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Abstract – Logic based representation has great potential for
program analysis and transformation. Such a logic support for a
programming language can be manually provided by modeling the
grammar and writing a parser using semantic actions. Automatic
augmentation of a target grammar with specific semantic actions
will determine the generation of logic facts from the program AST
(Abstract Syntax Tree) and also provide language independency
as long as the grammar is kept generic. Such an approach would
be useful for any programming language specified by a grammar.
This paper presents an approach towards reaching this goal and
also discusses potential problems.
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I. INTRODUCTION

Logic based models may be used for representing, analyzing
and transforming programs and models [10]. Logic models
favor program analysis, design flaws detection [2], [9], [12],
[8], design pattern mining [7], program transformations [10],
[1]. One of the most commonly used language for logic based
representations is Prolog.

The logic representation of programs and models has several
advantages because Prolog is a well-known programming
language and the model manipulation is more natural using
declarative Prolog clauses. For example the refactoring process
can be manual or locally assisted in development tools like
Eclipse [3] because it relies on AST internal representation.
Using logic representation we can perform refactorings globa-
lly in the whole project. Thus translating a program into logic
based representation offers a higher degree of transformation
capability.

Transformation tools like [10], [1] dealing with transfor-
mations on Java and Eiffel code integrate manually written
parsers that generate the logic representation as Prolog facts
and unparsers for getting the source code from the model.
In order to automatically generate such parsing tools and
to extend the number of languages represented using logic
models we propose rules to augment the grammars of those
languages with specific actions. The goal of this paper is to
show that such automations are possible in principle and to
put the bases for an implementation.

The paper is organised as follows. In the second section
we present some details about the logic based representation.
In the third section we present how programs are translated
into logic based representations. The fourth section discusses
further aspects about the generation process and identifies

class Person
{
private int age;

public int getAge()
{
return age;

}
}

Fig. 1. Code Example

potential problems. Section five presents several implementa-
tion related issues. Section six presents related works. Finally,
in section seven conclusions are drawn and future research
directions are discovered.

II. LOGIC BASED REPRESENTATION

Program modeling using logic has proved a viable alterna-
tive to relational databases with respect to specification and
execution of complex analyses and transformations on the
source code. Logic-based implementations manifest a certain
expresiveness in holding and retrieving information, not easily
found in imperative languages. Another advantage lies in the
fact that the modeling language (Prolog) is also used to specify
analyses and/or transformations on the model (factbase), so
once the model is obtained, the whole activity can be moved
at the logic layer.

Logic-based approaches are presented in [2], [12] and [9]
and will be mentioned in section VII. However, it is the work
of [10] that was of particular interest and consisted a starting
point for our research. [10] defines a logic-based representation
of models and programs as a generalized abstract syntax tree,
which is basically a typed labelled graph. Each node has a
unique identifier, a type, a set of attributes and a set of edges
pointing to other nodes and all these pieces of information
can be combined as a clause in a logic language such as
Prolog. The unique identifier associated with each clause is
automatically generated by incrementation. All these clauses
can then be easily manipulated using the same logic language
in order to specify analyses on the model or to perform model
transformations.

Let us consider the example presented in figure 1. A
simplified Prolog representation will present facts for each
node in the AST of the program. In this example, we are only



class(1,0,’Person’,[2,3]).
field(2,1,int,’age’,null).
method(3,1,’getAge’,[],int,[],4).
block(4,3, ... ).

Fig. 2. Factbase Example

interested in facts regarding major entities of the program, like
classes, fields and methods, but a logic representation would
normally model every single entity.

By inspecting the knowledge base, one can find the name
of the class and details about its intimity. For example (see
figure 2), the first fact links the class named ’Person’ with the
list [2,3]. This means the class has two members and their
respective IDs are 2 and 3. Inspecting the knowledge base
further, one can detect there is a field with ID=2 named ’age’
and a method with ID=3 named ’getAge’. The corresponding
facts present additional information for them which is useful
to navigate further in the hierarchy. It is important to notice
that each fact in the knowledge base has its unique ID as first
argument and the ID of its parent as second argument.

However, it is possible to model such class-field and class-
method relations only if we know for a fact that the target
language is Java. A software engineer determined to analyze
or transform Java code would need a Prolog representation
that easily links classes to their fields and methods because
these relations are specific to Java and are language dependent.
If we deal with a programming language in general and we
only have its grammar specification, a Prolog representation
would only relate child nodes to their parent nodes in the AST.
This is possible by assigning IDs to each node and generating
Prolog facts using a grammar-driven approach that relate the
ID of a child node in the AST to the ID of its parent. We lose
expressivity but since this approach is based on the grammar
only it becomes language independent.

Once the Prolog model is generated for a program, a
software engineer that is aware of the programming language
could easily write his own rules to ease his access to program
entities. An automatic approach to this problem is impractical,
if not impossible.

