
class A exherit
B
C
all
end

Example 29 Exheriting Anchored Features (2)
class B
feature
b: T1
f: like b

end
class C
feature
c: T2
f: like c

end
foster class A exherit
B
C
all
end

34

Example 30 Exheriting Anchored Features (3)
class B
feature
f(p: T1; p2: like p): like p is do ... end

end
class C
feature
f(p: T2; p2: like p): like p is do ... end

end
class A exherit
B
C
all
redefine f
feature
f(p: T; p2: like p): like p is do ... end

end

Rule Exheritance for Anchored Feature. Let us assume that b is defined in class B (resp. c
is defined in class C) and that it is of type T1 (resp. T2)

• if T1 and T2 are equal, the feature f in both subclasses has the same signature and is
automatically exherited;

• if T1 is the supertype of T2 (resp. T2 is the supertype of T1), in class A feature f can be
exherited with type T1 (resp. T2).

• if T1 and T2 have some common supertype T then feature f can be exherited with type T.

• if T1 and T2 are not related by any relations, feature f can be exherited only with type
ANY (this kind of exheritance will not help too much in practice).

2.5.3.3 Exheriting Features Having Arguments Anchored to Other Arguments

In this case we consider not just method arguments but also return types. In example 30, we
analyze a feature having an argument and the return type. From it we can draw the conclusion
that the second parameter and the return type will always follow the type of the first argument.
Feature f can be exherited taking into account the rules defined for type adaptations in section
3.3.1. In the exheritance of feature f the only thing that counts is the relation between types T1
and T2.

Rule Exheritance for Anchored Feature. The features anchored to other arguments in the
subclasses can be exherited respecting the signature adaptation rules for the types the fea-
tures are anchored to.

2.5.3.4 Exheriting Features Having Arguments Anchored to Features

In this section we present the case of exheriting features which have arguments anchored to features
from the class. In ordinary inheritance when such a situation arises both the referred feature and
the feature using anchors are inherited in the subclasses automatically. This way the feature using
anchors will have always available the referred feature. In reverse inheritance this dependence is
not assured implicitly because someone might want to exherit the feature using anchors, but not
the referenced feature. In this situation reverse inheritance in invalid, so it must be restricted

35

Example 31 Exheriting Anchored Features (4)
class B
feature
att: T1
f(p: like att): like att is do ... end

end
class C
feature
att: T2
f(p: like att): like att is do ... end

end
class A exherit
B
C
all
redefine att
feature
att: T
-- f(p: like att): like att is deferred end -- is implicit

end

by rules. One possibility is to use the anchored feature target type, which might be a recursive
process.

In example 31 it is presented a simple example of a feature f having anchored types for the
argument and for the return type. Both anchors refer to attribute att in both subclasses B and
C. Feature f is exheritable but it will be valid in the foster class only when feature att will be
exherited too, since feature f uses att.

Rule Exheritance for Anchored Feature. The features anchored to other features in sub-
classes can be exherited if the other features are exherited also.

2.5.4 Exheriting Bit Types
In this section we will present the exheritance of features having bit types in their signature. In
Eiffel the bit types may refer an integer manifest constant or an integer constant feature. In
example 32 we will show how the bit type can be exherited from the exherited classes in all the
possible combinations.

The f1 features from the exherited classes have the bit type expressed using the same value
integer manifest constant and they are exherited using the same type reference.

In exheriting the bit types referring exheritable constant features we have two choices:

• either we exherit the type and the referred feature also and we set the link between the type
and the exherited feature at foster class level;

• either we exherit the type and we create a new manifest constant having the same values as
the ones referred in the exherited classes.

The first choice would seem more natural to perform but it has the drawback that the language
does not allow constant features to be redefined. Still what we could do is to move up automatically
the feature from the exherited classes, but this would be in contradiction with the principle of
exheriting implicitly all features as deferred. The second solution is more feasible from the technical
point of view, but does not keep the same philosophy of the exherited class.

In our example f2 features refer a constant feature b which has the same value 7, being present
in each exherited class. In this case we exherit a feature whose types are linked to a manifest

36

Example 32 Exheriting Bit Types
class EC1
feature
b:INTEGER is 7
f1(x:bit 7):bit 7 is do end
f2(x:bit b):bit b is do end
f3(x:bit 7):bit 7 is do end
end
class EC2
feature
b:INTEGER is 7
f1(x:bit 7):bit 7 is do end
f2(x:bit b):bit b is do end
f3(x:bit b):bit b is do end
end
foster class FC
exherit
EC1
EC2
all

feature
-- f1(x:bit 7):bit 7 is deferred end -- is implicit
-- f2(x:bit 7):bit 7 is deferred end -- is implicit
-- f3(x:bit 7):bit 7 is deferred end -- is implicit
end

constant. In case of f3 features we mixed the two natures of the types and the implicit result is
that the types used in the superclass are linked to manifest constants. This behavior is normal
since not all features are linked to some exheritable constant feature.

Rule Exheriting Bit Types Bit types in order to be exherited, they must refer the same value
and they will be exherited in the foster class as referring an integer manifest constant.

2.5.5 Exheriting Various Types
In example 33 we mixed several types: class types referring formal generics and like types. These
types are special because they do not point directly to the target type. In order to perform
exheritance on such types we must consider their target types. If they are identical then exheritance
is possible. Feature f1 is of type T in both exherited classes, it is normally exherited and the
common type is T. Feature f2 is like f1 in one exherited class and of type T in the other exherited
class. Since the two types refer the same target type T, exheritance is possible and the exherited
type will be obviously T. Feature f3 is a bit more complex. The base class A is the same in both
exherited classes while the actual argument is in the situation of feature f2. Because we showed
that f2 is exheritable, also f3 is exheritable (same base generic class and same target type of actual
generics). Feature f4 adds the separate keyword to the class type having an actual generic.

2.6 Behavior in the New Created Class
In order to preserve the behavior of the subclasses and to keep the symmetry between the two
complementary class inheritance relationships it is not allowed to add new behavior in the super-
class. Otherwise, if some new behavior were specified in the superclass, it would be inherited by
all the subclasses changing thus the semantics of the original ones.

37

Example 33 Exheriting Various Types
class EC1
feature
f1:T
f2:like f1
f3:A[like f1]
f4:expanded A[like f1]
end
class EC2
f1:T
f2:T
f3:A[T]
f4:expanded A[T]
end
class T ... end
class A[G] ... end
foster class FC
exherit
EC1
EC2
all
feature
-- f1:T
-- f2:T
-- f3:A[T]
-- f4:expanded A[T]
end

38

In some special conditions, the target class of reverse inheritance can have superclasses. As we
mentioned earlier the behavior of the source class must not be modified, so that the content of the
superclass must be restricted. It can contain only a subset of the exherited features preserving
their signatures (but some method implementations can be provided within this class).

Another interesting case could be when a foster class has two superclasses, meaning that it is
the target of a multiple inheritance class relationship. In this case the same rules of preserving
the behavior of exherited classes apply as in single inheritance. The features in both superclasses
have to be included in the set of the exherited features.

As a conclusion we can state that any hierarchical structure is allowed to be on the top of
one foster class as long as the behavior of the subclasses is not affected by the inheritance of new
features.

Rule New Features in Foster Class. Features to a foster class can be added only if they
will not change the original behavior of the subclasses. Behavior can be attached only to
a feature in the foster class (directly or by normal inheritance, single or multiple) if that
feature can be exherited.

This rule will set the bases for determining when a foster class can have superclasses:

Rule Foster Superclass A foster class can have superclasses only if the inherited feature match
one of the exherited features.

2.7 Use of Exheritance Clauses for Factoring Features
In this section we will discuss the impact of the exheritance clauses like redefine, undefine and
moveup in the context of exherited features. The redefine and undefine clauses are already part
of the Eiffel language, but their semantics has to be clarified in the context of reverse inheritance.

Redefinition of a feature in a subclass consists in changing the signature, the specification
or the implementation. Of course, in ordinary inheritance the redefined signature must conform
to the original one. With reverse inheritance since we redefine the feature in the foster class, all
the feature signatures from subclasses must conform to the redefined one in the superclass. By
conformance we mean the characteristic of a type to be reused instead of another [Mey02]. In the
context of reverse inheritance the redefinition clause is placed after all the exheritance branches
and the feature selection section. The redefinition of an attribute from the superclass as a method
in the subclass is not possible. From this restriction we infer that a set of features from the
exherited classes can be exherited as a concrete attribute if all features in the set are concrete
attributes.

Undefinition of a feature in the context of ordinary inheritance means that the undefined
feature becomes deferred in the subclass. This adaptation can be applied to methods, but not to
attributes. In the context of reverse inheritance it is natural to exherit a feature no matter if is
a method or an attribute as a deferred feature as long as the signatures are compatible. Still if
there is a deferred feature in one of the exherited classes, the corresponding feature in the foster
class can not be attribute.

Themoveup clause is newly added to the language and its semantics is related to the selection
of implementation from the subclasses. If in the subclasses there is an implementation for a feature
which is suitable in the foster class, themoveup keyword should be used on the exheritance branch
corresponding to the subclass that has the desired implementation. Of course, there should be only
one implementation selected for a feature. It is acceptable to use moveup on multiple branches
if the implementations in the corresponding subclasses are the same for a specific feature.

The adapt clause is used for performing special kind of adaptations that can not be performed
with undefine and redefine clauses. Because exherited features came from different subclasses,
which may belong to different class hierarchies, some special adaptations seem to be necessary, in
chapter 3 are presented details on these issues.

To have a first idea of possible combination for the exheritance clauses we make the following
remarks:

39

• The rename clause can be combined freely with the clauses undefine (implicit behavior),
redefine, adapt and moveup. When combining renaming with other exheritance clause,
renaming has to be performed first, and only then the other desired clauses are used. Using
the renaming clause, the exherited feature will acquire a new name and the new name will
be used in the next desired exheritance clauses.

• The adapt clause, being used only for the adaptations that cannot be performed with
undefine and redefine clauses, it can not be used in combination with the two. It is
not possible to redefine and adapt a feature at the same time since the clauses refer to a
disjunctive set of adaptations: the former - to classic Eiffel adaptations and the latter - to
special adaptations. It does not make sense to undefine a feature and to adapt it at the
same time since there will be no implementation available. The combination of adapt and
moveup is not permitted since it affects the clarity of code.

• The order used in the exheritance branch for rename, undefine (which is implicit), rede-
fine and select is based on the one used for the clauses existing already in Eiffel.

– After an eventual renaming clause the new name of the feature has to be used in the
eventual undefinition, redefinition, adaptation, moving or selection. Like in ordinary
Eiffel, renaming deals with the name of the feature and not with the feature itself. The
rest of the operations redefine, adapt, undefine, select, moveup refer to modifications
related to signature, specification, implementation.

– Undefine is the default implicit behavior and is placed after renaming and before
redefinition or other clauses, but is not allowed together with adapt since the two are
not compatible.

– Adapt is a special kind of redefinition, so both can be treated using the same priority
order: after implicit undefinition and before selection. An adapted feature is prohibited
to be moved up.

– When moving up a feature implementation from the subclass in the foster class the
eventual renaming operation should be considered only. Since the implementation is
exherited, it can not be undefined. The redefinition of a moved feature is necessary if
its signature is changed in the foster class.

2.8 Summary
In this chapter we presented basic concepts about how a foster class can be created using reverse
inheritance. It was pointed out that the most simple class configuration when using reverse
inheritance is the single reverse inheritance case. Also we have to notice that class configurations
which look like multiple inheritance in context of ordinary inheritance, are just some independent
reverse inheritance class relationship. What is important in such class configurations is not so
much the shape of the diagram, but the order of class creation, namely, the time stamp of each
class.

There were presented the implicit and natural semantics of factoring features. When attributes
and methods have the same signatures in subclasses they can be automatically exherited. Implic-
itly, the attributes are exherited without their implementation, meaning that they are deferred in
the foster class. For methods is the same rule, only the signature is exherited, being deferred too
in the foster class. For practical reasons in the semantics of reverse inheritance is allowed to choose
between the implicit and explicit selection of the exherited features. There are four options: to
implicitly factor all possible features, having the possibility of explicitly excluding some common
features, to let the programmer specify explicitly the features needed in the foster class and to
factor no features at all.

The nature of the features is taken also into account. There are analyzed cases where attributes
and methods with the same signature are present. In that case they will be factored as an abstract

40

feature in the foster class. The same rule is set if methods are factored from the subclasses and
some are concrete and some deferred. When implementation is decided to be factored the problem
of dependencies arises.

For symmetry reasons and for keeping the philosophy of the Eiffel language consistent, reverse
inheritance is designed as a dual class relationship, having two forms: a conforming one and a
non-conforming one. The syntax used in this point is the same as the one used for ordinary
inheritance. Another supposition for keeping the semantics of the language intact is to allow the
behavior in the foster class influence in any case the behavior in the subclasses.

Type exheritance refers to the rules showing how types can be exherited. Types having actuals
behave like composed types because the type exheritance rules must be applied recursively. Ex-
panded and separate types depend on class types so the rules from class types have to be applied
along with the appearance of expanded respectively separate keyword. The like types may be
exherited with their link to the anchor if the anchor is exheritable too, if not, the type in the
foster class is the type of the anchor. Bit types are very special, they can not be compared with
any other type. If their size expressed by a manifest constant or a constant feature is equal then
the bit type may be exherited. Generic types may be instantiated with any type from the Eiffel
type system, like types seem to point to any other types, in the same manner, so before exheriting
them, they must be evaluated.

Exheritance clauses used in factoring features rises several cases, which were semantically anal-
ysed and rules were stated about them. It was taken into account the undefine, moveup, redefine
exheritance clauses and the nature of the features attributes and methods. Some combinations of
exheritance clauses are invalid, some other combinations are valid under certain conditions and
some cases are always perfectly valid. The analysis made involves only two exherited classes, but
the same reasoning can be applied when working with multiple ones.

41

Chapter 3

Adaptation of Exherited Features

In [LHQ94] is presented a set of adaptations which are valid in the definition of the reverse
inheritance semantics. We still think that there are some points where the adaptation mechanism
proposed by [LHQ94] can be extended. Adaptations can be seen as local transformations applied
to some features of classes which are exherited in order to conform to a common signature. These
feature adaptations are performed before their factorization, in order that a feature with different
signatures to satisfy the constraints for being exherited.

In this chapter we will see what kind of adaptations can be performed and what are their
restrictions. Each adaptation provides a mapping between the original signature of a feature and
the common signature located in the foster class.

3.1 Adaptation for Ordinary Inheritance Applied to Reverse
Inheritance

3.1.1 Feature Redefinition
The semantics of feature redefinition in reverse inheritance is intended to be kept the same as in
ordinary inheritance. Feature redefinition in ordinary inheritance implies changing either signa-
ture, specification or implementation. In the context of reverse inheritance, redefinition can
be used to adapt the signatures of certain features to one common signature. About the changes
that can be done there are some limitations.

Signatures from subclasses will have to conform to the signature of the superclass no matter if
they are linked by an ordinary or reverse inheritance class relationships.

Specification redefinition will obey (in particular) the rules presented in section 3.5.
Implementation redefinition will take into account the rules in subsections 17 and 2.6, because

an implementation can be rewritten or exherited. If the implementation is removed, meaning that
the feature is deferred, the undefine clause is used implicitly.

An example of such a feature redefinition is provided in example 34. Feature f from class A
must be redefined because the signature and the behavior in class C is changed. Feature f from
class B has only a new implementation preserving the original signature.

In the context of ordinary inheritance there are restrictions about redefining an attribute from
the ancestor as a method in the heir. This is due to the fact that a method in the heir containing an
assignment to that attribute could be inherited, so the redefinition of the attribute into a method
would invalidate the inherited assignment. For this reason, in reverse inheritance a feature from
the exherited class can always be redefined as a method in the foster class, but it can be redefined
as an attribute only if it is an attribute in all exherited classes.

Rule Feature Redefinition. When a feature f is exherited and when a change of signature,
specification (assertions) or implementation is necessary, then feature f has to be redefined
and must satisfy following conditions:

42

Example 34 Feature Redefinition
class T
end
class T1 inherit T
end
class A
feature
f(x: T1) is do -- implementation of class A end

end
class B
feature
f(x:T) is do -- implementation of class B end

end
class C exherit
A
B
all
redefine f
feature
f(x: T) is do -- implementation of foster class C end

end

• all the signatures of f specified in the subclasses must conform to the new signature of f in
the foster class;

• specification adaptation must agree with the rules defined in section 3.5;

• implementation adaptation will conform to the rules related to implementation exheritance
(section 2.3.3.4) and to the rules related to behavior in the newly created class (section 2.6);

• an exherited feature can be redefined as an attribute if it is an attribute in all exherited
classes.

As an observation, it can be noticed that a supertype for a set of classes, needed in a covariant
redeclaration, always can be obtained by reverse inheritance.

3.1.2 Feature Undefinition
In ordinary inheritance if an affective feature is undefined then it becomes deferred in the subclass
(please note that the current rules of Eiffel do not allow the undefinition of attributes). With
reverse inheritance an exherited feature is undefined implicitly in all exheritance branches, this
means that it will be deferred in the superclass. Of course, this works for any kind of features:
attribute and method with the constraint that signatures are covariant or at least adaptable. Some
of these aspects were also discussed in section 2.3.1.

Rule Deferred Feature in Foster Class. An exherited feature is deferred in the foster class
implicitly and is undefined in all exheritance branches. In this case the foster class becomes
deferred.

Rule Orthogonality According to Features. Attributes and methods (once or not) are
undefined when they are exherited.

43

Example 35 Feature Renaming
class BOX
feature
boundary: REAL
end
class CIRCLE
feature
circumference: REAL
end
deferred foster class SHAPE exherit
BOX
rename
boundary as perimeter

end
CIRCLE
rename
circumference as perimeter

end
all

feature
perimeter: REAL

end

3.1.3 Feature Renaming
Because quite often classes are developed independently, in most cases it happens that common
features have different names so that a name adaptation is required. In example 35 taken from
[LHQ94] we present such a name conflict situation and we propose a syntax extension for solving
it.

The classes BOX and CIRCLE both have attributes which refer to the perimeter of the shape,
but using different names boundary and circumference. Because we want to factorize those features
in class SHAPE we had to rename the two features using a common name such as perimeter.

It may also occur that two features from different subclasses have the same name but represent
different features. This is called the case of "false friends", as presented in [Sak02], and it is not
discussed in [LHQ94]. Obviously renaming is used to stop the ambiguity and there is no possibility
for an automated approach. The syntax used for renaming is the same like the one proposed for
ordinary inheritance in Eiffel.

Rule Renaming Feature. Renaming should be used when several semantically equivalent fea-
tures do not have the same name or when features with different semantics have the same
name.

