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Computer Science Department
Bd. V. P̂arvan 4, Timişoara
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Abstract

Modern software engineering has come to a point where
it deals with quite large and complex software artifacts.
Labor-intensive activities such as code analysis and code
transformation are becoming less and less tractable on such
enormous software systems unless a certain level of au-
tomatization is provided. Since automatic approaches of
code analysis and code transformation strongly rely on soft-
ware models instead of actual software systems, the soft-
ware modeling process is of vital interest to a great deal of
researchers in the software engineering community. How-
ever, the main drawback of most of the software modeling
tools available is the fact that they are aimed at software
systems written in a certain programming language. This
article introduces ProGen, a software tool capable of mod-
eling software systems written in any language for which
a plain JAVA CC grammar is available, also describing its
advantages and limitations.

1 Introduction

Code analysis ([3], [9], [14], [11], [8]) and code transfor-
mation ([10]) are two activities of great interest for modern
software engineers. Code analysis could prove useful in the
process of detecting bad programming habits (like mem-
ory allocation errors, for example). It can also be used for
more important issues (especially in object-oriented soft-
ware engineering) such as detecting design flaws, places
where good design guidelines have been misinterpreted or
even ignored. Each result of such an analysis would be a

potential candidate for a code transformation, which shows
its usefulness in correcting design problems or even bugs in
the system.

Both code analysis and code transformation are pro-
cesses that rely on software models instead of actual soft-
ware systems. Performing analyses and transformations di-
rectly on the source code of a software system is a difficult
task and each tool capable of doing this would be almost
impossible to reuse for a different programming language
than the one it was initially designed for. This is true since
such a tool would have to mix parsing actions with activi-
ties that perform analyses and transformations on the source
code in a monolithic, hardly reusable structure.

On the other hand, a software model contains informa-
tion about the target software system in a very accessible
format (a relational database, for example ([11])). It could
also offer easy access to specific relations between software
entities that may not be very obvious to a code parser based
on the grammar of the programming language used (for ex-
ample, a relational database could easily link the name of
a class in an object-oriented software system to the names
of all the methods belonging to that class). However, the
main advantage of a software model lies in the fact that it
provides an interface to the actual software system. Model
generation and model analysis/transformation are different
tasks now and their code is no longer mixed. Model gener-
ation needs a parser for the specific programming language
used and generates a software model that can be intero-
gated (model analysis) or transformed (model transforma-
tion) further (see figure 1).

It should be easier now to reuse analyses and transfor-
mations on the software model even if the software arti-
fact is reimplemented using a different programming lan-
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Figure 1. Software models

guage, provided that both languages have similar philoso-
phies (for example, they are both object-oriented). What
needs to change is the model generator, the tool that parses
the source code of the software artifact and generates the
model.

In this paper, we address the problem of generating soft-
ware models in a language independent fashion. We intro-
duce a tool called PROGEN (PROlog GENerator) that is
capable of parsing source code and producing logic mod-
els for software systems written in any programming lan-
guage. For that purpose, PROGEN is equipped with a gram-
mar repository for several widely used programming lan-
guages. Thus, the model generation process in PROGEN

is grammar-driven and produces PROLOG facts correspond-
ing to each node in the abstract syntax tree representation
of the software system. Using this approach, one shouldn’t
use different model generators for different programming
languages, but rather configure the same model generator
(PROGEN) with different input grammars ([2]).

The paper is structured as follows. Section 2 presents
the logic metamodel we use. Section 3 describes the steps
of our approach and offers an introspection in the imple-
mentation of PROGEN. Section 4 discusses several issues
related to model optimization and potential uses of the out-
put models. Section 5 presents related approaches to model
generation and section 6 concludes.

2 The PROLOG metamodel

To achieve the goal of modeling programs written in dif-
ferent programming languages, we have chosen PROLOG

(a declarative language) to represent meaningful informa-
tion about the source code under analysis. Our PROLOG

representation is generic and suitable for any programming
language or model specified by a context-free grammar.