III. FACTBASE GENERATION BY GRAMMAR
AUGMENTATION

In this section we present a solution for automating the
generation of logic representation for a given program starting
from its grammar rules. In order to build such a generator,
we augment the grammar with generative semantic actions
and feed it to a parser generator like Flex [4], Bison [5] or
JavaCC [11]. However the main problem is to automatically
obtain such an augmented grammar.

We intend to show how an augmented grammar can be
built for a programming language by adding semantic actions
to its original grammar rules. While parsing a source file
written in that language, semantic actions generating logic
representations will be executed. Parser generators like Flex,

Prog ::= "program" <IDENT> ";" Block "."
Block ::= Decls "begin" InstrList "end"
Decls ::= "var" VariableList ":" Type ";"
VarList ::= Var "," VarList | Var
Var ::= <IDENT>
Type ::= "integer" | "real" | "char"
InstrList ::= Instr ( ";" Instr )*
Instr ::= Assignment
Assignment ::= <IDENT> ":=" Expression
Expression ::= <IDENT> | <INT>

Fig. 3. MiniPascal Grammar

Bison, JavaCC allow attaching semantic actions to each rule
in the grammar and those actions may be used for our model
generation purposes.

However, we model the program without losing any in-
formation in order to be able to regenerate the original
source code. Such a facility will allow program transforma-
tions by modeling the program, transforming the model and
regenerating the source code back from the model. Model
transformation is far more easier than source code modification
since Prolog has built-in predicates for factbase manipulation,
like adding, removing, modifying clauses.

Semantic actions associated with different grammar rules
appear to be quite similar. Their main purpose is to generate
for each AST node a Prolog fact that links the ID of the
AST node with the IDs of its children, as stated by the
corresponding grammar rule.

We intend to augment with semantic actions a simple
MiniPascal grammar.

In figure 3 we used both BNF productions and regular
expressions to define grammar rules, since many parser gene-
rators accept them both. In order to generate semantic actions
we issue the following guidelines:

1) Each grammar rule must be augmented with fact-
generating semantic actions.

2) The fact corresponding to a rule has its own ID as first
argument and also the ID of the parent as second argu-
ment. Such a convention will favor factbase navigation.

3) For a grammar rule having alternatives we will generate
separate semantic actions. Such a rule is equivalent with
multiple rules without alternatives.

4) For each atom we will generate a fact containing a parent
reference and its value.

We show examples of how the grammar will be augmented
for only four of the rules: Block, VarList, Type and InstrList.
The Block rule is an ordinary rule, the VarList rule is a
recursive one, the Type rule has alternatives and the InstrList
makes use of a regular expression to simulate recursivity.

In figure 4 we modeled the Block instruction from the
grammar in figure 3. The rule is composed out of two subrules
and two atoms. The semantic actions will create the block
fact and two facts for the begin and end atoms, while the



Block(int parentId) ::=
{

int newId=generateUniqueId();
output( block(newId,parentId). )

}
Decls(newId)
"begin"

{
output( atom(newId,’begin’). )

}
InstrList(newId)
"end"

{
output( atom(newId,’end’). )

}

Fig. 4. Block Rule Augmentation

VarList(int parentId) ::=
{

int newId=generateUniqueId();
output( varList(newId,parentId). )

}
Var(newId)
","

{
output( atom(newId,’,’). )

}
VarList(newId)

VarList(int parentId) ::=
{

int newId=generateUniqueId();
output( varList(newId,parentId). )

}
Var(newId)

Fig. 5. VarList Rule Augmentation

facts corresponding to non-terminals will be handled at their
corresponding level.

In figure 5 one of the two rules is right-recurrent. The
recursive call will determine varList facts linked together in
ancestor-descendant relation.

In figure 6 there are three symmetrical alternatives for the
Type rule. Each one generates a fact for the rule and one for
the atom.

In contrast with the right-recursive rule depincted in figure
5 generating facts linked one to another in a row, the InstrList
rule from figure 7 uses regular expression to simulate the same
recursive behavior generating facts linked to a single parent
fact instrList.

Type(int parentId) ::=
{
int newId=generateUniqueId();
output( type(newId,parentId). )

}
"integer"
{
output( atom(newId,’integer’). )

}
Type(int parentId) ::=

{
int newId=generateUniqueId();
output( type(newId,parentId). )

}
"real"
{
output( atom(newId,’real’). )

}
Type(int parentId) ::=

{
int newId=generateUniqueId();
output( type(newId,parentId). )

}
"char"
{
output( atom(newId,’char’). )

}

Fig. 6. Type Rule Augmentation

InstrList(int parentId) ::=
{
int newId=generateUniqueId();
output( instrList(newId,parentId). )

}
Instr(newId)
(
";"
{
output( atom(newId,’;’). )

}
Instr(newId)
)*

Fig. 7. InstrList Rule Augmentation



01 program test;
02 var a:integer;
03 begin
04 a:=5
05 end.