3.1.4 Conclusions
After all these examples we can draw the conclusions regarding the semantics of the exheritance
clauses in two contexts: ordinary inheritance and reverse inheritance. The conclusions are cen-
tralized in table 3.1.

3.2 Special Signature and Value Adaptations
In order to increase the expressiveness of the reverse inheritance relationship (and by the way class
reusability), it may be interesting to provide a mechanism allowing to customize the signature of
the feature when exheriting. The following rule provide a general framework for such adaptation.

44

Inheritance/ Exheri-
tance Clauses

In context of ordinary inher-
itance

In context of reverse inheri-
tance

rename to change the name of the feature to change the name of the feature
undefine to make a feature deferred (it can

not be used for attributes, but
only for methods)

to make a feature deferred (it
is used implicitly for both at-
tributes and methods)

redefine to change signature (in a covari-
ant way), specification or imple-
mentation of a method

to change signature (in a covari-
ant way), specification or imple-
mentation of a method

adapt no semantics attached to change the signature (in other
ways than redefine does, and will
be studied thoroughly in chapter
3)

select is used for multiply inherited fea-
tures with a common seed when
a certain feature needs to be se-
lected in a polymorphic call

has a special semantics dedicated
to solve dynamic binding prob-
lems and it will be presented in
details is section 4.2

moveup no semantics attached used to select an implementation
of a method in the foster class
from one of the exherited classes
(of course if the dependencies al-
low this, see chapter 4)

Table 3.1: Semantics of Inheritance and Exheritance Clauses

Rule Special Feature Adaptation. The adapt clause allows to specify the name of the method
whose signature should be adapted in order to make possible the factorization of the cor-
responding method in the various subclasses. All adaptations are put after the keyword
adapted which is located just after a possible method precondition. Each statement de-
clared in this area allows to specify the adaptation to perform depending on the subclass
which is considered. The name of the class is put between braces, following the same syntax
as the one used for specifying the class corresponding to the precursor. If no adaptation
is specified for a subclass of the foster class, then no adaptation will be performed except
if one adaptation had been defined for one of its ancestors, if any. The keyword adapted
allows to specify the adaptation to perform depending on the considered subclass. Possi-
ble adaptations are scale adaptation, modification of the parameter order, number, or type,
modification of the type of feature (attribute type or function return type).

The adaptations applied to attributes are valid only if they are expanded and their instances are
treated as values. For non-expanded classes things become more complicated and are not discussed
here.

The grammar rules are listed in example 36.

3.2.1 Scale Adaptation
The idea of providing scale adaptation can be found in the works of [SN88]. This mechanism is
used to facilitate the conversion between value scales (they use conversion methods between the
scales which are encapsulated in a special meta-class). In our approach we will use the conversion
formulas as an adaptation technique because it seems to fit better in the programming language
philosophy.

In example 37 we illustrate a possible use of the scale adaptation mechanism. We start from
two classes RECTANGLE and ELLIPSE which have two methods returning the area of each
shape, but using different scales for that. The method in class RECTANGLE returns a value in

45

Example 36 Adaptation Grammar Rules
Adapted_opt: /* empty */

| E_ADAPTED Adapted_list E_END
Adapted_list: Adapted_item

| Adapted_list Adapted_item
| Adapted_list ’;’ Adapted_item

Adapted_item: ’{’ Class_type_list ’}’ Attribute_adaptation
| ’{’ Class_type_list ’}’ Routine_adaptation

Class_type_list: Class_type
| Class_type_list ’,’ Class_type

Attribute_adaptation:
Adapted_type E_IS ’(’ Expression ’)’ Adapted_result

-- Expression is used in assignments to the attribute, and may contain
-- ’Precursor’. Adapted_result is used for reading the attribute, and may
-- contain ’Result’.
Adapted_type: Type

| E_LIKE E_PRECURSOR
Adapted_result: ’:’ Expression
-- May contain ’Result’.
Routine_adaptation:

Adapted_formals Adapted_type_mark_opt E_IS
Adapted_actuals Adapted_result_opt
| Adapted_type E_IS Adapted_result

Adapted_formals: ’(’ Entity_declaration_list ’)’
| ’(’ E_LIKE E_PRECURSOR ’)’

Adapted_type_mark_opt: Type_mark_opt
| ’:’ E_LIKE E_PRECURSOR

Adapted_actuals: ’(’ Actual_list ’)’
| ’(’ E_PRECURSOR ’)’

-- The expressions in Actual_list may contain names of formal arguments
-- of the foster class routine.
Adapted_result_opt: /* empty */

| Adapted_result

46

Example 37 Scale Adaptation (1)
class RECTANGLE
feature
getSurface: INTEGER is
do
-- rectangle specific implementation in cm^2
end
end
class ELLIPSE
feature
get_Surface: INTEGER is
do
-- ellipse specific implementation in m^2
end
end
foster class SHAPE exherit
RECTANGLE
rename
getSurface as getArea

end
ELLIPSE
rename
get_Surface as getArea
adapt
getArea

end
all
feature
getArea: INTEGER is
adapted
{ELLIPSE} like precursor is : Result * 10000

end
end

47

foster class SHAPE exherit
BOX
rename
zoom as scale
adapt
scale

end
all
feature
scale(factor:REAL;center:POINT) is
adapted
{BOX} (center:POINT;factor:REAL) is (center,factor)
end
end

Figure 3.1: Parameter Position Adaptation

cm2 while the corresponding one in class ELLIPSE returns a value in m2. Following the same
homogeneity principle announced in section 34 we definitely need a conversion between the two
scales. So we decided to extend the syntax of Eiffel to be able to specify the desired transformation.
Although in the example we can remark that the two techniques of renaming and adapting are
orthogonal since they do not affect each other.

The like precursor used in the adaptation denotes the new type returned by the method. The
expression after the is keyword represents the adapted returned value of that method. Internally
the method from the exherited class uses its own representation that finally when it is returned
must be adapted.

In the case of adapting an attribute, conversions should be provided in both ways. This is
necessary when setting the value of an attribute. In our approach we consider that a natural way
to do this is to adapt the assigner method of the attribute. This is illustrated in example 38. In
order to exherit the attribute surface we need to also exherit its assigner method putSurface. In
this example we can see that both features (attribute and its assigner) are associated to a piece of
code which achieve the value conversion. When the attribute surface is evaluated using a reference
of type SHAPE on an instance of ELLIPSE, then its implementation is transformed to have the
same representation as in the superclass. When an external object assigns a value to this attribute
through the assigner method attached to a SHAPE reference a conversion is also necessary. Class
ELLIPSE works using its own representation and when its instances interact through SHAPE
references the conversion code is put to work. When an attribute has no assigner method then no
scale adaptation can be performed on it.

Rule Function Scale Adaptation. Scale adaptations can be applied to methods returning
values and it implies providing a conversion from the returned type scale of the feature in
the subclass to the scale of the corresponding feature in the superclass.

Rule Attribute Scale Adaptation. Scale adaptations can be applied to attributes and it
implies providing conversions in both ways: in one way like in the rule above and in the
other way by adapting the assigner methods of the attribute.

3.2.2 Parameter Order Adaptation
The issue of parameter order adaptation is discussed in [LHQ94]. They even proposed a syntax
extension to solve this problem1:

1We slightly adapted the syntax to fit better to our approach. The changes made are only at the syntactical
level and the semantics is preserved.

48

Example 38 Scale Adaptation (2)
class RECTANGLE

-- Rectangle specific implementation in cm^2
feature
surface: INTEGER assign putSurface

putSurface(p: INTEGER) is do surface := p end
end
class ELLIPSE

-- Ellipse specific implementation in m^2
feature
area: INTEGER assign putArea
putArea(a: INTEGER) is do area := a end
end
foster class SHAPE exherit
RECTANGLE
ELLIPSE
rename
area as surface
putArea as putSurface
adapt
putSurface

end
all
feature
surface:INTEGER is
adapted
{ELLIPSE} like precursor is (precursor / 10000) : Result * 10000
end

putSurface(s:INTEGER) is
adapted
{ELLIPSE} (a:INTEGER) is : (s / 10000)
deferred
end

end

49

Example 39 Using the Adaptation
point : POINT
factor: REAL
s: SHAPE
b: BOX
create b
s := b
s.scale(factor,point)
-- equivalent call: b.zoom(point,factor)

The syntax extension which is proposed rely on the clause adapt like for scale adaptation (see
section 3.2.1). It provides a new parameter mapping related to the original one. The relation
between the parameters remains the same that is to say, one to one. No parameter is omitted or
duplicated. The syntax extension allows to specify that when a call to the method scale is made
(through a reference of type SHAPE) on an instance of class BOX, it is equivalent to perform a
call to the method zoom with the parameters in the reverse order.

Example 39 illustrates a situation where the adaptation of the parameter order is useful. When
the method scale is called then everything work as if it was the zoom method which is called relying
on both adaptation mechanism and dynamic binding semantics2.

3.2.3 Parameter Number Adaptation
A similar though more complicated situation arises when the number of parameters is not the
same. In such a situation there are several possibilities:

• To omit or ignore some parameters - this mapping can be used when in the context of a
given class, the parameter is not needed because of possible lack of semantics.

• To freeze some parameters to constant values - this technique goes in the direction of lan-
guages which support function overloading like C++ does. The restriction imposed by C++
is to locate those default parameters at the end of the declaration list. In our case the pro-
posed syntax bypasses this restriction and allows omitting any parameters independently of
his relative position in the list.

• To replicate some parameters - this practice can be used when the method in the subclass
has a more general behavior and to obtain a particular behavior, some parameters can be
duplicated. It is intended that the behavior of the superclass to be reused in the subclass in
a particular context.

• To rely on the description of basic computations in order to create new parameters. This
means to write an expression which yield a result which will be used as a parameter.

In example 40 all the cases are experimented and a syntax is proposed to describe them.
In example 40 we have designed a superclass X, by reverse inheritance, which has a method m

with two parameters. We intended to show that it is possible to use something else than a one to
one parameter mapping. The computations involved into parameter adaptations should be basic
and may involve only the method parameter and attribute or function of the foster class.

The mechanism presented does not interfere with the other adaptation clauses presented in
previous sections, they are orthogonal so they can be freely combined. For instance, it is possible to
perform a scale adaptation in the same adapted construct, thus making the adaptation expressions
more complex. Moreover the feature (m in our example) could have a redefined signature, a new
specification, a new written body or an empty body. In this case, the construct adapted is placed

2Issues dealing with the dynamic binding will be addressed with much more details in chapter 4.

50

Example 40 Parameter Number Adaptation
class A
feature
m(p1:INTEGER) is do end

end
class B
feature
m(p1, p2, p3: INTEGER) is do end
end
class C
feature
m(p1, p2, p3:INTEGER) is do end
end
class D
feature
m(p1, p2, p3: INTEGER) is do end
end
foster class X exherit
A
adapt m
end
B
adapt m
end
C
adapt m
end
D
adapt m
end
all
feature
m(q1, q2: INTEGER) is
adapted
{A} (p1:INTEGER) is (q1)
{B} (p1,p2,p3:INTEGER) is (q1, q2, 0)
{C} (p1,p2,p3:INTEGER) is (q1, q2, q1)
{D} (p1,p2,p3:INTEGER) is (q1, q2, q1 + q2)
do
... -- possible implementation
end
end

51

at the head of method declaration (after possible preconditions), before the keyword deferred or
respectively do.

Rule Parameter Number Adaptation Parameter number adaptations are necessary when
exherited methods have a different number of parameters than the method in the foster class.
In the adaptation clauses of the foster class method there can be written equivalent calls to
subclass methods in which some parameters are omitted, freezed, replicated or computed.
The syntax used for this adaptation is the one presented at the beginning of this section
(3.2).

3.3 Classic Signature Adaptations
Rule Classic Method Signature Adaptation. The redefine and undefine clauses allow to

specify the adaptation of parameter type and the type of feature (attribute type or return
function type). These adaptations rely on the conformance rules based on the polymorphism,
exactly as the clause with the same name applied to ordinary inheritance in Eiffel. A
feature is considered to be redefined in a subclass in the context of ordinary inheritance if
signature, specification or implementation are changed. We keep the same rule in the context
of reverse inheritance: signatures must be covariant, specification should be implied by all
the specifications of subclasses for a certain feature.

3.3.1 Parameter Type Adaptation
Parameters are used to exchange information between methods and procedures. Sometimes be-
cause the subclasses were developed in different contexts some parameter type adaptations are
necessary for methods. This case deals with all type adaptations which can be performed when
undefining or redefining a feature. For that it is necessary to use the clauses redefine or undefine
depending on the relevance of exheriting the concrete version or only the signature of the feature.

Redefining the Signature and the Behavior

In example 41 the feature f declared in class A is of type SQUARE whereas it is of type CIRCLE
in class B. Since in class C the feature f which is exherited from both subclasses, needs to be
of type FIGURE (a supertype of SQUARE and CIRCLE). We assume that the body has to be
redefined along with the signature redefinition. In this case we must use the clause redefine in
the foster class and the definition of a new body is needed. A full discussion about the possible
combinations of exheritance clauses had been presented in section 2.7 and this adaptation conforms
to it.

Let us discuss about whether class FIGURE exists already or not. If it exists then there is
nothing to do, otherwise two alternatives are possibles : i) to create it a posteriori using a reverse
inheritance relationships to the parameter type classes, ii) to use a common existing ancestor of
the subclasses (there is at least one: the special class ANY which is the superclass of any defined
classes in Eiffel).

Redefining the Signature Only

Example 42 relies on the classes declared in example 41 but in this situation, it is only necessary
to modify the signature and not the body, so therefor we use the implicit clause undefine instead
of redefine. The feature f is the exherited in C with the parameter p of type FIGURE from
subclasses A and B where the parameter p of f is respectively of type SQUARE and CIRCLE
(the class FIGURE is a superclass of SQUARE and CIRCLE). In this situation, the declaration
in C of f as a deferred feature will be sufficient3.

3All what had been said in previous paragraph about the fact that class FIGURE exists or not and, about the
possible combination of exheritance clauses, remains true.

52

Example 41 Parameter Type Adaptation
class FIGURE inherit
SQUARE
CIRCLE
end
class A
feature
f(p: SQUARE) is do ... end
end
class B
feature
f(p: CIRCLE) is do ... end
end
foster class C exherit
A
B
all
redefine f
feature
f(p: FIGURE) is do ... end
end

Example 42 Class Type Parameter Adaptation (1)
deferred foster class C exherit
A
B
all
redefine f
feature
f(p: FIGURE) is deferred end
end

53

Example 43 Class Type Parameter Adaptation (2)
class FIGURE
convert
to_square: SQUARE is do ... end
to_circle: CIRCLE is do ... end

feature
end
class SQUARE
end
class CIRCLE
end
class A
feature
f(p: SQUARE) is do ... end
end
class B
feature
f(p: CIRCLE) is do ... end
end
deferred foster class C exherit
A
B
all
redefine f
feature
f(p: FIGURE) is deferred end
end

Considering the Case Where There is No Type Conformance

Let us assume that FIGURE is not a common ancestor of SQUARE and CIRCLE (and that
we do not want to use the class ANY). In this context we may use the conversion mechanism
available in Eiffel: when a certain type object is needed in a context and some other type object
is passed, conversion methods have to be provided. Please note that in figure 43 we redefine only
the signature (use of the clause undefine) but it would work exactly in the same conditions if the
behavior should be redefined also (use of the clause redefine).

In example 43 in class C we have the same situation as in the previous example. The difference
is that class FIGURE is not related to SQUARE and CIRCLE with an ordinary inheritance
relationship. In order to maintain the type conformance between SQUARE (resp. CIRCLE) and
FIGURE it is necessary that FIGURE is equipped with a conversion method for SQUARE (resp.
CIRCLE) instances. An alternative would be to define conversion methods dedicated to FIGURE
in both classes SQUARE and CIRCLE.

Rule Adaptation in the Context of No Type Conformance. The class on which relies the
parameter type of a method (let us name this class X) which is exherited in a foster class
must, either be a superclass of all classes corresponding to the type of that parameter (let us
name them X1 . . . Xn) in the subclasses mentioned in the foster class or, declare conversion
routines between class X and all classes X1 . . . Xn.

Considering Primitive Types

In Eiffel a primitive type is considered as a regular expanded class and it is equipped with some
conversion routines (even if they are treated in a special way by the compiler). Then, when

54

Example 44 Primitive Type Parameter Adaptation
class A
feature
f(p:FLOAT) is do ... end
end
class B
feature
f(p:DOUBLE) is do ... end
end
deferred foster class C exherit
A
adapt f
end
B
adapt f
end
all
feature
f(p:INTEGER) is
adapted
{A} (p:FLOAT) is f(p) -- FLOAT
{B} (p:DOUBLE) is f(p) -- DOUBLE
deferred
end
end

primitive types are involved in the parameter list of a method some additional adaptations are
possible. The principle of those adaptations is the following: when an effective parameter has
a smaller type representation than the actual parameter and if their type are compatible, then
the statement is correct. For example, if the actual parameter of a feature is of type FLOAT
or DOUBLE then an effective parameter of type INTEGER may be used4 (but not if it is a
BOOLEAN because its type is not compatible). This situation is illustrated in example 44.
Feature f in class C has a parameter of type INTEGER while in the subclasses A and B the
corresponding parameter is of type FLOAT and DOUBLE.

Rule Adaptation for Primitive Types. The primitive type parameter in the foster class must
be compatible with all the corresponding parameters in the subclasses and must have the
same or a smaller representation5 than those in the subclasses.

3.3.2 Return Type Adaptation
Return types may influence the signature of exherited features. Let us analyze what is the impact
of return types in two cases when they are primitives and when they are classes. Some adaptations
are possible but with certain restrictions. Let us have a look what happens in the situation of
type classes.

In example 45, feature f is exherited from classes A and B into class C. In each class (A, B
or C), the feature f returns an object of a certain type. Let’s analyze the possible restrictions
between these types. If an instance of A or B is pointed out by a feature of type C then a call to f
will return an instance of type Y or Z. It is mandatory for types Y and Z to conform to X. Type

4The set of INTEGER values are included in the set of FLOAT or DOUBLE values.
5By smaller representation we mean that all values of the foster class parameter type must be included in the

set of values of each subclass parameter type.

55

Example 45 Class Attribute and Return Type Adaptation
class X
feature
end
class Y inherit X
feature
end
class Z inherit X
feature
end
class A
feature
f: Y is do ... end
end
class B
feature
f: Z is do ... end
end
foster class C exherit
A
B
all
redefine f
feature
f: X is do ... end

end

X being a supertype of Y and Z, its interface could be a restriction of Y and Z interfaces. This
represents a limitation of the adaptation. Of course, when such a type X does not exist initially
it could be created by reverse inheritance. This way the covariance principle of the returned type
is preserved in reverse inheritance.

