
Towards Fully-fledged Reverse Inheritance in

Eiffel

Markku Sakkinen1, Philippe Lahire2, and Ciprian-Bogdan Chirilă3

1 Department of Computer Science and Information Systems, University of
Jyväskylä sakkinen@cs.jyu.fi

2 I3S Laboratory, University of Nice – Sophia Antipolis and CNRS
Philippe.Lahire@unice.fr

3 Politehnica University of Timisoara chirila@cs.upt.ro

Abstract. Generalisation is common in object-oriented modelling. It
would be useful in many situations also as a language mechanism, re-
verse inheritance, but there have been only few detailed proposals for
that. This paper defines reverse inheritance as a true inverse of ordinary
inheritance, without changing anything else in the language. Eiffel is
perhaps the most suitable language for that purpose because of its flex-
ible inheritance principles. Moreover, there exists good previous work
on Eiffel, on which we have built. We describe the most important as-
pects of our extension, whose details proved to be more difficult than
we had assumed. It would be easier if some modifications were made to
Eiffel’s ordinary inheritance, or if one designed a new language. Finally,
we present an implementation in which reverse inheritance is changed
to ordinary inheritance by automatic transformations, thus no compiler
modifications are needed.

1 Introduction

Generalization is widely used in object-oriented (OO) modelling and design, but
it is not available on the implementation level in any widely used language or
system. We propose to extend object-oriented languages with a new relationship,
reverse inheritance (RI) or exheritance, which is an inverse of ordinary inheri-
tance (OI). Reverse inheritance allows non-destructive generalization, just like
ordinary inheritance allows non-destructive specialization. This is not a com-
pletely new idea, but it has been very little treated in the literature. Of course,
we are building on applicable previous research (see Section 2).

Of course, if the source code can be modified, it is always possible to add
a direct superclass (parent in Eiffel terminology) to an existing class. This is
a common refactoring operation, but it may introduce many side effects and
affect the robustness of the existing classes. Further, it is very undesirable or
even impossible in many cases to modify existing classes, e.g. from standard
libraries. The situation is particularly difficult when one needs to combine two
or more large class hierarchies from different sources.



None of the previous proposals that we know has been implemented. This
time we wanted to allow RI to be tried out in practice, and therefore designed
an extension to an existing industrial-strength language, instead of a nice, for-
mally defined toy language. Such an exercise gives better possibilities to weigh
the potential benefits of reverse inheritance against its cost (added language
complexity).

Eiffel is a particularly interesting and suitable language to extend with RI,
because of its well thought-out design principles. Most importantly, its flexible
and clean implementation of multiple inheritance with explicit clauses for adap-
tation allows us to propose a solution that is both integrated and expressive
enough. Because no implementation of the new, significantly changed version of
Eiffel [1] [2] existed yet, we based our extensions on the stable old version often
known as Eiffel 3 [3]. We use mostly the terminology of Eiffel literature, except
the term ‘method’ instead of ‘routine’. We’ll try to explain those Eiffel terms
and concepts that could be too alien to many readers.

To give a taste of RI, Figure 1 is a small example. Suppose that we have two
classes RECTANGLE and CIRCLE designed independently from each other.
It is noted later that some of their features can be factored into a common
parent class, which is named FIGURE. We do not explain all details here, but
the example should be understandable; the new keyword foster denotes a class
defined using RI. For reference purposes, we have added line numbers, which
are not part of the code. By default, all features (the common superconcept

01 class CIRCLE
02 feature

03 radius: REAL
04 location: POINT
05 draw is do ... end

06 end – class CIRCLE

07 class RECTANGLE
08 feature

09 height: REAL
10 width: REAL
11 location: POINT
12 draw is do ... end

13 end – class RECTANGLE

14 deferred foster class FIGURE
15 exherit

16 CIRCLE
17 RECTANGLE
18 all

19 end – class FIGURE

Fig. 1. Simple example of reverse inheritance



of attribute and method in Eiffel) with the same name and signature in both
CIRCLE and RECTANGLE will be exherited to FIGURE; this means location

and draw. However, they will become abstract (deferred in Eiffel) by default.
For programmers using these three classes, the example is fully equivalent to
standard Eiffel code in which FIGURE would be defined first and the others as
its direct subclasses (heirs in Eiffel).