Fig. 8. MiniPascal Example

01 program(10000).
02 atom(10000,’program’).
03 atom(10000,’test’).
04 atom(10000,’;’).
05 block(10001,10000).
06 decls(10002,10001).
07 atom(10002,’var’).
08 varlist(10003,10002).
09 var(10004,10003).
10 atom(10004,’a’).
11 atom(10002,’:’).
12 type(10005,10002).
13 atom(10005,’integer’).
14 atom(10002,’;’).
15 atom(10001,’begin’).
16 instrlist(10006,10001).
17 instr(10007,10006).
18 assignment(10008,10007).
19 atom(10008,’a’).
20 atom(10008,’:=’).
21 expression(10009,10008).
22 atom(10009,’5’).
23 atom(10001,’end’).
24 atom(10000,’.’).

Fig. 9. Generated Factbase

IV. SIMPLE USE CASE

In figure 8 we proposed a MiniPascal code snippet which
conforms to the grammar listed in figure 3. The example
contains a block declaration which is composed out of a
variable declaration and an enclosed instruction list.

The factbase generator parsing the example from figure 8
should produce the factbase listed in figure 9. At runtime each
rule from the grammar will produce an AST node and for each
node a Prolog fact will be generated.

The Prolog facts from figure 9 represent the equivalent
model of the MiniPascal example. The first fact from line 01
has no parent and models the program rule from the grammar.
The associated atoms of the first grammar rule are listed
between lines 02-04 and they point to their parent rule through
identifier 10000. Next, all Prolog facts modeling grammar
rules have as first argument their own global identifier and as
second argument the identifier of their parent (figure 9 lines 05,
06, 08, 09, 12, 16, 17, 18, 21). The assignment statement from

Conditional ::=
"if" Expression "then" InstrList

"else" InstrList

Fig. 10. Multiple Identical Children Rule

conditional(id,parentId,
instrListId1,instrListId2).

Fig. 11. Multiple Identical Children Fact

figure 8 line 04 if translated in the factbase by the assignment
fact from line 18 pointed by atoms from lines 18 and 19. The
constant value 5 of the assignment is modeled as an expression
and an atom (lines 21 and 22).

V. FURTHER ASPECTS

A. Atom Modelisation

A slight difference could be made between terminal nodes
regarding the cardinality of their class. We consider that
terminals belonging to a class with cardinality = 1 could be
ignored since they don’t belong to the AST. For example, the
terminal ”;” that belongs to the class SEMICOLON could not
be modeled, because its class cardinality is 1. On the other
hand, the atom ”name” should be modeled since it belongs
to the class IDENTIFIER whose cardinality is greater than
1. However such an approach meant to simplify the model
would complicate the unparsing process instead. Rules having
alternatives that only differ by one or more atoms would make
the unparsing impossible because of the atom(s) information
loss.

B. Multiple Children of the Same Class

When modeling rules which contain subrules of the same
kind the regeneration is a problem since their order can not
be determined from the factbase. A solution for this problem
would be the bidirectional navigation so the parent fact will
keep references as arguments to its children. A representative
example is a conditional instruction rule which contains two
instruction lists: one for the then branch and another one for
the else branch, like in figure 10.

The fact for this rule must contain two extra arguments the
IDs pointing to the two InstrList facts like in figure 11. We can
generalize this practice for multiple identical subrules. Each
time the relative order of the identical subrules will correspond
to the argument order in the rule. In the case of multiple groups
of identical subrules the order of arguments could become
quite complex.

Such problematic rules could be automatically detected by
checking the duplicated subrules. The child references for the
parent could be added only after parsing the descendants and
getting their IDs.



instrList(id,parentId,
[instrId1,...,instrIdn]).

Fig. 12. Fact Ordering Example

C. Fact Ordering

A similar problem occurs for mutiple facts generated by
the same rule and having a common parent. For example the
order of the instructions in an instruction list is crucial for the
correct regeneration of the original code. The solution is to
keep a list of orderred references to the children at the parent
level.

In figure 7 the order of the generated instr facts is necessary
for the correct regeneration. A solution in this sense is to group
the IDs of the child facts into an orderred list like in figure
12.

In figure 12 the generated fact contains an extra list of
orderred ID references which will capture the instruction order
from the original source code.

The detection of such rules can not be made automatically.
One simple solution would be to manually mark the rules
which require bidirectional navigation. A general rule that will
create bidirectional navigation for any recursive rule may be
issued also as partial solution for the given problem.

D. Left/Right Recursion

Regular programming language grammars use left or right
recursion in order to model lists of entities. The augmentation
of such rules will cause no problems as is was shown in figure
5. Depending on how the rules are expressed the facts will be
linked to a single parent as in figure 7 or to one another like
in 5. For switching from a representation to another Prolog
rules must be manually written.