If we assume that there is no inheritance relation between classes X, Y and Z than the only
way exheritance is possible is when conversion methods are provided to them.

In example 46, a polymorphic call to the feature f on an instance of type A or B through a
feature of type C will return an instance of type X. Since the calls are executed by the feature f
declared in classes A or B they will in fact return an instance of type Y or Z. Conversion methods
have to be specified from Y, Z to X. In the proposed example, the conversion methods are located
in classes Y and Z. Another possibility would be that class X provides the conversion methods,
like it is the case in example 43. Obviously, they cannot be declared in both places since the rules
of Eiffel disallow such conversion ambiguity.

Rule Return Type Adaptation. If a feature which returns a result is exherited in a foster
class, then one of the following assumptions must be satisfied:

• the return type defined in the foster class must be a supertype of the corresponding feature
type in all subclasses;

• conversion routines are defined between the feature return type in all subclasses and the
feature type defined in the foster class.

Considering Primitive Types

When dealing with primitive types we can analyze a sample general enough to draw decent con-
clusions.

56

Example 46 Class Return Type Adaptation (2)
class X
feature
end
class Y
convert
toX: X is do ... end

feature
end
class Z
convert
toX: X is do ... end

feature
end
class A
feature
f: Y is do ... end
end
class B
feature
f: Z is do ... end
end
foster class C exherit
A
B
all
feature
f: X is do ... end
end

Example 47 Primitive Return Type Adaptation
class A
feature
f:INTEGER is do ... end

end
class B
feature
f:FLOAT is do ... end

end
foster class C exherit
A
B
all
feature
f:DOUBLE is
adapted
{A} DOUBLE is Result
{B} DOUBLE is Result
do
...
end

end

57

Let’s examine example 47. The feature f from class A returns an integer, the feature f from
class B returns a float value and the exherited feature f of class C returns a double value. If
the feature f is called through a query whose static type is C whereas its dynamic type is A or
B then it is straightforward because a float value and an integer value can be represented by the
type DOUBLE. If the type of feature f in class C is FLOAT then still there is no precision loss.
But if the type of feature f in class C is INTEGER or BYTE 6 then the float values returned by
the feature f in class B will be truncated, leading to some precision loss.

Rule Return Type Adaption. When in the foster class, the type of an attribute or the return
type of a function belongs to the set of primitive types, then it must be compatible (to satisfy
the compatibility rules between primitive types of Eiffel) with the type of the corresponding
features in all the subclasses. This implies that the type of the feature in the foster class
must be larger7 than the corresponding one in all subclasses.

It can be noticed that the rules regarding class parameter type and class return type are the same.
The idea exploited in these cases is the substitution principle of polymorphism. The parameter
and the return type in the foster class have to be chosen in such manner that the instances of the
parameter types or return types from the subclasses to be able to be referred by the corresponding
ones in the foster class. For primitive types polymorphism no longer holds, so another idea is
used. For primitive type parameters, which represent usually input data, the type in the foster
class should be tighter than those in the subclasses. In this way, only the subset of common values
of all types from subclasses will be used. When dealing with primitive return types the things are
opposite. The return type in the foster class must be able to represent all the values which can be
returned by any method from the subclasses.

3.3.3 Attribute Type Adaptation
We will analyze attribute type adaptations in this subsection in several cases. In Eiffel an attribute
access implies a query which returns a copy of the attribute instance. We will have a discussion
regarding types T1 and T2 relative to type T. First we will consider the case of T1, T2 and T
being class types.

In case both T1 and T2 conform to type T we have to deal with a covariant redefinition like
in example 48.

In case T1 and T2 do not conform to T and classes T1 and T2 have conversion methods
to type T and vice-versa class T has conversion methods to T1 and T2 then we can get a valid
attribute exheritance. This is emphasized in example 49.

In example 49 classes T1 and T2 are equipped with conversion methods to type T, and class
T is equipped with conversion methods to types T1 and T2. Since such conversions are provided
in both ways attribute a of type T1 respectively T2, from classes A and B can be exherited in
class C having a new type T.

Rule Attribute Type Adaptation. If an attribute is exherited in a foster class, then one of
the following assumption must be satisfied:

• the attribute type defined in the foster class must be a supertype of the corresponding feature
type in all subclasses;

• conversion routines are defined between the attribute type in all subclasses and the feature
type defined in the foster class.

6By BYTE we denote an integer type with a limitation of range from 0 to 255.
7By larger representation we mean that all values of the foster class return type must include the set of values

of each subclass return type.

58

Example 48 Attribute Type Adaptation (1)
class T
end
class T1 inherit T
end
class T2 inherit T
end
class A
feature a:T1
end
class B
feature a:T2
end
foster class C exherit
A
B
all
redefine a
feature a:T
end

Example 49 Attribute Type Adaptation (2)
class T
convert
toT1: T1 is do ... end
toT2: T2 is do ... end

feature
end
class T1
convert
toT: T is do ... end

end
class T2
convert
toT: T is do ... end

end
class A
feature a:T1
end
class B
feature a:T2
end
foster class C exherit
A
B
all
feature a:T
end

59

Example 50 Attribute Type Adaptation (3)
class A
feature a:FLOAT
end
class B
feature a:INTEGER
end
foster class C exherit
A
B
all
feature
a:DOUBLE is
adapted
{A} DOUBLE is (precursor) Result
{B} DOUBLE is (precursor) Result
end

Considering Primitive Types

When dealing with primitive types in the context of attribute exheritance there can be type
adaptation in a restricted way. A favorable situation is when in the foster class there is an
exherited attribute having a larger type and in the subclasses there are smaller types for the
corespondent exherited features like in sample 50.

When reading attribute a using a C reference on a A or B instance there is no problem since the
FLOAT or INTEGER values provided by the subclasses can be represented by the corresponding
DOUBLE type of the foster class.

When setting the value of an attribute in Eiffel it is used an assigner method, which has a
parameter compatible with the type of the attribute. The adaptation of parameters was studied
in subsection 3.3.1. The exheritance of an attribute together with its assigner method will be
analyzed in subsection 4.3.5.

Rule Attribute Type Adaption. When in the foster class, the type of an attribute belongs
to the set of primitive types, then it must be compatible (to satisfy the compatibility rules
between primitive types of Eiffel) with the type of the corresponding features in all the
subclasses. This implies that the type of the feature in the foster class must be larger than
the corresponding one in all subclasses.

3.4 Generic Type Adaptation
In Eiffel, the genericity can be constrained or unconstrained. Unconstrained genericity implies that
the generic parameter of a generic class can represent an arbitrary type. If the type is constrained
to a specific one then it is possible to do more with it in the class. From this dual point of
view we start the genericity analysis. We have to specify also that a class can depend on more
than one generic parameter, actually it is possible to have a list of formal generic parameters.
Our attention is focused on features using generics potentially to be exherited and also on the
relationship between foster class and exherited class. It is known that in ordinary inheritance a
subclass must instantiate a superclass in the process of inheritance. The same thing happens in
the context of reverse inheritance: the foster class will instantiate the generic exherited classes in
the process of exheritance.

60

Example 51 Unconstrained Genericity (1)
class A[G1]
feature
e: INTEGER
f: G1

end
class B[G2]
feature
e: INTEGER
f: G2

end
foster class C exherit
A[DOUBLE]
B[DOUBLE]
all
feature

-- e: INTEGER is deferred end --implicit exheritance
end

3.4.1 Unconstrained Genericity
Let us have two classes A and B which exist initially and a superclass C created using a reverse
inheritance class relationship with A and B. We take the case of two classes specifying one generic
parameter, which seems to be general enough. At first glance we can identify three main cases
which are addressed in the three next subsections.

Non-generic Foster Class and Generic Subclasses

Class C has no generic parameters, while classes A[G1] and B[G2] have. In this case only the
features which do not involve generic types, can be eventually exherited.

In example 51, the feature e from the subclasses A and B will be automatically exherited
while feature f can not be exherited even if in the exheritance branches the same concrete type
is used when instantiating the exherited classes. The reason is that such a configuration can
not exist in ordinary inheritance where the generic subclass inherits from the foster class and no
instantiation is possible between the two classes. The reason why the exheritance of feature f
seemed possible is the presence of the subclass instantiation by the foster class. In our example if
we parameterized classes A and B with type DOUBLE we will actually exherit from two subclasses
having INTEGER and DOUBLE attributes from which we will exherit only attribute e.

Rule Exheriting Generic Classes in a Non-generic One. When subclasses are generic and
not constrained but the foster class is not generic, then it is possible to exherit normally
features which are not generic, but not generic features even if their corresponding actual
parameter types are compatible.

Generic Foster Class and Generic Subclasses

Classes A[G1], B[G2], C[G3] are all generic classes. In this case a class hierarchy would look like
in example 52. Like in example 51, it is possible to exherit non-generic features as far as they
satisfy the constraints mentioned in earlier sections. Because there is no constraint on the generic
parameters it is possible to exherit any feature involving a formal generic parameter. As far as the
signature of the feature is the same except for the name of the formal generic parameter that may
be different, no adaptation is needed. If there is more than one generic parameter, the exheritable
feature signatures must have the same ordered generic type set from the foster class. The number

61

Example 52 Unconstrained Genericity (2)
class A[G1]
feature
f: G1
m(p: G1) is do ... end

end
class B[G2]
feature
f: G2
m(p: G2) is do ... end

end
foster class C[G3] exherit
A[G3]
B[G3]
all
feature
-- f: G3 is deferred end -- is implicit
-- m(p: G3) is deferred end -- is implicit

end

of generic parameters of the foster class or of the exherited classes are not important as far as the
exherited feature types point to the same formal generics in the foster class. The instantiation
between the foster class and the exherited classes can be reversed and be used in the equivalent
ordinary inheritance.

Rule Exheriting Generic Classes in a Generic One. When subclasses are generic and the
foster is generic too, then it is possible to normally exherit features which are not generic
and also generic features using the same generic type set from the foster class.

Generic Foster Class and Non-generic Subclasses

Superclass C[G] has generic parameters while the subclasses do not have.
In some cases (see example 53), it may be interesting to build a foster class which not only

is more abstract but also can implement, using genericity, a part of the behavior independently
from the data involved (this is particularly useful for data structures like in example 54). In our
example we created the class C[G] with a formal generic parameter G which will represent the
concrete types T1 and T2 from classes A and B. In this way it is possible to create at least generic
signatures at the level of the superclass. In some cases it could be useful to take an implementation
from one subclass and to generalize it in the superclass using the generic types. Of course, this is
possible only when the implementation of the exherited method is prepared to allow a concrete type
substitution with a generic one. Reverse inheritance presents class parameterization capabilities
but in general situations some other preparations are still required [CRM99].

As a conclusion in this case the multiple reverse inheritance requires that the generic parameter
G to be a supertype of T1 and T2. This requirement could be better handled in the case of
constrained genericity. It seems that this case is more appropriate to single reverse inheritance
situations.

From the class relationship point of view we can say that instantiation between foster class
and exherited classes is not necessary since exherited classes are not generic, while in equivalent
ordinary inheritance class relationship such an instantiation is very necessary since the foster class
must be instantiated in order to be inherited.

Rule Exheriting Non-generic Classes in a Generic One. When subclasses are non-generic
but the foster class is generic, then such a class combination is not valid since instantiation

62

Example 53 Unconstrained Genericity (3)
class A
feature
f: T1
m(p: T1) is do ... end

end
class B
feature
f: T2
m(p: T2) is do ... end

end
foster class C[G] exherit
A
adapt f,m
end
B
adapt f,m
end
all
feature
f: G
m(p: G) is adapted end

end

Example 54 Unconstrained Genericity (4)
class PERSON_COLLECTION
feature
add(e: PERSON) is do ... end

end
foster class COLLECTION[G] exherit
PERSON_COLLECTION
adapt add
end
all
feature
add(e: G) is adapted end -- the parameterized implementation of add
end

63

Example 55 Constrained Genericity (1)
class A[G1 -> T1]
feature
a: G1
m(p: G1) is do ... end

end
class B[G2 -> T2]
feature
a: G2
m(p: G2) is do ... end

end
foster class C exherit
A[X]
B[Y]
all
redefine a, m
feature
a:T
m(p: T)is do ... end

end

information in inheritance does not exist and can not be inferred.

3.4.2 Constrained Genericity
In the case of constrained genericity the generic parameter has a type that conforms to. So there
is a minimal set of messages an object can receive through the interface of that type. We take the
same structural example like for unconstrained genericity. Classes A[G1→ T1], B[G2→ T2] are
created first, they have generic formal parameters G1, G2 and those parameters will conform to
types T1, respectively T2. Then class C[G3 → T3] is created by reverse inheritance with A and
B. We consider various possibilities for the parameters and types.

Non-generic Foster Class and Generic Subclasses

If C has non-generic features, then the non-generic features can be normally exherited. Depending
on some relations between T1 and T2 it may be possible to exherit features involving generic types.
If T1=T2 then the type used in the feature exheritance can be T=T1=T2. Otherwise, another
type T can be used in the superclass C if T1 and T2 conforms to T. A special case may be the
case where T1 conforms to T2 or vice-versa.

Class C is not generic and formal generic parameters G1 and G2 conform to type T. So in the
superclass C the attribute a and the signature of method m are equipped with the corresponding
type T. If such a type as T does not exist, then exheritance of the features having generic pa-
rameters is not possible. In the exheritance branches, concrete types X and Y must respect the
corresponding type constraints specified in the exherited classes and also the requirement related
to the existence of a common supertype T.

The equivalent class relationship in this configuration is valid, but the instantiation information
is lost.

Generic Foster Class and Generic Subclasses

In the case of all classes having a generic parameter, like A[G1→ T1], B[G2→ T2], C[G3→ T3].
If T1 and T2 conform to T3, then factorization of generic features is possible. In example 56,

64

Example 56 Constrained Genericity (2)
class A[G1 -> T1]
feature

a: G1
m(p: G1) is do ... end

end
class B[G2 -> T2]
feature

a: G2
m(p: G2) is do ... end

end
foster class C[G3 -> T3] exherit
A[G3]
B[G3]
all
redefine m

feature
m(p:G3) is do ... end --to write a new code

end

attribute a and method m can have a generic parameter G3 in the superclass which conforms to
T3 because T1 and T2 conform to T3 also.

The class configuration is valid in equivalent inheritance because the instantiation information can
be inferred.

Generic Foster Class and Non-generic Subclasses

The last case in which class C[G3 → T3] is generic, is the same as the case of unconstrained
genericity. The class configuration is not valid since the instantiation information does not exist
and can not be inferred.

3.5 Redefining Preconditions and Postconditions
The assertion mechanism of Eiffel helps checking software text correctness meaning whether the
implementation of a feature conforms to its specification. The basic element of this mechanism is
the assertion. Assertions represent boolean expressions which use Eiffel logical operators (coming
from class BOOLEAN) and the features declared within classes. They are used to express abstract
properties of classes. By assertions we mean preconditions, postconditions and invariants. Class
invariants behave like postconditions so for them we will apply similar rules to postconditions. Let
us investigate first how assertions are affected by single and multiple inheritance.

First, in the case of ordinary inheritance, any assertion implicitly includes the corresponding
assertion in the parent. On the other hand, an inherited feature may change the precondition of the
parent by weakening it (by writing an alternative precondition) and may change the postcondition
of the parent by strengthening it (by writing an extra postcondition). The reason for which
preconditions are kept or weakened is for any older clients of the superclass to be able to use the
subclass. In the case of postconditions, since subclasses are specializations of the superclasses they
should have new constraints related to the newly added features.

If we consider that pre1, pre2, ..., pren are the preconditions and post1, post2, ..., postn are
the postconditions in the precursor then a redeclared routine will have the following equivalent
assertions8:

8We mention that when dealing with single inheritance n equals to 1.

65

alternative_precondition or else pre1 or else pre2 ... or else pren
extra_postcondition and then post1 and then post2 ... and then postn

When an inherited feature has not declared any additional preconditions or postconditions then
the alternative_precondition is equivalent to false, since false is neutral to the OR logical operator
and extra_postcondition is equivalent to true, since true is neutral to the AND logical operator.

To exherit features means also to determine which will be their new preconditions and postcon-
ditions in the superclass, should we exherit a part or the whole preconditions and postconditions
that come along with the features. In this section we will see how this task can be accomplished
and in which cases it can be automated.

3.5.1 Eliminating Non-Exherited Variables
In [LHQ94], a rule is proposed for handling preconditions. It defines the precondition of a feature
in the superclass as the AND-ing of all the corresponding preconditions from subclasses. The same
is proposed for postconditions but using the logical OR operator to compose them. So the foster
class will have a stronger precondition and a weaker postcondition. We rely on this approach and
we will augment it later on.

Since true is the weakest assertion it can be used as postcondition in the superclass. It is not
equivalent to use false on the corresponding position for precondition, although it is the strongest
assertion. Any call to such a feature will be rejected, considering that the precondition failed. So
in conclusion the foster class precondition, respectively postcondition, will be the following:

pre1 AND pre2 AND ... AND pren
post1 OR post2 OR ... OR postn

In some cases it is impossible to define a valid precondition for the foster class. This happens
when at least two preconditions are in contradiction and the foster class precondition will always
fail. Such an example is straightforward if pre1 is a<5 and pre2 is a>5. In this cases exheri-
tance is forbidden for conforming reverse inheritance and allowed only for non-conforming reverse
inheritance.

The [LHQ94] paper mentions also that some assertions may contain features which are not
exherited. One radical solution is to invite the programmer to write from scratch all the assertions.
The second solution would be to prompt the programmer to exherit the depending features. Of
course, this solution is more or less applicable depending on the semantical restrictions. Another
possible solution is to adapt the assertions by disabling those logical subexpressions which contain
non-exherited features. In our approach the idea is to automatically modify the boolean expression
in such manner that it will affect as less as possible the evaluation. For example, let us consider
the features a, b, c. The following transformations may appear if c is not exherited or in the last
case, if e1 and/or e2 contain features which are not exherited:

01 (a<b) and (b<c) is transformed in : (a<b)
02 (a<b) or (b<c) is transformed in : (a<b)
03 (a<b) xor (b<c) is transformed in : (a<b)
04 not (b<c) is transformed in : void
05 e1 implies e2 is transformed in : void

On line 01 the second operand of the expression and could not be evaluated, since c is missing in
the new context. It is the same for the logical expressions defined on lines 02 and 03. On lines 04
and 05 the two logical expressions are replaced with void, this means that those logical expressions
are actually ignored. In order to perform such transformations it is necessary to analyze all logical
operators from Eiffel and to state their neutral elements. We consider that E is a logical expression.