In order to describe the PROLOG metamodel we use,
we will discuss the factbase generation on a simple exam-

ple. Figure 2 contains a small code snippet written in a
demonstrative programming language inspired from the C
language specification. It only contains one block of one
or more instructions, each instruction is an assignment and
expressions can only contain identifiers, constants and the
four basic arithmetic operators plus parantheses.

{
b = 4;
a = ( 8 + b ) * 5;

}

Figure 2. A sample program (C subset)

As mentioned earlier, the modeling process is language-
independent. This means we do not make any assumption
about the specific programming language used in figure 2.
Thus, the model generation process is based on the meta-
information associated with the code sample, namely on its
grammar specification.

The grammar of this demonstrative language is presented
in figure 3 using an EBNF notation ([1]). To keep the ex-
ample simple, we added to the grammar only the necessary
rules that would make the code in figure 2 compliant.

Block ::= ’{’ InstrList ’}’

InstrList ::= ( Instr ’;’ )*

Instr ::= Assignment

Assignment ::= <ident> ’=’ Expr

Expr ::= Term
( AdditiveOp Term )*

Term ::= Factor
( MultiplicativeOp Factor )*

AdditiveOp ::= ’+’ | ’-’

Factor ::= <ident>
| <constant>
| ’(’ Expr ’)’

MultiplicativeOp ::= ’*’ | ’/’

Figure 3. A sample grammar (C subset)

The PROLOG metamodel is listed in figure 4. It contains
PROLOG clauses derived from the actual grammar rules in
figure 3. Each grammar rule has an associated PROLOG

clause with the same name in downcase. Furthermore, each



clause is associated with an unique integer identifier and
also with the identifier of its parent clause, as dictated by
the grammar. The only exception to this rule is the first
clause, the one associated with the starting non-terminal of
the grammar, which has no parent clause.

block(#ID).
instrlist(#ID , #blockID).
instr(#ID , #instrlistID).
assignment(#ID , #instrID).
expr(#ID , #assignmentID).
term(#ID , #exprID).
additiveop(#ID , #exprID).
factor(#ID , #termID).
multiplicativeop(#ID , #termID).

atom(#blockID , ’{’).
atom(#blockID , ’}’).
atom(#instrlistID , ’;’).
atom(#assignmentID , ’<ident>’).
atom(#assignmentID , ’=’).
atom(#additiveopID , ’+’).
atom(#additiveopID , ’-’).
atom(#multiplicativeopID , ’*’).
atom(#multiplicativeopID , ’/’).

Figure 4. The PROLOG metamodel

For example, each instruction in figure 2 is modeled by
an instr clause having its own ID as first argument and the
ID of its parent as second argument. This parent ID must be
the personal ID of aninstrlist clause since grammar rules
(figure 3) specify that eachInstr is part of anInstrList.
Atoms in the grammar (terminals) are modeled by using
atomclauses. An atom is somewhat different than a non-
terminal of the grammar in that it doesn’t have children so
it doesn’t need a personal identifier for others to refer to it.
Eachatomclause has the ID of its parent as first argument
and its actual value as second argument.

Using instances of clauses shaped by the metamodel in
figure 4, the actual PROLOG model of the code snippet in
figure 2 is obtained. It is listed in figure 5. Since the factbase
representation in figure 5 may not be easily comprehensible,
we also provide in figure 6 an equivalent, yet graphical view
of the abstract syntax tree (AST) of the program in figure 2.
The dotted line follows the AST border and meets the atoms
in the actual order they are encountered in the initial source
file.

block(10000).
atom(10000,’{’).
instrlist(10001,10000).
instr(10002,10001).
assignment(10003,10002).
atom(10003,’b’).
atom(10003,’=’).
expr(10004,10003).
term(10005,10004).
factor(10006,10005).
atom(10006,’4’).
atom(10001,’;’).
instr(10007,10001).
assignment(10008,10007).
atom(10008,’a’).
atom(10008,’=’).
expr(10009,10008).
term(10010,10009).
factor(10011,10010).
atom(10011,’(’).
expr(10012,10011).
term(10013,10012).
factor(10014,10013).
atom(10014,’8’).
additiveop(10015,10012).
atom(10015,’+’).
term(10016,10012).
factor(10017,10016).
atom(10017,’b’).
atom(10011,’)’).
multiplicativeop(10018,10010).
atom(10018,’*’).
factor(10019,10010).
atom(10019,’5’).
atom(10001,’;’).
atom(10000,’}’).