VI. SOFTWARE INSTRUMENTATION

In order to prove the feasibility of the approach, we set
the bases for an implementation. There are several parser
generators which accept augmented grammars. Flex [4] and
Bison [5] have several disadvantages like: they are not both
object-oriented, they use separate grammars for the lexical
and syntactical rules, they do not have an online grammar
repository. On the other hand Bisson is a LALR parser
generator and covers a majority of programming languages.
Another solution is to use the JavaCC [11] parser generator
which generates recursive descendant parsers, is fully object-
oriented (AST nodes and visitors) and has a great repository of
programming language grammars including its own grammar
format.

VII. RELATED WORKS

The main work we should mention here is the JTransformer
framework presented in [7] since our approach is inspired from
it. JTransformer produces a very accurate Prolog model of
a software system written in Java. Being dedicated to Java,
the output model is aware of certain program relations that

are specific to this programming language. For example, each
Prolog representation of a class definition also contains a list
of references to program entities that are members in that
class (attributes and methods) and each representation of a
method definition contains a list of references to the exceptions
that the method raises. Such relations can only be established
by a language dependent parser with the sole purpose of
facilitating programmer’s access to the complete data of a pro-
gram item. In contrast, our approach is language independent,
being able to produce Prolog models for programs written
in any programming language. Since it is grammar-guided,
it can assume almost nothing about the relations between
the entities it encounters. The only thing it can assume is
the direct relationship between the Prolog fact that describes
the left part of a BNF production and the Prolog facts that
describe its right part. However, a model user that is aware
of the underlying programming language could easily use this
direct relationship and write his own rules to create complex
relationships between program entities as required by the
concrete programming language for which a model has been
created.

Logic metaprogramming is widely used to specify code
analyses and program transformations. For instance, [2]
presents an approach where logic metaprogramming is used
to abstract C++ sources and detect certain design flaws. An
example is given where a simple Prolog rule is able to detect
classes that ”know” about their subclasses, which is regarded
as a serious design problem. In [12] a variant of Prolog
called SOUL is used as a modeling language to detect a
number of bad smells. For example, a rule is proposed that
detects methods with unused parameters. These methods can
be reported as potential candidates for refactorings that remove
the unused parameters. [9] and [8] both use Prolog rules to
detect suspect object instantiations within Java source code and
recommend an Abstract Factory ([6]) solution where needed.
The approaches are quite similar, however [8] presents a more
accurate detection strategy by considering the control paths of
methods.

Regarding program transformations, in [1] the transforma-
tions are used to implement the semantics of reverse inheri-
tance - a class reuse mechanism based on an inheritance class
relationship where subclasses exist first and the superclass is
created afterwards.

All these works could make use of the methodology we
propose in this paper. However, as mentioned earlier, lan-
guage independency specific to our approach will definitely
complicate the implementation of program specific queries.
Our grammar-driven logic based model should be enhanced
with language specific rules that would eventually ease the
specification of analyses and code transformations.

VIII. CONCLUSIONS AND PERSPECTIVES

In this work we proposed an approach for a grammar driven
generation of facts from an AST. The approach was designed
to work automatically on multiple programing languages (Java,
Eiffel, C++) whose rules are expressed in a grammar.



This approach can be applied also to models which are
described by grammar rules not just to programs. Also, we
consider that grammar of common PLs is always available.
In order to perform program transformations on the generated
model, Prolog skills are required.

As drawback of the approach, the grammar could be quite
complex, resulting a complex metamodel to be handled.
In some programming languages grammars, some rules are
artificially added in order to be compliant with the parser
generator. Because the generation process is grammar-driven,
facts for such rules will be automatically generated. In order to
bypass such levels, special access Prolog rules must be written
manually.

By default the generated facts in logic representation are
designed to point to their parents, thus alowing upward na-
vigation. Downward navigation may be necessary sometimes
for the relation between facts, but such things may be au-
tomatically generated if marked or otherwise such navigation
constructs have to be written manually using Prolog rules. The
resulting model with its conventions will offer an ideal support
for writing language independent rules.

As main future work comes naturally the regeneration of the
original source code from the model. Such a regeneration im-
plies consulting the Prolog facts upon the language grammar.
The regeneration is a grammar driven and fact driven process.

In order for a complete regeneration to be possible, the
modeling process is responsible for storing all the information
from the original program sources.

However, some details regarding spacing and identation will
not be possible to perform. For such purposes ah-hoc rules
may be set or solved by manually written rules completing
the syntax.

Following the same ideas a type checking rule list could be
generated in order to check model validity. Such a rule list
will consist in describing each fact argument type to restrict
possible relations between them. An implementation for an
automatic checker is under development [10].
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