E and true = true and E = E
E or true = true or E = E
E xor true = true xor E = E

66

reduce(E)
= E -- E contains just exherited features
= void -- E cannot be decomposed further on and contains non-exherited features
reduce(E1 and E2)
= E1 and E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void
reduce(E1 or E2)
= E1 or E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void
reduce(E1 xor E2)
= E1 xor E2 -- E1 and E2 contain just exherited features
= reduce(E1) -- reduce(E2) is void
= reduce(E2) -- reduce(E1) is void
= void -- reduce(E1) is void and reduce(E2) is void
reduce(E1 implies E2)
= E1 implies E2 -- E1 and E2 contain just exherited features
= void -- reduce(E1) is void or reduce(E2) is void
reduce(not E)
= not E -- E contains just exherited features
= not reduce(E) -- E can be decomposed further on
= void -- E cannot be decomposed further on and contains non-exherited features

Figure 3.2: Exheritance and Assertion Redefinition

The operators not and implies can not be handled in the same manner as the operators and,
or, xor, because the operator implies is not reflexive and the operator not is an unary operator.
Further on we will see what can we do with these operators. Taking into account the priority of
Eiffel operators we can define some rules in order to reduce the boolean expressions containing
features which are not exherited. A special reduce operator will be defined for this purpose (see
figure 3.2).

In the most extreme case when all features from one assertion are not exherited, then in the
superclass that assertion will be ignored.

The order of evaluation of the assertions in our approach is not important since all assertions
from different classes will have to be independent. As syntactical formalisms we propose the ones
which are defined in example 57.

In example 57 the precondition of feature f in class C is composed with the precondition of class
A and precondition of class B using the AND operator for composing them. The same is done for
postcondition, but using the OR operator. The built-in expressions precondition{classname},
postcondition{classname} are used (without code duplication) to denote the precondition and
postcondition of the current feature from the class specified between the brackets. If there are
non-exherited features in one of the assertions the reduce operator will be applied first, implicitly
on the respective assertion.

The require stronger and ensure weaker keywords are used in order to make the user
aware that he is responsible for writing a stronger precondition and a weaker postcondition in the
foster class. Checking if the precondition in the foster class is stronger and the postcondition is
weaker is difficult to detect at compile time, because there are multiple preconditions and multiple
variables involved. The idea used here is the same like the one used in ordinary inheritance with
the keywords require else and ensure then. In such cases the user has to be aware that for a
subclass feature, the precondition, respectively the postcondition from the superclass is evaluated
first and only then, the locally defined assertions.

In Eiffel, the mechanism based on the keyword old allows to refer to the values of variables
before the method execution. Since it belongs to the code execution part, it will not be affected

67

Example 57 Exheritance and Assertions: The Syntax
class C exherit
A
redefine f
end
B
redefine f
end
all

feature
f(x:INTEGER) is
require stronger

precondition{A} and precondition{B}
do

...
ensure weaker

postcondition{A} or postcondition{B}
end

directly by the semantics of reverse inheritance.
The clause only is used for declaring the variables whose values can be changed during the

execution of a routine; it can be affected by reverse inheritance. This happens when some variables
from the list are not exherited in the foster class. In the superclass, the variables which are not
exherited can not belong to the list. The list of the only clause can have at most the common
features which are exherited.

If the exherited method is redefined in the foster class, the only clause can be modified freely
according to the set of exherited features. If the implicit behavior of reverse inheritance for this
aspect is chosen (see example 58) then just the exherited features from each subclass only list are
kept. In example 58 features f, b and c will be exherited and in the foster class feature f will have
the following postcondition: from the only list of feature f in class A feature a will be removed
since it is not exherited, the same happens to feature d.

Method body assertions like check, loop variants are not affected directly by the reverse
inheritance class relationship. As they are part of the body of a method they can be exherited
taking into account the rules related to body exheritance.

Assertions tags in the subclasses, if any, may be kept in the superclass unless some name
conflict arises in which case renaming has to be performed by the programmer.

3.5.2 Combined Precondition and Combined Postcondition
A different approach on assertions has its origin in [Int05] reference section 8.10.5. There are
defined the combined precondition and postcondition of a feature in a subclass having multiple
superclasses:

pre1 or ... or pren or else pre
(old pre1 implies post1)
and ... and
(old pren implies postn) and then post

The pre1,...,pren are the preconditions and the post1,...,postn are the postconditions from the
corresponding features from the superclasses. In the new standard of Eiffel [Int05] there is a
new object test in the form of {x:T} exp, where exp is an expression, T is a type and the whole
construct is a boolean expression evaluating whether exp is of type T and attaching x reference
to it, in the scope of the test object.

68

Example 58 Exheriting the “only” Clause
class A
feature
a,b,c:INTEGER;
f is
require ...
do ...
ensure
only a,b,c

end
end
class B
feature
b,c,d:INTEGER;
f is
require ...
do ...
ensure
only b,c,d

end
end
class C exherit
A
B
all
end

The critical point in a foster class is the fact that the preconditions and postconditions are
applicable only to the objects that are instances (direct or indirect) of the corresponding heir
classes. Assuming that prei and posti are the precondition and postcondition of a feature f
present in the heir class Ci (i = 1,...,n), and pre’ and post’ those declared in the foster class C,
as an effective precondition in class C there can be proposed:

if ({x1:C1} Current or else ... or else {xn:Cn} Current)
then
({x1:C1} Current implies pre1)
and ... and
({xn:Cn} Current implies pren) and then pre’
else
pre”

For the effective postcondition, similarly we can have:

if ({x1:C1} Current or else ... or else {xn:Cn} Current)
then
({x1:C1} Current implies post1)
and ... and
({xn:Cn} Current implies postn) or else post’
else
post”

These expressions must indeed be the strongest possible precondition and the weakest possible
postcondition. Testing the type of the instance will actually determine exactly which conditions

69

will be checked from the effective precondition and postcondition of the foster class. For an object
of type Ci, the test object will return true only in {xi:Ci} Current implies prei, respectively in
{xi:Ci} Current implies posti, while in all the other subexpressions it will return false. The pre’
and post’ are used to strenghten respectively to weaken the combined precondition, respectively
the combined postcondition. If an object is an instance of the foster class (but not of exherited
classes) then pre” and post” assertions are used.

In [LHQ94] the requirements are too strict, and therefore, for instance, exheritance would often
be considered impossible, especially if some heir class has elaborated preconditions. In our earlier
solution (see subsection 3.5.1), the requirements have been relaxed too much, and therefore the
desired conformance between a foster class and the exherited classes would often not be achieved.

3.6 Summary
Regarding the classical adaptation mechanisms from ordinary inheritance, it seems to occur no
problem when applying them to reverse inheritance. Feature redefinition mainly has to satisfy
signature and implementation exheritance restrictions. Feature undefinition in the context of
reverse inheritance was made implicit for both attributes and methods.

Scale adaptations allow specifying some mathematical formula around the exherited features.
This mechanism is quite simple and suits only to some simple situations, but the idea can be
improved in order to be able to perform more general adaptations.

Parameter order adaptation involves only a translation scheme for the parameters. The pro-
posed syntax is quite simple and sufficient to express the semantics of the adaptation. Parameter
number adaptation works only in several restricted cases when it is possible to unify two simple
signatures for not so complex features. In one of the sub-cases some mathematical formula (idea
taken from scale adaptations) were used. From this point we can generalize and to allow not
just mathematical operations but any expression build with the language constructs. The two
adaptations related to scale and parameter number use the same syntax build around adapt and
adapted keywords.

Classic signature adaptations take into account parameter and return type modifications. The
cases of types created by classes are taken into account and there are provided adaptation solutions
based on polymorphism or on the class conversion mechanism existing in Eiffel. With primitive
types the implicit conversion of numerical expressions is used for the adaptation. When generic
classes are the target of reverse inheritance there were analyzed several cases of unconstrained and
constrained genericity, combined with cases of generic/non-generic foster class/subclass.

Feature redefinition in Eiffel allows the use of anchors, so there are some cases of anchored
typed adaptations. There was analyzed the exheritance of features which have anchored types
referring current, argument types and feature types.

Finally, the adaptation of assertions was studied. Feature exheritance is successful if it is
possible to define a precondition other than false, which is stronger than each precondition in the
subclasses for the corresponding feature. For postconditions and invariants, in the worst case it
can be used the true postcondition. Regarding the features which are not exherited and are parts
of the assertions there was presented an algorithm for eliminating those features from the logical
expression without affecting their semantics. The algorithm was based on the neutral values for
each logical operator. Because deciding at compile time whether the precondition for the foster
class is stronger than the preconditions in the subclasses, the require stronger and ensure
weaker keywords are proposed for use. A different solution which requires information about the
type of the exherited class instance manipulated through the common interface of the foster class
is the combined precondition and postcondition. Using type information, the combined assertions
corresponding to other subclasses are invalidated, enabling only the evaluation of the original
subclass assertion and of the additional logical expressions written in the foster class.

70

Chapter 4

Dynamic Binding and Constraints
on Exherited Features

4.1 Dynamic Binding of Common Features
Sections 4.1.1 and 4.1.2 deal with the two situations that may occur when exheriting a feature f
from a class A to a class C : the exherited version of f and the inherited version of f may have
a common seed or not (diagrams 1a and 1b from figure 4.1). But the following rules are very
important to define the semantics and they are independent of the seed of a feature. Reverse
inheritance does not create new inheritance relationships between already existing classes.

Rule Copying Feature. When a method f is exherited from a class A into a class C without its
body or if the body is provided either by the class C itself or an ancestor of class C, then the
feature f is not moved in class C but copied and an implicit redefinition (or undefinition if
f is defined in an ancestor of A and not redefined in A) is handled in class A.

Rule Moving Feature. When a method f is exherited from a class A into a class C with its
body (it may be declared in an ancestor of A and redefined or not in A), then the feature
f may be moved effectively in class C and an implicit undefinition may be applied (if f is
defined in an ancestor of A) when inherited in class A from those classes.

Sections 4.1.1 and 4.1.2 describe all combinations in the case of single inheritance and single
exheritance. Having more ancestors (inheritance) or more subclasses (exheritance) does not change
the possible combinations but it may be necessary to undefine, redefine or move up implementation
(for exheritance only) in order to remove possible ambiguities.

Rule Handling Possible Conflicts. If a foster class C inherits a feature f from several ancestors
then normal rules of ordinary inheritance of Eiffel apply and it may be necessary to use

Figure 4.1: Copying or Moving Features - Main Diagrams

71

Feature implemen-

tation in C is /

Clause to be added

when

D : e
4

A is e D : e A : d
5

D : d A : e D : d A : d

inherited none undefine none none NA NA

new redefine

undefine

/

redefine

redefine none none

undefine

/

redefine

none none

exherited

undefine

/

redefine

moveup NA none moveup NA

deferred undefine undefine undefine none none undefine none none

Table 4.1: Combinations for Getting the Implementation of a Method in a Foster Class (1)

inheritance clauses to remove the ambiguity. If the same class exherits also a feature f from
several subclasses then it must apply also the different clauses (redefine, undefine, moveup)
in order to get only one feature in class C. Finally, the rules defined in figures 4.2 and 4.4
are applied.

4.1.1 Multiple Inheritance of Features with No Common Seed
It is necessary to study how to specify where to take the implementation of a feature f when it is
both inherited from D and exherited from A in a class C (that is to say when the exheriting class
C does not inherit from a direct parent of A). More precisely, the feature f of class C and A do
not have the same seed.

Rule Default Handling. For a feature which is exherited, the default is that its implementation
is not exherited (equivalent to use undefine when feature is not deferred).

As it has been said earlier, table 4.1 describes possible cases for single inheritance and single
exheritance. In the columns of this table the letters specify whether the feature is effective (e)
or deferred (d), first in the parent (class D), second in the heir (class A). The rows describe the
different alternatives wanted in the new class (class C). The inheritance of class B in class A does
not have any impact on the table (rules of ordinary inheritance are followed).

The cells of the table tell what clause is required first for the parent (none, redefine or
undefine), second for the heir (none or moveup1). Clause undefine may be omitted when
needed because it is the implicit default, but we decided to keep it for a better readability of the
table. In figure 4.2 we keep it also, but it is put between parenthesis. NA means that the case
does not make sense (you cannot inherit or exherit implementation if the feature is deferred). The
different combinations are summarized in figure 4.22. The case numbered with the alphabetical
letter number i3 at line j in figure 4.2 corresponds to the cell row j and column i in table 4.1. For
instance the case 3.c means that implementation is the one found in the exherited class C.

It is important to mention that for attributes it doesn’t work exactly in the same way because it
is not possible to undefine an attribute in Eiffel when inheriting. The consequence is that all cases
which imply to use a clause undefine when an attribute is involved in an ordinary inheritance
relationship (like ”C inherits from D”) should not be applicable (NA)6. In case 2.a and 2.c of figure
4.2, we may use the clause redefine or undefine. The undefine clause is particularly useful in

1moveup means getting the implementation which is pointed out and not only the signature of the feature.
2In figure 4.2 we may have the choice of the clause when inheriting from B in A because it depends from the

status of f in B. Depending the case it could be either to make f effective (i.e. nothing), undefine f or redefine f.
3For example, 1 (resp. 4) corresponds to a (resp. d).
6For more details about the possibility to undefine an attribute when exheriting, see section 2.3.3.

72

the framework of multiple exheritance in order to join implementations, in some cases to choose
clause redefine or clause undefine leads to exactly the same semantics.

In the case of exherited implementation, depending on the situation, the routine body is either
"moved" to the foster class, or is "copied" so that there will effectively be a redefinition in the
subclass - although the code is the same. Namely, there is a difference if the keyword precursor
is used in the method body, probably also with anchors (like Current) - see sections 4.3.2 and
2.5.3. There are some issues to be noted if the feature is an attribute:

• There is no separate implementation (body) in the same sense as for a method (routine).

• If the feature is an attribute already in the existing superclass D, it must be an attribute
also in the existing subclass A and in the foster class C.

• If the feature is deferred in the superclass D and is an attribute in the subclass A, it would
appear very natural to make it deferred in the foster class by default.

In pure exheritance (without inheritance) it would appear still more natural to exherit an attribute
as an attribute by default. However, there are still also good arguments for keeping deferred as
the default.

When there are multiple superclasses, things get only a bit more complicated: if the imple-
mentation is inherited from one superclass, the feature must be redefined (or undefined) in the
inheritance from all other superclasses in which it is effective. When there are multiple subclasses,
things get hardly more complicated at all: the implementation can be exherited from only one
them, of course.

Rule Undefining Attributes. When a foster class declares an ordinary inheritance relationship
then the rules of Eiffel related to attributes fully apply. In particular an attribute may not be
undefined. But if it is a reverse inheritance relationship, then any feature may be undefined
and thus become deferred.

Influence of Renaming Some discussion about the use of renaming can be initiated according
to case presented in figure 4.2. Let us try to remove a possible conflict between the feature f which
is inherited from D and the feature f redefined in A which is exherited. Let us suppose that we
may use renaming. if f is renamed when inherited from D then it would change the behavior of
A because a feature would be added. It is impossible then to merge again in A f_d and f coming
from C. If f is renamed as f_a when exheriting from A the problem would be the same. We should
use undefine or redefine instead of rename. The only solution for using renaming would be to
rename f when inheriting from D and when exheriting from A (and using redefine or undefine
either when exheriting from A or inheriting from D).

Rule Renaming When Exheriting. If a foster class C inherits a feature f from a class D and
exherits a feature f from a class A, then renaming (if applied) must be performed for both.
If class C has no ancestor containing a feature f, then renaming may be performed freely
when exheriting as far as no name conflict is introduced (the reverse is not possible because
D may not contain more features than A).

The Case Where There Are No Ancestors Let us revisit the different cases of table 4.1
taking the assumption that class D does not exist. We show that all what had been said in this
general framework still apply. How to take the implementation of a feature f when it is exherited
from A in a class C (which does not inherit from a class containing f) is quite straightforward, it
is described in table 4.2.

73

Figure 4.2: Combinations Dealing with Getting the Implementation of a Method in a Foster Class
(1)

74

Figure 4.3: Renaming When Exheriting

Feature implementation in C is /

Clause to be added when
B : e

7
B : d

8

new undefine/redefine none

exherited moveup NA

deferred undefine none

Table 4.2: Combinations for Getting the Implementation of a Method in a Foster Class (1.1)

4.1.2 Multiple Inheritance of Features with Common Seed (Repeated
Inheritance)

We think here about where do we take the implementation of a feature f when it is both inherited
from B and exherited from A in a class C (that is to say when the exheriting class is "put into the
middle"). In table 4.3 The default for methods and attributes is identical to the rule defined
at the beginning of section 4.1.1. If feature f is defined only in B (and not in A), then it is only
a particular case already handled more generally by the rules defined in this table.

In the same way as table 4.1, the letters of the columns of table 4.3 specify whether the feature
is effective (e) or deferred (d), first in the parent (class B), second in the heir (class A). The rows
set the different alternatives desired in the new foster class (class C).

The cells of the table tell what clause is required (undefine is omitted when needed because it
is the default), first for the parent (none, redefine or undefine), second for the heir (none or select9).
NA means that the case does not make sense (you can not inherit or exherit implementation if
the feature is deferred). The different combinations are summarized in figure 4.4.

We can see that the content of the cells of table 4.3 are the same as in table 4.1 even if
it addresses repeated inheritance instead of just ordinary inheritance. Of course, the clauses
used within figure 4.4 are also the same as in figure 4.2. It sounds quite normal for methods
as well as for attributes because repeated inheritance of a features has an impact only on the
sharing/duplication of objects. Moreover, as far as it concerns attributes regardless if we are in
the framework of repeated inheritance or not, the use of the clause undefine is not allowed so that
the join mechanism does not apply to attributes. Sharing and replication of features is discussed
in section 4.2 but let us have a first look on provided facilities:

• A feature f which is declared in a class B and which is inherited into two classes C and A
without being adapted (redefined or renamed) is considered implicitly as only one feature in
a class X which inherits from A and C. If it is renamed at least in A, C or X, then these

9Here select means getting the implementation (usual meaning in Eiffel) but does not mean that we choose the
implementation in the set of possible implementations induced by possible replications in the framework of repeated
inheritance.

75

Feature

implementation in

C is /

Clause to be

added when

B : e
10

A is e B : e A : d
11

B : d A : e B : d A : d

inherited none undefine none none NA NA

new redefine undefine/redefine redefine none none undefine/redefine none none

exherited undefine/redefine moveup NA none moveup NA

deferred undefine undefine undefine none none undefine none none

Table 4.3: Combinations for Getting the Implementation of a Method in a Foster Class (2)

features are considered as different features (duplicated if not redefined or with another
semantics when redefined).

• Considering inheritance of feature with or without repeated inheritance, two attributes which
have the same name (possibly after renaming) and which are inherited from two different
classes into a third one, may become only one attribute if the attribute is redefined in each
branch through which the feature is inherited.