Figure 5. The PROLOG model

3 Software instrumentation: PROGEN

3.1 Solution overview

To implement the ideas presented in section 2, we have
chosen the solution depicted in figure 7.

The main flow of the diagram follows the dotted arrow
in figure 7. It starts with an input source file written in some
language L and ends with an equivalent PROLOGmodel for
that input file, as described in section 2. In order to achieve
this goal, the input file must be fed to a specific parser for
language L that generates its logic-based representation.

Such a parser may be manually written or automati-
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Figure 7. PROGEN diagram

cally generated. A manually written parser is restricted
to only one programming language and providing support
for another language would involve writing another parser
from scratch. An alternative solution would be to devise a

methodology which is able to automatically generate such
parsers starting from the grammar specification of the pro-
gramming language of interest. Thus, we are no longer
bound to a certain programming language but we can switch
easily between different programming languages. This is
suggested by the upper blocks in figure 7. We have marked
with a dotted border the entities that are the result of auto-
matic generation.

1. Starting from the grammar specification for our con-
crete language L in JAVA CC format, we use PRO-
GEN to generate a syntax-directed translation scheme,
which is the very same grammar augmented with gen-
erative semantic actions (the format for the augmented
grammar is also compatible with JAVA CC). This pro-
cess will be discussed next.

2. The second step implies running JAVA CC on the aug-
mented grammar and obtaining a parser for language
L that is also capable of generating logic facts because
of the semantic actions added earlier.

The reasons why we used JAVA CC ([13]) representations
for our input grammars are many:

• JAVA CC is a powerful parser generator that is able to
produce JAVA parsers for virtually any imaginable lan-
guage;

• the grammar format accepted by JAVA CC is quite sim-
ple and easy to understand and use;

• JAVA CC has a powerful mechanism of grammar aug-
mentation with semantic actions and we may easily
use this mechanism to provide syntax-directed fact-
base generation during parsing;

• last but not least, JAVA CC provides a large online
repository of JAVA CC-compliant grammars for some
of the most well-known programming languages, so it
is trivial to also endow PROGEN with a rich grammar
repository, making the model generation process pos-
sible for programs written in any of these languages.

3.2 Implementation details

We will present in greater detail the first step of the pro-
cess which involves the tool we propose (PROGEN), since
the second step is quite straightforward, JAVA CC being a
very mature and widely used parser generator. PROGEN’s
purpose is to take an input grammar for some programming
language L in JAVA CC format and augment it. As result,
we end up with the same grammar annotated with syntax-
directed semantic actions that will be responsible for the
fact generation process during parsing. The new, annotated



grammar also conforms to the JAVA CC format so we can
use JAVA CC during the second step to generate a parser for
the programming language L based on this grammar. Once
this parser runs on a program P written in L, it will output
the PROLOG representation of P (see figure 7).

In order to properly understand the grammar augmenta-
tion process, we present the grammar rule that describes an
Assignmentin JAVA CC format and augment it:

void Assignment() :
{
/* declarations and initializations
}
{
<ident>
"="
Expr()
}

Figure 8. The Assignment grammar rule

void Assignment(int parentID) :
{
/* declarations and initializations
Token t;
int id = generateUniqueID();
gen("assignment(<id>,<parentID>).");
}
{
t = <ident>

{
gen("atom(<id>,’<t>’).");
}

"="
{
gen("atom(<id>,’=’).");
}

Expr(id)
}

Figure 9. The augmented Assignment gram-
mar rule

Further explanations are required for figure 9:

• generateUniqueID()is a function that returns a unique
integer identifier when called. Practically, this is the
function responsible for generating the numeric iden-
tifiers from figure 4 and figure 5;

• gen(String s)is a function that outputss on the screen
or in a file;

• The<V> notation (whereV is a variable) meansthe
value of V.