• In the same context, two methods which have the same name (possibly after renaming) and
which are inherited from two different classes into a third one, may become only one method
if the method is redefined in each branch through which the feature is inherited or, if it is
undefined in all branches except one.

In figures 4.2 and 4.4, when a case describing a combination of reverse inheritance and ordinary
inheritance leads to one of these situations, then the effect will be the same as described above.

A possible code transformation involves creating a class hierarchy in which classes B and A
should have the semantics desired as in the original design. The valid cases analyzed in figure
4.2 can be easily transformed into cases of multiple inheritance at the implementation level12.
Depending on each case in particular, some actions have to be performed in order to get the desired
semantics: moving the implementation from one class to another, changing the inheritance clause,
adding a new inheritance clause. The valid cases presented in figure 4.4 should be replaced by an
equivalent hierarchy in which class C is put between B and A using only ordinary inheritance,
and the direct inheritance link between B and A should be removed. Of course, the previously
enumerated actions are necessary in this case also.

4.1.3 "select" Like Approach Does Not Solve All Ambiguities
The clause of select in Eiffel is not consistent in all cases. A sample of such a case can be found in
figure 4.5. Reverse inheritance will not address these ambiguities as far as they are not addressed
by ordinary inheritance.

The equivalent code can be seen in example 59:
In the class hierarchy presented above feature f will be inherited in class F through four

different paths: i) [A, B, D, F], ii) [A, B, E, F], iii) [A, C, D, F] and, iv) [A, C, E, F]. In each class
along the presented paths there are some versions of feature f renamed and selected. When the
feature f of an F type instance is accessed there is no applicable versions using such a combination.
Using another combination the selection could be ambiguous, only a certain suitable combination
makes the selection unique as it should.

12By implementation level we refer to the stage in which class hierarchies containing reverse inheritance links
must be compiled. In our approach, we decided to generate pure equivalent Eiffel code and then to compile it
with an ordinary Eiffel compiler. Details regarding the implementation of the reverse inheritance semantics will be
provided in the third research report of the PhD program.

76

Figure 4.4: Combinations Dealing with Getting the Implementation of a Method in a Foster Class
(2)

77

Example 59 Select Like Approach
class A
feature
f ... -- Only name of feature is provided because

-- it may apply to attribute, procedure, function, etc.
end
class B
inherit A
end
class C
inherit A
end
class D
inherit B
select f -- when f is called through a variable of type A
end
inherit C
rename f as g
end

end
class E
inherit B
rename f as h
end
inherit C
rename f as i
select i -- when f is called through a variable of type A
end

end
class F
inherit D
select g -- when f is called through a variable of type B
end
inherit E
select h -- when f is called through a variable of type C
end

end

78

Figure 4.5: Select Problem

Figure 4.6: Fork-Join Inheritance Sample

The conclusion that can be drawn from this sample is that in some special cases just the clause
select and the feature name are not sufficient. Some other qualifications are still required.

4.2 Considering the Time Stamp When Defining a Class
In figure 4.6 we study the different orders in which the class hierarchy is built. In this sample class
A is the highest ancestor, B and C are then next and finally class D is the lowest descendant.

An even simpler class constellation than the diamond, but still with fork-join inheritance, is
a triangle. Let us drop class C and instead have also a direct inheritance link between A and D
(this corresponds to the same situation as in figure 4.4). In this situation, it is clearly possible to
share a feature f in all possible definition orders (ordinary inheritance and reverse inheritance) of
the classes. For a replicated feature, a similar extended clause select as above is needed if D is
not defined last.

79

Figure 4.7: Sharing Features (case 1)

Figure 4.8: Sharing Features (case 2)

4.2.1 Sharing Features
The several class construction scenarios reported to the temporal coordinate will be marked using
"+" symbol for those classes constructed by ordinary inheritance and "*" for those constructed
with reverse inheritance. In Eiffel an attribute declared both in classes B and C cannot be unified
in class D unless they have a common seed (except if the attributes are redefined in all inheritance
branches). This happens only when B and C have a common ancestor. This restriction really
looks like an unnecessary non-orthogonality in Eiffel. There can be imagined some different orders
in which the sharing of features from B and C is prevented by the rules of Eiffel 13:

• Case 1 : BC+D*A. This means classes B and C exist initially, then class D is defined
by multiple ordinary inheritance from B and C. Finally class A is built by multiple reverse
inheritance from B and C (see figure 4.7).

• Case 2 : B+D*C*A. This means that class B is created first, then D by inheriting from
B, then C is built by reverse inheritance from D. Finally class A is designed using multiple
reverse inheritance from B and C (see figure 4.8).

• Case 3 : D*B*C*A. This means that class D exist initially, then classes B and C are built
from D by reverse inheritance and that class A is also built through reverse inheritance from
B and C (see figure 4.9).

80

Figure 4.9: Sharing Features (case 3)

The cases in which we swap B and C are equivalent so that only one order needs to be treated.
We can say that the cases leading implicitly to feature sharing corresponds to the cases where A
is defined last. It is interesting to note that if a language contains the capability to define reverse
inheritance relationships, then it is not necessary to allow the unification of two features without
a common seed. A common seed can be always provided by reverse inheritance.

4.2.2 Replicating Features
The more complicated alternative is a feature f that should be replicated, so that there are two
occurrences of f in an object of type D, one corresponding to B and the other to C. One of these
two should be statically selected to act as f when an object of type D is accessed through a variable
of type A. For each definition order below, the order where B and C are swapped is equivalent,
of course.

Let ffinal be the final name of the occurrence of f that should be selected in class D. Note that
in all definition orders in which not both B and C are defined before D, there must be defined
also some other feature in D that can be exherited as f.

• Case 1 : A+B+C+D . This means, only ordinary inheritance is used, f must be renamed
and/or redefined in B and/or C and/or D, but there are no problems. As we know, the
existing Eiffel syntax is simply "select ffinal". It must be put in the right inheritance branch
to select ffinal.

• Case 2 : B*A+C+D , BC*A+D . The handling of these two situations does not differ
essentially from case 1, because D is defined last, so that it allows to select the right version
ffinal. The clauses rename, undefine and redefine has to be used in such a way that the
behavior is the same as in case 1 (see figures 4.2 and 4.4) .

• Case 3 : BC+D*A, B+D*C*A, D*B*C*A. As it has been mentioned above, these sit-
uations lead implicitly to the sharing of features. To achieve replication of f, it is necessary
to use clauses redefine and rename in one or several locations. In those cases (contrary
to the situations encountered with ordinary inheritance) the clause select should appear in
the definition of class A, because the diamond emerges there. A possible syntax is "select
ffinal in D " (see example 60).

• Case 4 : This represents all the other situations where class B or C is defined last and thus
creates the diamond. Therefore, its definition should contain the clause "select ffinal in D
" at the right location.

13We remind the reader that adding a class to a hierarchy by reverse inheritance will not affect the behavior of
the rest of the hierarchy.

81

Example 60 Selection of Replicated Features From a Foster Class
class B
feature

f... -- Only name of feature is provided because
-- it may apply to attribute, procedure, function, etc.

end
class C
feature

f... -- Only name of feature is provided because
-- it may apply to attribute, procedure, function, etc.

end
class D inherit
B
rename
f as f_b

end
C
rename
f as f_c

end
end
class A exherit
B
C
select f in D

end
all
end

82

4.3 Constraints on Factored Features and Foster Classes

4.3.1 Using the Keyword frozen for Features
Since in Eiffel by default all feature calls are dynamically linked, there is no need to call a method
using the reference of the same type as the object it points to. It is unlike C++ with its implicit
non-virtual methods. The impact of the keyword frozen has to be taken into account in several
situations dealing with reverse inheritance.

If we deal with frozen features in the exherited classes, then in the superclass the corresponding
exherited ones should be deferred. In single reverse inheritance a frozen attribute can be frozen
in the superclass if necessary. In multiple reverse inheritance, an attribute can remain frozen only
if it has the same type and is frozen in all source classes. A method can remain frozen only if
it has both the same signature and the same body in all source classes (and is frozen), which is
obviously an extremely rare event.

Let us suppose that a class C exherits a feature f from a class A, if the feature f is not frozen
in C, performing it (or reading it) on an object of type A will rely on the dynamic binding rules.
According to the rules of Eiffel, the version of the feature which is effective in the exact class of
the object will always be chosen. It is not possible to specify in a method invocation that the
version belonging to some ancestor class should be called (as one can do in C++).

It is possible to define in a descendant class a new feature with the same name as a feature
(frozen or not) inherited from the ancestor, if the inherited one is renamed. According to reverse
inheritance if some feature f is not exherited then some other feature can be exherited and renamed
to f in the target class. Similar possibilities of "non-virtual redefinition" (or hiding) exist also in
some other languages, and they tend to cause confusion. However, that does not affect dynamic
binding.

Rule Frozen Features in Foster Classes. A foster class C cannot declare a feature as frozen
except if the features exherited from all source classes are:

1. attributes of the same type and are declared themselves as frozen;

2. methods with exactly the same signature and the same implementation and declared them-
selves as frozen.

Rule Exheriting Frozen Features. A feature which is frozen in a source class may always be
exherited as a non-frozen feature in the foster class.

4.3.2 Impact of "Precursor" Keyword
A subtle point about reverse inheritance and dynamic binding is the behavior of the keyword
Precursor in methods. Let us suppose that the method f was inherited into class A from a
superclass B, where it is effective (not deferred) and was redefined in A. In that case, it is possible
to call the inherited version of f from the new version by using the keyword Precursor. The two
main situations pointed out in section 4.1 are summarized in figure 4.10. The text associated to
“...?...” depends on the cases presented in corresponding hierarchies.

C is Inserted Between A and B

First let us suppose that C is inserted "in the middle", i.e. inherits from B and exherit from A.
There are four different cases:

1. The implementation of f is the one of B . This means f is inherited from B and not
redefined in C and f is exherited from A but (implicitly) undefined. Thus, the precursor
version is the same as without reverse inheritance, and there is no problem.

83

Figure 4.10: Main Configuration When Using the Precursor Keyword

2. The implementation of f is the one of A. Feature f is exherited from A into C and is
undefined when inherited from B. This means that the redefinition of f is effectively moved
from A to C, and again there is no problem.

3. The implementation of f is the one of C . Feature f is redefined in C either when it
is exherited from A (and undefined when inherited from B) or when it is inherited from B
(and undefined - implicitly - when exherited from A) or both. Precursor in the version
of A will then call this version and not the version of B. This means that the behavior of
objects of type A will change; thus this case must not be allowed.

4. Feature f is undefined in C . This happens if f is undefined when inherited from B and
when it is exherited from A. This must not be allowed because Precursor would refer to a
non-existing method.

C is Inserted Only as a Brother of B

Now let us suppose that C is inserted "as a brother of B", i.e. does not inherit from B in addition
of exheriting from A. C may inherit from D but there is no common seed between the features
exherited from A and those inherited from D.

If D does not contain any feature which conforms to f and has the same name as f (possibly
after renaming in C), then exheritance must not be allowed because precursor would not refer
to anything. It is the same if D contains a feature which does not conform to f and has the same
name as f (possibly after renaming in C).

Otherwise, if f from D has exactly the same body as the feature f declared in B (this is
unlikely), then the four cases which apply when C is inserted "into the middle" apply here also.
In all other cases the behavior of those two features are different, so that the precursor of f in A
cannot apply to the feature from D and the exheritance must not be allowed.

However, when the behavior of those two features are different, it affects only the objects of
type C if this class is not deferred, or more generally if it may have occurrences and for the valid
combinations described in figure 4.2, the behavior of A may not be changed14.

Interference with Anchors

There is an additional subtlety in both legal cases (i.e. the first and the second) if the expression
"like Current" describes a type either in the signature or in the body of f. Namely, that causes
an implicit redefinition in every class, and its meaning is thus different in A, B and C. In case

14See rules at the beginning of section 4.1.

84

Example 61 Exportation and Exheritance
class B1
feature f {C1, C2, C3} is do ... end
end
class B2
feature f {C1, C2, C4} is do ... end
end
foster class A
exherit
B1
B2
all
export {C1, C2} f

end

2 that causes no problems, because the meaning stays the same for objects of type A. In case
1, the meaning changes from B to C. Therefore, to achieve the effect of no redefinition from the
viewpoint of class A, it is actually necessary to redefine f (automatically) in C so that it simply
calls Precursor. Considering the above complications, it seems that only case 4 should be allowed
if C is not defined to inherit B.

4.3.3 Exportation and Exheritance
With ordinary inheritance each feature has specified a list of client classes which can access it
through an object. With ordinary inheritance, it is possible to change the set of classes to which
a feature is exported freely (it may be extended or reduced without constraints). So we propose
to provide the same facilities for reverse inheritance. However we have to be careful because to
remove classes from the set of exported classes may have an impact on the assertions in the foster
class if those assertions refer to the feature.

Moreover, we should remember that in some Eiffel specifications (like ECMA-367 [Int05]), to
export a feature to a client class C means also to export this feature to all descendants. This
means that the export list for a feature can not be shortened in the subclass, the feature may add
to the list of clients but it can not remove them. Other specifications, like ETL2 [Mey02] allows
shortening the list of clients, thus it is possible to hide features in the subclasses. This approach
is sensible to the polymorphic catcalls15 [Mey97].

The ETL2 rule implies that if A exherits f from B where f is exported to classes C1. . . Cn
and if the class A exports f to classes C1. . . Cn+1 then implicitly B will export f to Cn+1 if f
is moved in A. It will be necessary to ensure that the client list to which f is exported will be
reduced to C1. . . Cn in B. But this last rule will not guarantee that f may not be called by Cn+1
on an object of type B through an attribute of type A.

In example 61 class A exherits feature f which originally in class B1 has three classes in the
export list {C1, C2, C3} and in B2 has {C1, C2, C4}. In foster class A the list is shortened to a
subset of the original common values {C1, C2}.

Rule Exportation List of the Exherited Features. In a foster class the exportation list for
an exherited feature must be kept the same or reduced to a subset of the original common
clients of the subclasses for that feature.

There are several reasons why we should keep or reduce the export list for an exherited feature. The
first argument refers to the consistency and symmetry between reverse inheritance and ordinary
inheritance. If in ordinary inheritance the export list in the subclass must be kept or enlarged

15cat = Changing Availability of Type

85

Example 62 Exheriting Creation Procedures
class B1
create make, default_create, build
...
end
class B2
create make, build, construct
...
end
foster class C
exherit
B1
B2
all
create make, build
end

with clients, reverse inheritance must keep as such or reduce the list of clients for an exherited
feature. The second reason is related to avoiding the catcalls.

4.3.4 Exheriting "Creation" Procedures
It does not seem that creation procedures should be handled in a special way. Ordinary inheritance
has no effect over the creation procedures, so reverse inheritance should behave the same way. As
foster classes implicitly exherit methods as deferred, these classes will be deferred too. In a
deferred class it makes no sense of talking about creation procedures. Still, creation procedures
can be exherited (or moved) as ordinary features. Sometimes it is a good idea to exherit creation
procedures as deferred, because they can be used as any other procedure, but not for object
creation purposes. If a creation procedure can be moved into the foster class16, then it can be
used as a regular feature or it can be added to the creation procedure list of that class.

In order to exherit creation procedures, first they have to be exherited as regular features.
Than, we have to list them in the create section of the foster class if the corresponding features
in subclasses were creation procedures too. In example 62 features like make and build can be
exherited. Because the exherited features in the subclasses are all creation procedures then they
can be listed or not as creation procedures in foster class C, too.

Rule Exheritance of Creation Procedures. In a foster class the exherited creation procedures
must have an implementation from one of the subclasses and all the corresponding features
in the subclasses must be listed in their procedure creation list.

4.3.5 Exheritance of an Attribute with "Assign" Clause
There are attributes which have an assign clause and it is necessary to study their meaning when
they are exherited. If a class needs to exherit the attribute along with the clause, it is necessary
to exherit the setter method also. Otherwise the attribute will be exherited in "read-only" mode:
the attribute may not be modified directly by clients through an assignment. Because it seems
the more natural case, by default in single reverse inheritance, the assign method will be exherited
with the attribute. It should be the same in the case of multiple exheritance when all subclasses
have an assign method for this attribute. Otherwise, only the attribute should be exherited. The
syntax must allow to specify an assign method in the foster class through an attribute redefinition.

16By moving a feature all related conditions must be respected: resolving dependencies, behavioral consistency
of the new hierarchy.

86

Example 63 Exheritance of an Attribute with Assign Clause
class A
feature
x:INTEGER assign put_x
put_x(p:INTEGER) is do x:=p end

end
class B
feature
y: INTEGER assign put_y
put_y(p:INTEGER) is do y:=p end

end
foster class C exherit
B
rename
x as z,
put_x as put_z

end
C
rename
y as z,
put_y as put_z

end
all
end

Rule Default Handling of Assign Clause. By default, in single reverse inheritance, the
assign method is implicitly exherited along with the corresponding attribute. It is the same
in multiple exheritance if all subclasses have an assign method for this attribute.

In example 63, both attribute x of class A and attribute y of class B have an assign method,
respectively put_x and put_y. Both attributes x and y as well as their assign methods (put_x
and put_y), are renamed respectively into z and put_z. This means that if the attribute is
exherited from different subclasses and its assign methods too, the exherited attribute will have
automatically attached a deferred assign method in the superclass.

4.3.6 Exheritance When There is an Alias
Aliases represent a part of the renaming mechanism of Eiffel. If we allow to add an alias to a
feature which is exherited, we may not modify the behavior of already-existing descendant classes
even if there is a new synonym for an existing feature (see figure 4.11). With ordinary inheritance,
to an inherited feature with alias one can keep the original aliases and add new aliases or remove
some of them [Mey02]. With reverse inheritance we keep the same philosophy: a feature can be
exherited with all the aliases if they are the same in all subclasses (which is not a very probable
case), or some of them can be removed, or new aliases can be created in the foster class. The
behavior of the subclasses will be not affected if in the foster class an alias is added, because
the renaming mechanism does not affect the semantics of an inherited or exherited feature. The
difference between a feature and a feature name is a concept that is kept in the semantics of reverse
inheritance, thus it respects the philosophy of the language.

In figure 4.11 class C is inserted in the middle of the hierarchy created by A and B. Feature f
from class A is exherited into class C where f gets a new alias. If the aliases for feature f in class

87

Figure 4.11: Adding an Alias When Exheriting

C are newly added and different from the ones exherited from A then in order to show that the
semantics of aliases in context of reverse inheritance is consistent, we can consider that the new
aliases of feature f in class C, in class A are implicitly removed. The new aliases of feature f from
class C can be used in any new subclass of C, for instance.

Rule Aliases and Reverse Inheritance. The renaming mechanism (which includes the aliases
mechanism) does not affect the semantics of reverse inheritance.

4.3.7 Exheriting Obsolete Features
Obsolete features are those old features in a class which are meant not to be used and they may be
removed in the next releases of the class hierarchy. The first natural reaction would be not to allow
the exheritance of such features, which may be no longer needed. Still there are some good reasons
to allow performing exheritance on them. If the class hierarchy is reused in a new context and no
further evolution of that hierarchy is needed, then it is acceptable to exherit the obsolete features
as they are desired, without any restrictions. This reason is motivated by the high degree of reuse
which is intended to be outlined in the philosophy of reverse inheritance. If the exheritance of such
features is necessary, it is recommended to adapt those features when exheriting them (rename,
redefine, adapt, undefine), otherwise, this means that they are not considered as obsolete features
and this leads to inconsistency17.

4.3.8 Exheriting Features of Type once

Once features in Eiffel are executed at one moment after which the other several calls are ignored.
If functions are involved, the first computed result is returned at each call. The once mechanism
can be used for smart initializations or shared objects (like the Singleton design pattern [GHJV97]).
There is a possibility to use this mechanism together with once keys allowing the possibility of
selecting several behaviors: once for each instance, once for each thread, once for each process,
once controlled by a user defined key.

It seems very natural to exherit once features like any ordinary features. The behavior of
the feature whether the body is executed or not do not interfere with the mechanism of reverse
inheritance. Sometimes it may be useful to have in the foster class a deferred feature which
corresponds to some once or non-once features in the subclasses. The once keyword affects only
the behavior of features at runtime and not the architecture of the object-oriented system.

In example 64 it is presented a combined case of exheriting once features. Features init, setup
and initialize are exherited as a deferred feature start in the foster class. There can be noticed
that feature init is not using any once key, so implicitly is set on PROCESS, feature setup’s once
key is explicitly set up on OBJECT, while feature initialize is not a once feature. If it is decided
that a once feature should be moved into the foster class then it is moved together with the once
status.

17One of the main concepts from the philosophy of reverse inheritance is to favour feature reuse at the highest
level possible. This is why obsolete features are allowed to be exherited without any restrictions, but with a warning.

88

Example 64 Exheriting Features of Type once
class A
feature init once
...
end
end
class B
feature setup once(”OBJECT”)
...
end
end
class C
feature initialize is
do
...
end
end
foster class X
exherit
A
rename init as start
undefine start
end
B
rename setup as start
undefine start
C
rename initialize as start
undefine start
end
all
feature start is deferred end
end

89

Actions Class(es) Foster class(es)
class inherits allowed allowed
class exherits not allowed not allowed

foster class inherits allowed but constrained allowed but constrained
foster class exherits allowed allowed

Table 4.4: Possible Combinations of Ordinary Inheritance and Reverse Inheritance

Rule Exheritance of once Features. The once mechanism does not affect the semantics of
reverse inheritance.

4.4 Constraints on Foster Classes

4.4.1 Using the frozen Keyword
In Eiffel the frozen keyword applied to a class will restrict that class from being inherited and
having descendants. So, the downward evolution of the class is stopped. If a class is declared as
frozen it means that the designer has special reasons and he does not want to allow that class to
be extended and its features to be redefined. Relative to reverse inheritance, two problems must
be studied: if a foster class can be declared as frozen and if it is possible to exherit a subclass
which is declared as frozen.

If a foster class is declared as frozen, in the context of ordinary inheritance, it means that
the foster class can not be extended by inheritance, and it can not have new subclasses. On
the other hand the foster class may exherit subclasses, otherwise it does not make any sense to
declare the class as foster. There are still two reasons why a foster class should not be allowed to
be declared as frozen: reverse inheritance was designed for class reuse and declaring a class as
frozen will restrict the reusability (the foster class may have descendants created by ordinary and
reverse inheritance), the second reason is related to the philosophy of the language which does not
combine the class modifiers (in order to keep simplicity of the language there is allowed only one
class modifier to be stated when defining a class).

The second problem determining whether a frozen class can be exherited or not must take
into account that the class was born with the frozen modifier and for some reasons the designer
intended to prevent the inheritance of that class. If there are some useful features in that class
there is no reason why the class should not be exherited.

4.4.2 Using the obsolete Keyword
An absolete class in Eiffel is a class which does not meet the current standards and which will be
erased in one of the new releases of the software. By reverse inheritance some features could be
exherited into a new class which represents the part of the class that may be reused in the future
(these features should not be marked as obsolete). The exheritance of an obsolete class should
be allowed only if the hierarchy, from which the obsolete class belongs, will no longer evolve in
the future.

4.5 Combining Ordinary and Reverse Inheritance
Let us have a look at the possible combination of reverse and ordinary inheritance (see table 4.4):

Ordinary classes are not allowed to exherit anything. Ordinary classes are allowed to inherit
ordinary and foster classes. The foster classes may inherit from classes and even foster classes
features with the condition of not changing the behavior. Foster classes may exherit from any
classes ordinary or foster.

90

Example 65 Inheriting from Foster Class
class RECTANGLE
feature
perimeter:REAL is do ... end
halfperimeter:REAL is
do
perimeter/2;
end
end
class ELLIPSE
feature
perimeter:REAL is do ... end
halfperimeter is
do
-- ellipse implementation
end
end
foster class SHAPE exherit
RECTANGLE
moveup halfperimeter
end
ELLIPSE
all
feature
end
class TRIANGLE inherit SHAPE
end

4.5.1 Inheriting From a Foster Class
If we discussed about the exheritance of inherited features, we have to discuss about the inheritance
of exherited features. This is one reason to keep the new class relationship as symmetrical as
possible.

In order to be more explicit we will start from the example given in subsection 2.3.3.4 and we
will develop further within a natural hierarchy development scenario.

In example 65, we created a new class TRIANGLE which is derived from SHAPE. So it will
benefit from all the features of class SHAPE. Since class SHAPE is the target of the reverse inheri-
tance class relationship, it will obviously have just exherited features. The features of class SHAPE
are both exherited from RECTANGLE and ELLIPSE on one hand, and inherited in TRIANGLE
on the other hand. In this particular case we inherited and exherited method perimeter and a
method implementation halfperimeter.

Rule Inheriting from a Foster Class. Features exherited by a foster class will be inherited
by any subclass of the foster class.

4.5.2 Inheriting in a Foster Class
A class C which declares a reverse inheritance relationship to a class A may also inherit from a
class D if D contains at most the same features as C (this constraint is necessary in order not to
change the behavior of descendants of A). It is interesting to get this opportunity when we want
to keep and reuse some features that are already defined (see figure 4.12):

Because of the constraint described above it is necessary to add some constraints on the clause
that may be set when using ordinary inheritance within a foster class. In particular this is the

91

Figure 4.12: Interest for Allowing (Restricted) Inheritance in Foster Classes

case when features are renamed.

Rule Inheriting in a Foster Class. In a foster class C if one method f belongs to an ancestor
A of C, then the feature must be also exherited and both of them must have the same
name. Then if f is renamed when inheriting from A then it must be also renamed when it
is exherited (with the same name, of course).

4.5.3 Exheriting From a Foster Class
In this subsection we discuss the idea that a foster class should or could have another foster class
on top of it. From this point of view, comparing to ordinary inheritance, it is possible to create
subclasses to already existing subclasses, thus making the class hierarchy to evolve downward.
Reverse inheritance would facilitate the upward evolution of class hierarchies like in example 66.

The only delicate issue that can be noted in this situation is the visibility of the implicitly
exherited features in cascade. In example 66 the exheritance of the draw feature in foster class
SHAPE is implicit, so the feature is not explicitly listed in the foster class. When the exherited
features are not listed in a long chain of foster classes, it would be very difficult that in the top of
the hierarchy to realize exactly which features succeeded to be exherited finally along the whole
path.

On the other hand, the reverse inheritance relationship is meant for using it at redesign time
when several classes are available. In this context the creation of a foster class for an already
existing foster class implies another process of redesign. In the very same redesign process, ordinary
inheritance can be used like in example 67.

The main idea in example 67 is the recommendation to favor the use of ordinary inheritance
instead of reverse inheritance in the same redesign stage. Reverse inheritance is designed for
homogenizing classes having different authors and which originally belonged to independent design
processes.

4.5.4 Allowing to Exherit Features from an Ancestor
Another possible lack of clarity may happen when one wants to exherit inherited features from
a class, because those features are not listed in the text of that descendant class. The reverse
inheritance class relationship allows the exheritance of any feature of the target class: defined
directly in the text or inherited.

92

Example 66 Exheriting From a Foster Class (1)
class RECTANGLE
feature draw is do ... end
...
end
class ELLIPSE
feature draw is do ... end
...
end
foster class SHAPE
exherit
RECTANGLE
ELLIPSE
all
end
end
foster class GRAPHICAL_OBJECT
exherit
SHAPE
all

end

Example 67 Exheriting From a Foster Class (2)
class RECTANGLE
...
end
class ELLIPSE
...
end
foster class SHAPE
inherit
GRAPHICAL_OBJECT
exherit
RECTANGLE
ELLIPSE
all

end
class GRAPHICAL_OBJECT
...
end

93

Figure 4.13: Exheriting Inherited Features (1)

Figure 4.14: Exheriting Inherited Features (2)

Let us get deeper into this subject analyzing the case presented in figure 4.13.
In this sample we analyze the features of class A inherited in class B which are then exherited

into class C. We mention also that class C in this situation is a descendant of A. Of course that
feature f is inherited in both B and C classes. On the other hand feature f from class B is a
potential candidate to be exherited in class C too. In this point a conflict occurs between the
inherited feature and exherited one in class C. A priority rule can suppress this ambiguity by
setting inheritance to have preference over exheritance by default. If the feature f has a covariant
redefinition in class B and if the exheritance of f is desired in class C, it has to be made explicitly.
It can happen that in both classes B and C feature f has a covariant redefinition. In such case
the effect is implicit feature duplication and a name conflict. This problem can be fixed using the
renaming technique.

In the sample described in figure 4.14, we take into consideration the same sample but class C
is not a subclass of A anymore.

Such a class construction is equivalent to a multiple inheritance construction where class B is
obtained by multiple inheritance out of classes A and C. Because we do not want to affect class
B by the features of class C factored by reverse inheritance, we have to disallow replication of
feature f in class B. If we analyze the nature of inherited features that might be exherited we draw
the conclusion, that they can be deferred and effective methods and attributes as well in both A
and B classes. The only restriction is that if f is an attribute in A it has to be an attribute in B
as well. It is not possible in Eiffel to undefine an attribute in a subclass, so the decision for an
attribute can not be changed further. Unlike attributes, when choosing methods one can change
his mind later on. The problem of feature f unification in classes A and C must be analyzed. If f
is an effective method in C and not deferred in A, the "implicit ordinary inheritance" from C to
B should undefine f, by making it deferred.

Problems arises when the exherited feature f in class C is an attribute and also an attribute

94

Figure 4.15: Exheriting Inherited Features (3)

or effective method in A. The equivalent multiple inheritance scheme implies that f should be
duplicated in class B. The solution in this case comes from using reverse inheritance again like in
figure 4.15.

In Eiffel a multiple inherited feature with a common origin will not be replicated. In this
direction we created class X as a superclass of A and C by reverse inheritance with A and linked
by ordinary inheritance with C.

4.6 Like-Type Relationship in Eiffel
The second type of reverse inheritance is called non-conformance because it has the goal of selective
common feature import from exherited subclasses. This mechanism is very similar to roles [VN96,
Kri96, TUI05] or views [AB91, KR93, Hil99, UML04] from the database world.

4.6.1 Motivation
In section 1.1.7 we presented an example where like-type class relationship can assist in designing
the reverse inheritance class relationship. The main idea of that example is that reverse inheritance
helps in splitting the interface of a class while, the like-type class relationship helps in partitioning
the implementation of the same class. Sometimes not all the behavior of the class is desired to be
reused but only a fragment of it, so the resulted class code will be smaller.

We explain also why this class relationship is still needed in the context of already having non-
conforming reverse inheritance. As we already learned with reverse inheritance we can exherit only
common features from several exherited classes. With like-type we can exherit also features which
are not common in all the target classes. In particular the cases of single non-conform reverse
inheritance and single like-type are the same. So in the cases of single like-type class relationship
the single non-conforming reverse inheritance class relationship can be used.

4.6.2 Definitions and Notations
The syntax extension for the feature implementation importing class relationship will be the like-
type keyword. The feature implementations may come from one or multiple classes. The selection
of imported features is done using the same keyword moveup as for exheritance.

In example 68 we show that class C is built importing features from classes A and B using the
like-type class relationship. We suppose that feature m1 depends only on attribute f1 and that
feature m3 depends only on attribute f3.

95

Example 68 Like Type Definition
class A
feature
f1:REAL;
f2:REAL;
m1 is do ... end
end
class B
feature
f3:REAL;
f4:REAL;
m3 is do ... end
end
class C liketype
A
moveup f1,m1
end
B
moveup f3,m3
end
end

4.6.3 Cardinality
Like conforming reverse inheritance, the non-conforming one can be either single or multiple.
When like-type class relationship has a single target class from where the features are imported
we say it is single like-type. When there are multiple classes targeted then we discuss about
multiple like-type. When like-type is single the things are simpler, but when it is multiple then a
few problems may occur. These problems will be discussed further in several sections.

4.6.4 Imported Feature Selection
As we discussed in the context of reverse inheritance there are several possibilities of selecting
the features to import. One possibility is to select all features from one or more target classes.
In case of single like-type such selection would make no sense, thus the target class is cloned in
the source class. Ordinary inheritance could be used for such situations. The explicit selection of
the imported set is another choice. Selecting all implementations except a certain set is another
way of performing the import. Selecting no feature makes no sense, so such selection strategy is
excluded.

4.6.5 No Type Conformance
Between the source and the target classes there is no type conformance link, just as in non-
conformance ordinary or reverse inheritance. The source class of like-type relationship may have
features which are not present in all target classes and also target classes may have features which
are not present in the source class.

In example 68 we can see that there is no type conformance between class C obtained by
like-type class relationship and target classes A and B. Obviously, class C will be equipped with
features f1, m1 from A and f3, m3 from B so there will be no type conformance between A and
C or respectively B and C.

If no type conformance is provided then it is clear that there will be no dynamic binding issues.
Having no type conformance means also that we can not have a like-type class relationship between
classes related by direct or indirect ordinary or reverse inheritance conform or non-conform.

96

4.6.6 Exherited Features
The main idea of this relationship is to import feature implementations in the source class from
one or more target classes in order for the source class to reuse them. Imported features act just
like they would be defined originally in the source class. This assumption will cause the same
family of problems that we had with the move up facility of reverse inheritance.

Regarding the target class it can be deferred or effective. If deferred features are exherited,
then the source class becomes deferred as well. Such an import of deferred features is not very
useful in practice. Taking into account the nature of the features we can see that attributes are
very easy to import, but they can be easily rewritten as well. The only interest stands up only for
method implementations.

4.6.7 Dependency Problems
When certain behavior is imported into the source class it can be affected by the local calls. These
calls link the imported features to behavior that they depend on. So in the problem of resolving
dependencies we have several possibilities:

• to import them recursively from the same class, this will lead to importing almost all the
behavior from the target class. This can be done automatically or manually by letting the
programmer select the import of dependencies recursively.

• to import them from other target classes, the imported features must be selected manually.

• to declare the dependencies in the source class as deferred. This choice would make the class
deferred also.

• to let the programmer redefine their implementation.

The most natural approach seems to let the programmer decide between the presented choices by
manually selecting the necessary imports.

4.6.8 Possible Name Conflicts
When different features are exherited from different classes then the possibility of name collisions
arises. The import of features having the same names is forbidden. Renaming is the mechanism
that could solve such conflicts if both implementation are needed to be imported. The same
mechanism should be used also in case of dependency conflict.

4.6.9 Exheriting the Inherited Behavior
Another interesting situation arises when we want to import inherited behavior from a class. This
behavior is not listed in the target class but it exists there implicitly. The most natural solution
would be to restrict like-type class relationship to import only locally declared methods. In case
someone needs to import inherited behavior he should import it directly from the superclass that
defines it.

4.6.10 Adding New Features
In the implementation of the source class can be added new attributes and methods that may use
the imported features further. The same effect can be obtained only by creating a new descendant
class using ordinary inheritance and adding in the newly created class the desired behavior. We
think that by using this approach, instead of mixing imported features from multiple classes and
new features in the same class, we increase the clarity in the design process. In one step we create
the class having multiple selected behaviors and in the second step we create a new subclass
declaring just the new features.

97

4.6.11 Conclusions
We can compare this class relation with non-conforming inheritance in both cases: single and
multiple. Non-conforming reverse inheritance allows exheriting only the common features, while
like-type class relationship non-common ones. Unlike reverse inheritance which implicitly exherits
features as deferred, like-type class relationship is interested only in method implementation. At
one point the two mechanisms are equivalent: single non-conforming reverse inheritance and single
like-type.

4.7 Summary
In the current chapter are presented several ideas about how to handle the special cases in which
a class is the target of both ordinary and reverse inheritance. We analyzed two cases of features
having or not common seed. In both cases the effect of combining inheritance and exheritance
clauses was experimented in order to obtain: a new version of the feature, a deferred feature, the
inherited feature, the exherited feature. Also the effect of the select keyword is analyzed. The
conclusion drawn is that the mechanism does not allow in more complicated class configuration
the selection of the desired feature when dynamic linking problems occur. This problem is not
addressed by ordinary inheritance, so reverse inheritance will not try to solve it. It is interesting
though to analyze the configuration of a multiple inheritance diamond when classes are created
in several orders. In most of the cases it is necessary to use reverse inheritance. Sub-cases
were analyzed in the experiment of sharing and replicating features. When sharing features,
it is natural to use only the inheritance/exheritance clauses. When replicating features in the
diamond, which is done by renaming in all the combinations of ordinary and reverse inheritance
the problem of feature selection in dynamic binding occurs. The selection mechanism from ordinary
inheritance is used in an ”a posteriori” manner, meaning that the decision for the selection of a
feature is made in the latest built foster class representing the base class of the hierarchy. The
difference between the original selection mechanism and the one adapted to the foster class is
the specification of the class to which the dynamic binding problem refers. The like-type class
relationship semantical elements are issued: definition, notation, cardinality, feature selection, type
conformance, dependency problems, name conflicts. Mainly, it has the same class of problems like
reverse inheritance.

98

Chapter 5

Related Works. Conclusions.
Perspectives

5.1 Related Works
In this section we will analyze several works related to class hierarchy reorganization, class reuse
mechanisms, software adaptation and evolution. There will be highlighted the similarities and
differences between the reverse inheritance class relationship and other related mechanisms or
reegineering models. The closest concept to reverse inheritance is ordinary inheritance. In some
situations reverse inheritance has adapter design pattern capabilities. A concrete reenginering
method for creating abstract superclasses can be organized around the reverse inheritance concept.
The implementation of reverse inheritance may imply a refactorization process which can make
the original code adapt or evolve. Algorithms optimizing feature factorization have the same goals
as reverse inheritance, but use different means. Reverse inheritance is also a class reuse concept
and is part of class reuse mechanisms like traits and mixins.