The grammar-annotation process is governed by the fol-
lowing rules:

• each grammar non-terminal NT should receive an in-
teger parameter calledparentIDthat represents the nu-
meric identifier of NT’s parent in the abstract syntax
tree; the first grammar non-terminal is an exception to
this rule since it has no parent, so it will receive no
parameter;

• each grammar non-terminal NT should callgenerate-
UniqueID() in its declarations and initializationssec-
tion to obtain a unique integer identifier that will rep-
resent NT further;

• each grammar non-terminal NT should callgen() in
its declarations and initializationssection to produce
a Prolog fact having the same name as NT (only in
downcase) and two parameters: the numeric identifier
of NT (id, generated earlier) and the identifier of NT’s
parent (parentID, received as parameter);

• each terminal T in the body of a grammar non-terminal
NT should be associated with a call togen()which pro-
duces a correspondingatomPROLOG fact;

• each non-terminal NT’ in the body of a grammar non-
terminal NT should receive the numeric identifier of
NT as parameter (id);

The semantic actions in figure 9 provide the generated
parser (see figure 7) with factbase generation capabilities.
For example, each time an assignment is encountered by
the parser, theAssignmentsyntactic function of the parser
is called and anassignmentclause is generated in the output
file because of the first call togen()in figure 9. It is easily
observable in figure 5 that there are exactly twoassignment
clauses, corresponding to the two assignments in figure 2.

As one may notice, the augmentation of theAssignment
grammar rule (the transformation from figure 8 to figure 9)
is a mechanic process and we managed to automate it for
any input grammar that conforms to the JAVA CC format.

4 Further discussions

4.1 Abstract syntax tree navigation

The PROLOG models produced by our approach are ba-
sically PROLOG representations of abstract syntax trees for



different kinds of programs. The numeric identifiers associ-
ated with each PROLOG clause are nothing more than sim-
ple means to represent father-son relations in these trees.
Once the PROLOG representation is obtained for a program,
it is quite easy to write PROLOG rules to navigate within
this abstract syntax tree.

4.2 Model advantages and limitations

When dealing with programs written in a specific, widely
used language (such as JAVA or C++), our model gen-
erator is no match for the existing model generators that
are directly aimed at parsing these languages. While we
only produce a simple abstract syntax tree representation,a
JAVA model generator, for example, could provide the out-
put model with direct relations between major entities that
populate a JAVA system’s universe. A PROLOG clause that
models the name of a class in a JAVA system could also
refer to a list of PROLOG clauses that model the methods
belonging to that class. Each clause that models a method
could also be linked to a list of clauses modeling parameters
of that method, or exceptions that the method potentially
raises, and so on.

However, the main advantage of our approach is its lan-
guage independency. We are able to generate PROLOG rep-
resentations for any program, written in any language, as
long as we have a JAVA CC grammar for that language. This
is where the JAVA CC grammar repository comes in handy.
If a model generator for a certain programming language
is needed and none exists, a software engineer would have
two options: to manually write such a generator or to use
the PROGEN approach and automatically generate one and
adapt its output to his/her needs later. Unfortunately, PRO-
LOG experience is needed to do that, but this drawback is
not quite painful since PROLOG is a declarative language
rather than an imperative one, which makes it quite easy to
learn and use.

4.3 Chain shortcutting

One important issue that needs further discussion refers
to the PROLOG chains of clauses that a grammar-driven ap-
proach produces. The output in figure 5 contains many ex-
amples of clause chains, but we will exemplify by taking
only one of them:

The part of the model displayed in figure 10 describes
the assignmentb = 4 from figure 2. Even if the expression
assigned tob is very simple (a single atom), our syntax-
directed approach modeled every grammar non-terminal
encountered and produced a clause chain:expr(10004,
10003), term(10005, 10004), factor(10006, 10005)and
atom(10006, ’4’)because factors compose terms and terms
compose expressions, according to the grammar. The same

assignment(10003,10002).
atom(10003,’b’).
atom(10003,’=’).
expr(10004,10003).
term(10005,10004).
factor(10006,10005).
atom(10006,’4’).