Reverse Inheritance vs. Ordinary Inheritance
The most similar mechanism, which by the way gave birth to reverse inheritance, is ordinary in-
heritance [Fro02]. While ordinary inheritance represents a top-down approach, reverse inheritance
is a bottom-up technique of class organization. Ordinary inheritance affects the subclasses letting
the superclasses intact, while reverse inheritance creates the superclass letting subclasses unmod-
ified. We consider that ordinary and reverse inheritance are symmetrical meaning that any class
construction built with reverse inheritance can be reproduced with ordinary inheritance. Reverse
inheritance introduces no new, incompatible concepts than the already existing and maybe some
natural deriving ones like adapt, because adaptations are a must in an environment where classes
come from different hierarchies. Common features will be hosted in the foster class and they will
be present also in the exherited classes. The behavior of such class hierarchies is the same in the
two cases. In inheritance the things are slightly different because common features are declared
only in the superclass and they are inherited in the subclasses. Subtyping relationship between
classes can be selected in both versions of inheritance (conform and non-conform).

Inheritance clauses generally refer to one inherited feature, while in exheritance they may refer
to all the exherited features from the exherited classes. The inheritance clauses refer to one feature
in the superclass while exheritance clauses may refer one (rename, moveup, adapt) or multiple
exherited features (redefine).

99

Figure 5.1: Adapter Using Reverse Inheritance

5.1.1 Reverse Inheritance and Design Patterns
In [GHJV97] are presented several design patterns which are a collection of general solutions
to commonly occurring problems. The class reorganization strategies may be applied either at
design time or may be applied afterwards, The second possibility requires changing the original
code but reverse inheritance helps avoiding this. Because design patterns are based basically on
polymorphism, dynamic binding, features which are offered by inheritance, we may say that design
patterns may rely on reverse inheritance also. In some cases reverse inheritance will help building
better design solutions than ordinary inheritance. With respect to these ideas we will analyse
three examples of design patterns applied using reverse inheritance: adapter, strategy, template
method.

Adapter Design Pattern Using Reverse Inheritance Reverse inheritance may help in using
the Adapter design pattern in some cases, because it adapts subclass interfaces to the interface of
the foster class.

In figure 5.1 and example 69 we show how reverse inheritance can help in implementing the
Adapter design pattern from [GHJV97]. The basic usage of this design pattern is to adapt the
interface of a class to a different interface of another class. In our case we want to implement the
STACK interface using the DOUBLE_LINKED_LIST class. For that we created a new class
DOUBLE_LIST_IMPL_STACK which is the superclass of DOUBLE_LINKED_LIST and at
the same time a subclass of STACK. From the implementation of the adapted class we will import
all the necessary features in the foster class by listing them in the moveup clause. The case
of single inheritance allows exheritance of features in more relaxed conditions than exheritance
from multiple classes because we do not have to find the features having the same signature in all
exherited classes. We can notice that the methods in the STACK interface have different names
from the methods of the adapted class, so renaming is used to change their names.

The other possibility is to inherit from DOUBLE_LINKED_LIST class, to rename the insert-
Tail and removeTail methods and to prohibit the inheritance of the other unnecessary features
like insertHead, removeHead.

Template Method Design Pattern Using Reverse Inheritance When moving the imple-
mentation of a feature in a foster class we can obtain the effects of the Template method design
pattern (see figure 5.2 and example 70).

100

Example 69 Adapter Using Reverse Inheritance (Eiffel Code)
deferred class STACK
feature
push(o:OBJECT) is deferred end
pop:OBJECT is deferred end
top:OBJECT is deferred end
end
class DOUBLE_LIST_IMPL_STACK
inherit
STACK
exherit
DOUBLE_LINKED_LIST
rename
insertTail as push,
removeTail as pop,
getTail as top
moveup
insert,remove,insertHead,push,
removeHead,pop,getHead,top

end
all
end
class DOUBLE_LINKED_LIST
feature
insert(pos:DNODE;o:OBJECT) is do ... end
remove(pos:DNODE) is do ... end
insertHead(o:OBJECT) is do ... end
insertTail(o:OBJECT) is do ... end
removeHead:OBJECT is do ... end
removeTail:OBJECT is do ... end
getHead:OBJECT is do ... end
getTail:OBJECT is do ... end
end

Figure 5.2: Template Method Using Reverse Inheritance

101

Example 70 Template Method Using Reverse Inheritance (Eiffel Code)
class TRANSACTION_SOCGEN
feature
checkBank is do end
checkCredit is do end
checkLoan is do end
checkStock is do end
checkIncome is do end
check is
do
checkBank
checkCredit
checkLoan
checkStock
checkIncome
end
end
foster class TRANSACTION
exherit
TRANSACTION_SOCGEN
moveup check
end
all
end
class TRANSACTION_BPN
inherit
TRANSACTION_SOCGEN
redefine checkBank,checkCredit,checkLoan,CheckStock,checkIncome
end
feature
checkBank is do end
checkCredit is do end
checkLoan is do end
checkStock is do end
checkIncome is do end
check is do ... end
end

102

In figure 5.2 and example 70 we present a situation where we have a transaction class TRANS-
ACTION_SOCGEN which implements a checking template method, meaning that each transac-
tion should check the bank, the credit of the owner, the loan the owner may have got, the stock
of the bank and the future income the owner may have. All these checkings are implemented in
different manners for each particular bank. This checking template can be reused for implementing
another transaction for a different bank. Using exheritance we will exherit the implementation
of method check into a separate superclass TRANSACTION. Also the checking operations are
exherited as deferred features since they are needed by the check method. From the newly con-
structed superclass we can inherit the template method and reimplement the checking operations
in class TRANSACTION_BPN.

Reverse inheritance is a different way of reusing behavior and state from classes, the same
thing could be done also by ordinary inheritance. In this case we could non-conformly inherit
from class TRANSACTION_SOCGEN, redefine the checking operations and not export the other
unnecessary features. In this solution we performed just a class reuse operation without having
any type relationship between the classes. If we consider to inherit conformly and to prevent
the export of unnecessary features then the class instances may be target to invalid CAT1 calls.
The advantage of reverse inheritance solution stands in offering the application designer a new
supertype holding the common behaviour and state.

5.1.2 Reverse Inheritance and Abstract Superclass Creation by Refac-
torings

In [OJ93] is described a manual method of reorganizing class hierarchies by creating a new abstract
superclass for a set of subclasses, using refactorings [Opd92, Fow99]. It is explained step by step
the process of creating an abstract superclass: adding function signatures to the superclass, making
function bodies compatible, moving variables and migrating common code to the superclass. In
our work dedicated to Eiffel we encapsulated all these operations in the semantics of reverse
inheritance. The main difference is that the transformations proposed alter the subclasses while
our approach keeps them intact, having the possibility of cancelling later easily the modifications.
We will show a parallel between the two approaches, so we translated the use case of [Opd92] in
order to fit the syntax of Eiffel. In example 71 is presented the equivalent class MATRIX in Eiffel.

The original MATRIX class contains:

• same attribute for storing state: rows, columns, elements;

• accessor methods for each element of the modelled matrix: get and put which use a linear
formula for indexing;

• a creator method matrix which is the equivalent of the C++ constructor;

• special matrix operators like matrixMultiply, rotate, matrixInverse.

In example 72 we created the new class ABSTRACT_MATRIX which exherits state and
behavior from the original MATRIX class. The rows and columns attributes were exherited as
effective. The elements attribute is redefined at foster class level as an array of class ANY. The
get and put accessors were exherited as deferred since in SPARSE_MATRIX class they will have
a different implementation based on storing non-null values and their coordinates. The operations
methods matrixMultiply, rotate, matrixInverse were exherited as deferred also since they have to
be redefined at foster class level using the get and put accessors. The operation features will act
like template methods in the foster class and in the subclasses they will reuse the redefined local
accessors.

Later from the ABSTRACT_MATRIX class there can be derived the SPARSE_MATRIX
class presented in example 73. The elements attribute has to be redefined as an array of SPARSE_ELEMENT
instances. The get and put accessors must be redefined since they have to perform searches in

1Changing Availability of Type

103

Example 71 Initial Matrix Class
class MATRIX
create matrix
feature --attributes
rows, columns : INTEGER
elements : ARRAY[INTEGER]
feature --accessors
get(rowNum:INTEGER;colNum:INTEGER):INTEGER is
do
result:=elements.item(rowNum * columns + colNum)
end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is
do
elements.put(rowNum * columns + colNum,newVal)
end
feature --creators
matrix(numRows:INTEGER; numCols:INTEGER) is do
create elements.make(0,9999)
end
feature --operations
matrixMultiply(m2:MATRIX):MATRIX is do ... end
rotate is do ... end
matrixInverse is do ... end
end

Example 72 Abstract Matrix Class
foster class ABSTRACT_MATRIX
exherit
MATRIX
moveup rows, columns
end
only elements, get, put, matrixMultiply, rotate, matrixInverse
redefine elements, matrixMultiply, rotate, matrixInverse
feature --attributes
elements : ARRAY[ANY]
feature --accessors
get(rowNum,colNum:INTEGER):INTEGER is deferred end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is deferred end
feature --operations
matrixMultiply(m2:ABSTRACT_MATRIX):ABSTRACT_MATRIX is
do
-- must be reimplemented accessing only get and put
end
rotate is
do
-- must be reimplemented accessing only get and put
end
matrixInverse is
do
-- must be reimplemented accessing only get and put
end
end

104

Example 73 Sparse Matrix Class
class SPARSE_MATRIX
inherit
ABSTRACT_MATRIX
redefine elements, get, put
end
feature --attributes
elements : ARRAY[SPARSE_ELEMENT]
feature --accessors
get(rowNum,colNum:INTEGER):INTEGER is
do
-- a search in the array is performed
end
put(newVal:INTEGER;rowNum:INTEGER;colNum:INTEGER) is
do
-- a search in the array is performed
end
end
class SPARSE_ELEMENT
feature --attributes
rowNum : INTEGER
colNum : INTEGER
value : INTEGER
feature --accessors
getRow:INTEGER is do result:=rowNum end
setRow(row:INTEGER) is do rowNum:=row end
getCol:INTEGER is do result:=colNum end
setCol(col:INTEGER) is do colNum:=col end
getValue:INTEGER is do result:=value end
setValue(v:INTEGER) is do value:=v end
end

105

the array containing the values along with their coordinates and not direct indexing like original
MATRIX class did. A possible implementation for the SPARSE_ELEMENT class is presented in
example 73 and it must contain attributes and accessor for storing the value and its coordinates.

We showed that the matrix abstraction process can be performed successfully with reverse in-
heritance and ordinary inheritance without affecting the original class. There are some differences
due to the fact that reverse inheritance keeps intact the behavior of the exherited classes. The first
difference refers to the impossibility of renaming the original MATRIX class because of reverse
inheritance imposed restrictions.

The exheritance of the elements attribute is not present in the [OJ93] example, but we redefined
it as an array of ANY references at the superclass level in order to be reused. In the sparse matrix
class this array is redefined as an array of sparse elements in both approaches. If we choose not
to exherit this member in the superclass, we will have to add a new array of sparse elements in
the sparse matrix class implementation.

The columns and rows attributes were listed in themoveup clause of reverse inheritance while
in the [OJ93] example they moved the attributes manually or automatically. In both approaches
the effect will be the same.

The accessor methods get and set are exherited as deferred in the abstract class and then
reimplemented in the sparse matrix class. For this only the selection of features in the exheritance
clause was necessary, while in the [OJ93] example they had to explicitly copy the signature in the
superclass manually or automatically.

The matrix operations in our approach have to be redefined at foster class level using the
accessor methods since in [OJ93] example they are directly modified to use accessors and then it
is moved in the superclass. In both approaches they will operate as template methods.

We can conclude that both methods have the same goals for the given example. The [OJ93]
method has more flexibility since they use ad-hoc refactoring operations while reverse inheritance
has strict rules. The refactorings in [OJ93] method are manual or semiautomatic while in reverse
inheritance the refactorings are expressed implicitely by the semantics.

5.1.3 Reverse Inheritance and Other Related Works
In [Fow99] are presented several techniques of restructuring code by altering its internal structure
without changing external behavior. We adhere to this restriction in the sense that we do not
change the behavior of the exherited classes. Some code reorganization techniques will be used in
our work when implementing the semantics of reverse inheritance in terms of equivalent pure lan-
guage constructs. By proving that each semantical element of reverse inheritance can be expressed
using pure Eiffel language constructs we can assure the feasibility of our approach. We mention
also that this is not the only possible implementation. Some implementation related issues will be
presented briefly in section 5.3.

In [DHLR02] is presented an algorithm that reorganizes class hierarchies based on Galois lattice
for optimizing factorization of features. In this work the changes are intended to be performed on
a class hierarchy in order to avoid flaws regarding factorization. Modifications of attributes to all
occurrences is considered time consuming and error prone. Multiple unnecessary declarations of
features makes the hierarchy less understandable and usable. In our approach reverse inheritance
helps modifying the class hierarchy in order to reflect the new desired model of the application
and also to reduce the presence of redundant attributes and methods. The difference between
the two approaches is that the reorganization algorithm proposed in [DHLR02] is automatic and
it may modify the relations between classes in order to perform optimizations, while exheritance
must be used as a tool for redesign first and then by automatic translation the executable system
can be obtained.

In [SDN02, SDNB03] is presented the trait model which can be viewed as a class reusing
mechanism. Traits are reusable and composable parts of a class which can be connected together.
Also traits must respect a connection protocol between them, so they must be designed in a
special way. The trait model can be applied only in frameworks in which reusable traits are
already existing. Reverse inheritance is designed so that it can be applied to any set of class

106

hierarchies written in Eiffel. Comparing the two models, traits are more likely oriented toward
designing a system whose parts should be highly reused, while reverse inheritance helps reusing
already designed systems.

5.2 Conclusions
Defining the semantics of reverse inheritance and like-type class relationship, several conclusions
can be drawn. The choice for the syntactical elements was made taking into account the expres-
siveness of the resulted class hierarchy. In order to avoid confusion there was pointed out the
difference between single, multiple reverse inheritance and several independent reverse inheritance
class relationships.

Feature factorization is the key in obtaining an uniform interface for all the different subclasses.
The choices for factorization are dual, depending on the number of features that are needed to
be exherited. One can choose all possible features except some which may have the same name
but representing the same feature, or can choose no features to be factored implicitly, but the
explicitly listed ones. The nature of the feature attribute or method is important when setting the
implicit rules of factorization. However, for practical reasons, to be of more use to the hierarchy
designer, we decided that it is better that implicitly attributes are factored as concrete features,
while methods or combination of attributes and methods as deferred features, in the foster class.
When implementation is subject to factorization, there are quite strong restrictions imposed in
order to obtain a valid class hierarchy. Dependencies are the first problems to be solved either
by exheriting them or by reimplementing them at the foster class level, but without affecting the
behavior of the original classes.

Another key element of reverse inheritance pointed out is the type conformance between sub-
classes and the foster class. The substitution principle of polymorphism works exactly like in
ordinary inheritance. Dynamic binding of common features still holds in the context of reverse
inheritance. Because of symmetry reasons the concept of non-conformance reverse inheritance
was introduced. In some versions of the language, non-conforming inheritance is used as solution
in solving dynamic binding problems. The class relationship in this case can be used only for
reusing implementation from the subclasses. Generic classes instantiated with classes related by
reverse inheritance keep their superclass/subclass behavior. Using reverse inheritance between
classes working as types, covariant feature redeclarations can be obtained. The expanded status
of a class is orthogonal on ordinary and reverse inheritance. A delicate aspect is related to the
behavior added in the superclass, which can be achieved either by reverse inheritance from the
subclasses or from a potential superclass. The approach is strongly based on the fact that in ordi-
nary and reverse inheritance features can be redefined. Exheritance clause combinations in context
of attributes, methods and mixes of attributes and methods are restricted. Moving a feature and
redefining another, or moving at the same time several features are not valid combinations.

Since adaptations are the core of factorization mechanisms permitting the use of several differ-
ent classes under a common interface, a special chapter presents the related problematics. First
the classic adaptation mechanisms like redefinition, undefinition and renaming, are presented how
they work in the context of reverse inheritance.

A special set of adaptations are the ones related to signatures, where the scale of the return
type, the parameter type and parameter order can be changed. In the study primitive type were
considered and also user defined types. For primitive types the idea that one type can include the
values of another type was used for determining the representative primitive type that can be used
in the foster class. For primitive parameter types they must be smaller in the foster class than
all the corresponding types in subclasses, while primitive return types must be larger in the same
context. However it is natural that a common interface restricts the primitive type range of the
input and to enlarge the primitive type range of the output. For class derived types the things go
in two directions either there are type conformance relations between the types and polymorphism
substitution is used or there are provided conversion routines. The presented adaptations are not
a severe deviation from the philosophy of the language.

107

Regarding genericity there are a lot of situations for unconstrained and constrained generic
subclasses. It is allowed for a foster class to instantiate and exherit several generic foster classes.
If the foster class gets also generic then there can be exherited non-generic features and also generic
features since there is no constraint about the generic parameters, they can be instantiated with
any type. A special useful case of reuse arises in case the foster class is generic and the subclasses
are non-generic, and some concrete features from the subclasses are exherited as generic features.
This behavior is somehow asymmetric related to ordinary inheritance and probably difficult to
implement. For constrained genericity exheritance cases, in order to be able to factor generic
features there must be a conforming supertype of all corresponding generic parameter constrained
type. If such a type does not exist, it can be always provided by reverse inheritance. The
exheritance of features having anchored type must be analysed in two cases: when it is anchored
to a type or to current.

The redefinition of assertions (preconditions, postconditions and assertions) is a very prob-
lematic issue related to reverse inheritance. Precondition in foster class must be stronger than
those in subclasses, so the AND logical operator is used. This approach is not always applicable
when preconditions from the subclasses are contradictory. False is the strongest precondition,
but it will forbid executing the code in the method, resulting failure. For postconditions and
invariants the OR logical operator should be used. The problem of postconditions is not so se-
vere since true is the weakest postcondition that always checks. Another problem arises for all
assertions when a feature present in the logical expression is not factored in the foster class. For
this we proposed to eliminate the missing logical variable, replacing it with a neutral constant
(true or false), trying to affect as less as possible the logical expression. However, the burden
of guaranteeing which assertion is correct, is left in the responsibility of the programmer. Using
such keywords makes the programmer aware. To the already existing solutions in literature were
brought some improvements, making reverse inheritance work in practice, although the solution
can be improved.