Figure 10. A PROLOG clause chain

clause chain is visible in figure 6. It is very interesting to
study how these chains can be eliminated, or at least short-
ened, because the inner clauses don’t provide essential in-
formation to the model user. In the example mentioned
here, only the initialexpr clause and the finalatomclause
are relevant to the user.

5 Related works

The main work that inspired PROGEN is the JTRANS-
FORMER framework presented in [6]. JTRANSFORMERis
a complete model generator for JAVA implemented as an
Eclipse ([4]) plug-in and it produces PROLOG representa-
tions for software systems written in this particular pro-
gramming language. However, the output model is not
syntax-driven. It directly encompasses complex relations
between program entities, so that the model user will have
easier ways of referring to them. For example, a class mod-
eled by JTRANSFORMER will also contain references to
all the class members (attributes and methods) by means
of their numeric identifiers. This is possible in JTRANS-
FORMERbecause it is aimed at software systems written in
JAVA while PROGEN is unable to infer relations other than
the simple relation between a grammar non-terminal and the
entities that compose it.

Another relevant framework is JQUERY ([7]) also im-
plemented as an Eclipse plug-in. Similar to JTRANS-
FORMER, JQUERY is a model generator for JAVA . How-
ever, there are major differences between JQUERY and
JTRANSFORMER that favor the latter. JQUERY does not
model the entire source code of the target system, limit-
ing user queries to interfaces, calls and field accesses while
JTRANSFORMERmodels the entire system. Furthermore,
JQUERY is hardly scalable to large software systems (more
than 500 classes) and only supports user queries. On the
other hand, JTRANSFORMERis highly scalable being tested
on software systems with more than 11000 classes and of-
fers both support for analyses and transformations on the
model by means of the CT mechanism (conditional trans-
formations).

[12] presents SOUL (Smalltalk Open Unification Lan-
guage), a language integrated into Smalltalk environments



and dedicated to declarative meta-programming. Using
this language one can reason about programs written in
Smalltalk, Java or C by using special libraries of logic pred-
icates implemented in SOUL: LiCoR (a library to process
Smalltalk programs), Irish (a library to process Java pro-
grams) and Zombie (a library to process C programs). [14]
describes and application where SOUL is used as a model-
ing language to detect a number of bad smells ([5])

Finally, [3], [9] and [8] all report code analyses per-
formed on logic meta-models that abstract C++ sources
([3]) or Java sources ([9], [8]). All these meta-models are
not exhaustive, they do not model the entire software sys-
tem under analysis, but only those aspects required by the
desired analyses.

6 Conclusions and perspectives

In this paper we have presented PROGEN, a language in-
dependent software tool capable of producing PROLOGrep-
resentations for programs written in any programming lan-
guage. Such PROLOG representations could be used further
to perform program analyses or even program transforma-
tions, if another tool is provided that is capable of regener-
ating the initial sources back from the PROLOG model.

Since our approach is syntax-driven, it can assume al-
most nothing about the relations between the entities it en-
counters. The only thing it can assume is the direct relation-
ship between the Prolog fact that describes the left part of an
EBNF production and the Prolog facts that describe its right
part. However, a model user that is aware of the underlying
programming language could easily use this direct relation-
ship and write his own rules to create complex relationships
between program entities as required by the concrete pro-
gramming language for which a model has been created. In
other words, the PROLOG model could be adapted or even
extended to suit user-specific needs. The main drawback
here is that this adaptation requires a good knowledge of
the PROLOG language but we believe this is a small price to
pay for the advantages it provides.

As future work, we plan to study the possibility of elim-
inating or reducing the clause chains from the generated
PROLOGmodels (see section 4.3). Another natural research
direction would be aimed at regenerating the original source
code from the model by consulting the PROLOG facts while
also following the language grammar. Thus, the source
code regeneration would be a grammar-driven and a fact-
driven process.
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