Dynamic binding problems arise in class configurations where a foster class can get the imple-
mentation of a feature from at least two sources: a subclass and a superclass. Such a problem
can be controlled by using appropriate inheritance and exheritance clauses in a valid combination.
Two big sets of class configurations have been studied: when having or not common seed. The
influence of renaming in some cases may cause inconsistent class hierarchies. The classic solution
of using select for solving dynamic binding problems in ordinary inheritance has some drawbacks
in more complex class hierarchies, by not permitting a free selection of a desired implementation
for a feature.

The classic diamond multiple inheritance class configuration can be obtained also using reverse
inheritance, but adding the classes in different orders, thus having different time stamps. In the
case of sharing multiple inherited features there are no problems because the features share the
same seed, but when replication is needed and the class in the top of the hierarchy is added last,
then the selection of the appropriate implementation for a replicated feature in the bottom class
must be specified in the top class, since it is the last one added.

Impact of some keywords related to the status of a feature and class were analyzed in the
context of reverse inheritance. The most interesting one is related to the use of precursor. The
exheritance of implementations having precursor limits the capabilities of reverse inheritance, some
cases in very strict conditions are still possible. Related to exportation of features, the conclusion
is that the foster class can restrict the set of subclass common clients, but not to allow new ones.
Creational procedures can be exherited, but in the foster class they must be also declared in the
creation procedure list. The assign clause of an attribute can be exherited together with the
attribute if they are present in all the subclasses.

5.3 Perspectives
The next step of this research is to prove that reverse inheritance is a feasible class relationship by
implementing its semantics in Eiffel programming language. There is no programming language

108

Figure 5.3: Implementation Main Idea

Figure 5.4: Logic Based Transformation Implementation

yet implementing such a concept [Sak02], but this can be done by designing a prototype. The main
idea of such a prototype is to be able to translate object-oriented systems based on class hierarchies
involving ordinary and reverse inheritance into executable code. In figure 5.3 are presented: the
starting point which consists in the classes of a redesigned Eiffel project by reverse inheritance,
the translator which is a generic entity for the moment and the target represented by the compiled
object-oriented system.

An important issue is related to the nature of the reused classes, which usually are written
in pure Eiffel or they can be parts of precompiled libraries. For simplicity, we will consider that
the source code of the reused class hierarchies is available. If it is not, there must be performed
adaptations at binary code level.

There are multiple solutions to achieve the translation presented in figure 5.3, but we are
focusing on an implementation which is designed using logic based program transformation as
depicted in figure 5.4.

Next, we will present the steps of an implementation which assumes that class source code is
available. The first entity of the diagram contained in figure 5.4 is the collection of source classes
which are reengineered by reverse inheritance. These classes organized in hierarchies may belong
to different projects, and the need for adaptation is resolved with the help of reverse inheritance.

The source classes using reverse inheritance are the input for the Eiffel parser. The Eiffel
parser is based on the Eiffel language grammar [Mey02, Int05] and also on the reverse inheritance
model. The model of the foster class is expressed by special rules in the grammar of the extended
language2.

2Reverse inheritance is considered to be an extension of the Eiffel programming language.

109

For creating the Eiffel parser we could use an already existing Eiffel library like Gobo [Bez07],
which has tools like gelex and geyacc (the Eiffel equivalent of lex and yacc used for compiler
generation) and to augment the existing Eiffel grammar with the exheritance related rules. For
the fact-base (logic based program representation) generation part we could use the visitor mech-
anism offered by the generated AST. It will provide normalized Prolog facts about the analysed
program. All the information from the AST (Abstract Syntax Tree) are translated into Prolog
facts linked together in a relational way, like in relational databases. For example there will be
facts representing the classes of the system, the features of those classes, the modifiers used in
those classes, etc. The relations between these program element facts can be made using integer
keys.

The same job can be performed by a set of tools that can be found in the universe of Java
technology like JavaCCTM[SM] which can generate a parser from the grammar of the extended
Eiffel language, and can facilitate the automatic generation of the AST. The JavaCCTM parser
generator in combination with JTree [SM] or JTB [JTB] tree generators will help in obtaining
automatically the desired AST. For each grammar rule the tree generators will generate a new
class representing a node in the tree. The generated parser is written in Java and also the AST
representation is based on Java objects.

The logic based program translator transforms the model in the fact-base using conditional
transformations CT [KK02]. A conditional transformation is a composable pair of a precondition
and a transformation. If the precondition is true then the transformation is executed. For example
before adding a new class in the object-oriented system, there must be tested if a class with
the same name does not already exist. The transformations refer mainly to the creation of an
equivalent class hierarchy through the elimination of the reverse inheritance semantical elements
from the model [CKLS07]. For example all foster classes will be transformed into effective or
deferred ordinary classes and all exheritance links between classes will be transformed into ordinary
inheritance links. This part of the prototype is implemented in Prolog, thus the fact-base generated
in the earlier stages can be easily manipulated.

The final step is to generate the pure Eiffel source code from the transformed Prolog facts.
These sources would be then compiled by a regular Eiffel compiler like ISEEiffelTM or SmartEif-
fel, which will produce the executable binary of the reengineered object-oriented system. This
processing stage involves visiting all facts from the fact-base and printing them out conform to
the Eiffel syntax.

There are also other possible implementations, like expressing reverse inheritance semantics
using other programming languages like C, C++, Java. Another possibility is to design a compiler
and to compile directly the object-oriented system, containing ordinary and reverse inheritance,
as well, into an executable binary.

110

List of Algorithms

1 Reverse Inheritance Example . 8
2 Reverse Inheritance Equivalent Sample . 9
3 Syntax for Exheriting Features . 10
4 Dequeue Class . 13
5 Implicit Rules for Attribute Exheritance (1) . 16
6 Implicit Rules for Attribute Exheritance (2) . 17
7 Implicit Rules for Attribute Exheritance (3) . 17
8 Implicit Rules for Method Exheritance (1) . 18
9 Implicit Rules for Method Exheritance (3) . 19
10 Implicit All Common Feature Selection . 19
11 Explicit Common Feature Selection . 20
12 Implicit Common Feature Selection . 21
13 No Feature Selection . 22
14 Factoring Features Represented By Attributes . 22
15 Factoring Features Represented by Attributes and Methods 23
16 Factoring Features Represented by Effective and Deferred Methods 24
17 Factoring Implementation . 25
18 Conforming Reverse Inheritance . 26
19 Non-conforming Reverse Inheritance . 27
20 Non-conforming Reverse Inheritance (2) . 27
21 Genericity and the Foster Class . 28
22 Argument, Result Type and the Foster Class . 29
23 Expanded vs. Non-expanded Foster Classes . 30
24 Exheriting Class Types Referring Class Declarations 31
25 Exheriting Class Types Referring Formal Generics 31
26 Exheriting Class Types Referring Class Declarations and Having Actual Generics . 32
27 Expanded and Separate Type Exheritance . 33
28 Exheriting Anchored Features (1) . 34
29 Exheriting Anchored Features (2) . 34
30 Exheriting Anchored Features (3) . 35
31 Exheriting Anchored Features (4) . 36
32 Exheriting Bit Types . 37
33 Exheriting Various Types . 38
34 Feature Redefinition . 43
35 Feature Renaming . 44
36 Adaptation Grammar Rules . 46
37 Scale Adaptation (1) . 47
38 Scale Adaptation (2) . 49
39 Using the Adaptation . 50
40 Parameter Number Adaptation . 51
41 Parameter Type Adaptation . 53
42 Class Type Parameter Adaptation (1) . 53
43 Class Type Parameter Adaptation (2) . 54

111

44 Primitive Type Parameter Adaptation . 55
45 Class Attribute and Return Type Adaptation . 56
46 Class Return Type Adaptation (2) . 57
47 Primitive Return Type Adaptation . 57
48 Attribute Type Adaptation (1) . 59
49 Attribute Type Adaptation (2) . 59
50 Attribute Type Adaptation (3) . 60
51 Unconstrained Genericity (1) . 61
52 Unconstrained Genericity (2) . 62
53 Unconstrained Genericity (3) . 63
54 Unconstrained Genericity (4) . 63
55 Constrained Genericity (1) . 64
56 Constrained Genericity (2) . 65
57 Exheritance and Assertions: The Syntax . 68
58 Exheriting the “only” Clause . 69
59 Select Like Approach . 78
60 Selection of Replicated Features From a Foster Class 82
61 Exportation and Exheritance . 85
62 Exheriting Creation Procedures . 86
63 Exheritance of an Attribute with Assign Clause . 87
64 Exheriting Features of Type once . 89
65 Inheriting from Foster Class . 91
66 Exheriting From a Foster Class (1) . 93
67 Exheriting From a Foster Class (2) . 93
68 Like Type Definition . 96
69 Adapter Using Reverse Inheritance (Eiffel Code) 101
70 Template Method Using Reverse Inheritance (Eiffel Code) 102
71 Initial Matrix Class . 104
72 Abstract Matrix Class . 104
73 Sparse Matrix Class . 105

112

List of Figures

1.1 Capturing Common Functionalities . 3
1.2 Inserting a Class Into an Existing Hierarchy . 4
1.3 Extending a Class Hierarchy . 4
1.4 Reusing Partial Behavior of a Class . 5
1.5 Creating a New Type . 5
1.6 Decomposing and Recomposing Classes . 6

2.1 Reverse Inheritance . 8
2.2 Dequeue Sample . 12
2.3 Dequeue Class Diagram . 12
2.4 Multiple Reverse Inheritance . 14
2.5 Two Independent Reverse Inheritance Relationships 14
2.6 Several Independent Reverse Inheritance Relationships 15

3.1 Parameter Position Adaptation . 48
3.2 Exheritance and Assertion Redefinition . 67

4.1 Copying or Moving Features - Main Diagrams . 71
4.2 Combinations Dealing with Getting the Implementation of a Method in a Foster

Class (1) . 74
4.3 Renaming When Exheriting . 75
4.4 Combinations Dealing with Getting the Implementation of a Method in a Foster

Class (2) . 77
4.5 Select Problem . 79
4.6 Fork-Join Inheritance Sample . 79
4.7 Sharing Features (case 1) . 80
4.8 Sharing Features (case 2) . 80
4.9 Sharing Features (case 3) . 81
4.10 Main Configuration When Using the Precursor Keyword 84
4.11 Adding an Alias When Exheriting . 88
4.12 Interest for Allowing (Restricted) Inheritance in Foster Classes 92
4.13 Exheriting Inherited Features (1) . 94
4.14 Exheriting Inherited Features (2) . 94
4.15 Exheriting Inherited Features (3) . 95

5.1 Adapter Using Reverse Inheritance . 100
5.2 Template Method Using Reverse Inheritance . 101
5.3 Implementation Main Idea . 109
5.4 Logic Based Transformation Implementation . 109

113

List of Tables

3.1 Semantics of Inheritance and Exheritance Clauses 45

4.1 Combinations for Getting the Implementation of a Method in a Foster Class (1) . 72
4.2 Combinations for Getting the Implementation of a Method in a Foster Class (1.1) 75
4.3 Combinations for Getting the Implementation of a Method in a Foster Class (2) . 76
4.4 Possible Combinations of Ordinary Inheritance and Reverse Inheritance 90

114

Bibliography

[AB91] Serge Abiteboul and Anthony Bonner. Objects and views. In SIGMOD’91 Conference
Proceedings, International Conference on Management of Data, pages 238–247, San
Francisco, California, March 1991. ACM Press.

[Bez07] Eric Bezault. GOBO Eiffel Project. http://www.gobosoft.com, November 2007.

[CCL04a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. A reverse inheritance
relationship dedicated to reengineering: The point of view of feature factorization. In
MASPEGHI Workshop at ECOOP 2004, MechAnisms for SPEcialization, General-
ization and inHerItance, Oslo, Norway, June 2004.

[CCL04b] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. A reverse inheritance
relationship for improving reusability and evolution: The point of view of feature
factorization. Research report, OCL Project, Laboratoire Informatique, Signaux et
Systmes de Sophia-Antipolis (UNSA / CNRS), France, September 2004.

[CCL+04c] Ciprian-Bogdan Chirila, Pierre Crescenzo, Philippe Lahire, Dan Pescaru, and
Emanuel Tundrea. Factoring mechanism of reverse inheritance. In International Con-
ference on Technical Informatics CONTI 2004, Periodica Politechnica, Transactions
on Automatic Control and Computer Science, ISSN 1224-600X, volume 49, pages
131–136, Timisoara, Romania, May 2004.

[CCL05a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Reverse inheritance:
An approach for modeling adaptation and evolution of applications. Research re-
port, OCL Project, Laboratoire Informatique, Signaux et Systmes de Sophia-Antipolis
(UNSA / CNRS), France, February 2005.

[CCL+05b] Ciprian-Bogdan Chirila, Pierre Crescenzo, Philippe Lahire, Dan Pescaru, and
Emanuel Tundrea. Survey on reverse inheritance. Scientific Bulletin of Politehnica
University of Timisoara, Transactions on Automatic Control and Computer Science,
Vol. 50 (64), ISSN 1224-600X, 2005.

[CCL07a] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Reverse inheritance:
Improving class library reuse in eiffel. Research report, OCL Project, Laboratoire In-
formatique, Signaux et Systmes de Sophia-Antipolis (UNSA / CNRS), France, March
2007.

[CCL07b] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Reverse inheritance:
Improving class library reuse in Eiffel. Poster presentation at LMO (Langages et
Modeles a Objets) 2007 Conference, May 2007.

[CKLS07] Ciprian-Bogdan Chirila, Gunter Kniesel, Philippe Lahire, and Markku Sakkinen. Eif-
fel/RI Project Website. http://nyx.unice.fr:9000/trac, December 2007.

[CPT05] Ciprian-Bogdan Chirila, Dan Pescaru, and Emanuel Tundrea. Foster class model. In
In Proceedings of SACI 2005 2nd Romanian-Hungarian Joint Symposium on Applied

115

Computational Intelligence, ISBN 963-7154-39-6, pages 265–272, Timisoara, Roma-
nia, May 2005.

[CRC+06a] Ciprian-Bogdan Chirila, Monica-Naomi Ruzsilla, Pierre Crescenzo, Philippe Lahire,
Dan Pescaru, and Emanuel Tundrea. Towards a reengineering tool for java based on
reverse inheritance. In In Proceedings of SACI 2006 the 3-rd Romanian-Hungarian
Joint Symposium on Applied Computational Intelligence, ISBN 963-7154-46-9, pages
364–375, Timisoara, Romania, May 2006.

[CRC06b] Smaranda-Claudia Chirila, Monica-Naomi Ruzsilla, and Ciprian-Bogdan Chirila. Re-
verse inheritance features applied in coding java mobiles applications. In In Proceed-
ings of International Conference on Technical Informatics - CONTI’2006, ISBN (10):
973-625-319-8 ISBN (13): 978-973-625-319-5, volume 2, pages 43–46, Timisoara, Ro-
mania, June 2006.

[CRM99] Yania Crespo, Juan Jos Rodriguez, and Jos Manuel Marques. Obtaining generic
classes automatically through a parameterization operator. a focus on constrained
genericity. In Proceedings of the Technology of Object-Oriented Languages and Sys-
tems, volume 31, pages 166–176, 1999.

[DHLR02] Michel Dao, Marianne Huchard, Therese Libourel, and Cyril Roume. Evaluating and
optimizing factorization in inheritance hierarchies. In Proceedings of the Inheritance
Workshop at ECOOP 2002, Malaga, Spain, June 2002.

[Fow99] Martin Fowler. Refactoring Second Edition. Addison-Wesley, 1999.

[Fro02] Peter H. Frohlich. Inheritance decomposed. In Proceedings of the Inheritance Work-
shop at ECOOP 2002, Malaga, Spain, June 2002.

[GHJV97] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1997.

[Hil99] Rich Hillard. View and viewpoints in software systems architecture. In First Working
IFIP Conference on Software Arhitecture (WICSA 1), pages 22–24, San Antonio,
Texas, February 1999.

[Int05] ECMA International. Standard ECMA-367 Eiffel: Analysis, design and programming
language. www.ecma-international.org, June 2005.

[JTB] Java Tree Builder. http://compilers.cs.ucla.edu/jtb/.

[KK02] Günter Kniesel and Helge Koch. ConTraCT - Conditional transfor-
mations for incremental compilation of aspects. http://javalab.cs.uni-
bonn.de/research/contract/aosdSlides/index.htm, June 2002.

[KR93] Harumi A. Kuno and Elke A. Rundensteiner. Developing an object-oriented view
management system. In IBM Centre for Advanced Studies Conference archive Pro-
ceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative
research: software engineering, volume 1, pages 548–562, Toronto, Ontario, Canada,
July 1993.

[Kri96] B. B. Kristensen. Object-oriented modelling with roles. In Object Oriented Informa-
tion Systems, Dublin, Ireland, 1996.

[LHQ94] Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The potential for reverse
type inheritance in Eiffel. In Technology of Object-Oriented Languages and Systems
(TOOLS’94), 1994.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction 2nd ed. Prentice Hall, 1997.

116

[Mey02] Bertrand Meyer. Eiffel: The language. http://www.inf.ethz.ch/ meyer/, September
2002.

[OJ93] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refac-
toring, 1993.

[Opd92] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[Ped89] C. H. Pedersen. Extending ordinary inheritance schemes to include generalization.
In Conference proceedings on Object-oriented programming systems, languages and
applications, pages 407–417. ACM Press, 1989.

[Sak02] Markku Sakkinen. Exheritance - Class generalization revived. In Proceedings of the
Inheritance Workshop at ECOOP, Malaga, Spain, June 2002.

[SDN02] Nathanael Schärli, Stéphane Ducasse, and Oscar Nierstrasz. Classes = traits + states
+ glue (beyond mixins and multiple inheritance). In Proceedings of the International
Workshop on Inheritance, Malaga, Spain, June 2002.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In Proceedings of the Inheritance Workshop at ECOOP
2003, Darmstadt, Germany, July 2003.

[SM] Inc. Sun Microsystems. Java Compiler Compiler [tm] (JavaCC [tm]).
http://javacc.dev.java.net.

[SN88] Michael Schrefl and Erich J. Neuhold. Object class definition by generalization using
upward inheritance. In IEEE Transactions, 1988.

[TUI05] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama. An adaptive object model
with dynamic role binding. In ICSE ’05: Proceedings of the 27th International Con-
ference on Software Engineering, pages 166–175, New York, NY, USA, May 2005.
ACM Press.

[UML04] UML Superstructure version 2.0. www.omg.org/uml, October 2004.

[VN96] Michael VanHilst and David Notkin. Using C++ templates to implement role-based
designs. In ISOTAS ’96: Proceedings of the Second JSSST International Sympo-
sium on Object Technologies for Advanced Software, pages 22–37, London, UK, 1996.
Springer-Verlag.

117