We will present the main features of our approach in the rest of this paper.
Section 2 gives a brief overview of previous literature, whereas in Section 3 we
address the main principles to be followed. We continue in Section 4 giving
the fundamentals of our approach. Sections 5 and 6 illustrate the use of RI in
the two main situations: adding a superclass at the top level of the hierarchy,
and inserting a class between two or more classes in the hierarchy. Finally we
conclude and set a perspective for future research in Section 7.

We already have a quite comprehensive implementation of our RI extension
for Eiffel, by a transformation to standard Eiffel. Unfortunately, space does not
permit us to describe it in this paper, but we refer interested readers to the
website
https://nyx.unice.fr/projects/transformer .

2 Previous research

The earliest article we have found that discusses a concrete generalization mech-
anism is [4], which uses the term ‘upward inheritance’. Its purpose is enabling
the integration of different OO databases into a multidatabase system, or build-
ing a homogeneous global view of heterogeneous systems. The paper [5] has a
similar purpose. Generalization is much more important in database integration
than in “ordinary” programming, because the homogenization of the underlying
databases is usually out of the question. It is also easier, because the general-
ization classes live on a different layer of the system than the actual database
classes. On the other hand, there is the additional problem that one real-world
object (instance) may well be represented in several databases.

Our goal is essentially different from the above, namely allowing classes to
be defined either by specialization (OI), generalization (RI), or a combination of
both, within the same context. To our knowledge, the first paper proposing such
an approach and mechanism is [6]. We consider it a seminal paper, although it
is somewhat simplistic or even erroneous on some points.

A significant step forward was made in the paper [7], which presents a de-
tailed proposal for adding reverse inheritance into Eiffel. It also discusses many
problems both on the conceptual level and in the implementation. We have
adopted the most important terms from there, in particular ‘foster class ’. How-
ever, we could not see a reason for speaking about reverse type inheritance,
because inheritance is always a relationship between classes in Eiffel and most
other OOPLs.

One surprisingly missing aspect in both [6] and [7] is the possibility of a class
being defined by a combination of simultaneous ordinary and reverse inheritance,



i.e., inserted into the inheritance hierarchy between a superclass (parent) and its
subclasses (heirs).

The workshop paper [8] was written unaware of [7], so the new term ‘exheri-
tance’ was coined there. It is quite optimistic about RI and suggests several new
ideas.

The workshop paper [9] discusses the application of RI to Java, including
implementation aspects. Adding RI to a single-inheritance language had not
been treated in earlier papers. It is both much simpler and much less powerful
than with multiple inheritance, but not trivial. Our first example (Figure 1) did
not need multiple ordinary inheritance.

Since 2005, we have cooperated and tried to combine our different viewpoints
on reverse inheritance. The current paper builds on the earlier work, especially
[7] and [8], with essential improvements on several points. Because we are also
implementing our approach, we needed to be more thorough than the earlier
papers.

3 Main principles

Before going any further in the description of reverse inheritance it is important
to state the main principles of our approach. The rules are presented in an
approximate order of importance. We do not claim them to be self-evident;
there can be approaches based on different principles.

Firstly, since we are designing an extension to an existing language, it is
important that classes and programs which do not use the extension will not be
affected.

Rule 1: Genuine Extension

Eiffel classes and programs that do not exploit reverse inheritance must not
need any modifications, and their semantics must not change.

Secondly, it is very important that after a class has been defined using RI,
it can be used just as any ordinary class. Otherwise, foster classes would be far
less useful, and the additional language complexity caused by RI would certainly
not pay off.

Rule 2: Full Class Status

After a foster class has been defined, it must be usable in all respects as if
it were an ordinary class.

In particular, a foster class can be used as a parent in ordinary inheritance and
as an heir in further reverse inheritance,

Thirdly, in OI the semantics of a given class is not affected if a new class is
defined as its direct or indirect subclass (descendant in Eiffel), or if some existing
descendant is modified. In contrast, any modifications to a superclass (ancestor

in Eiffel) affect all its subclasses, and can even make some existing descendants
illegal unless their definitions are changed also. We want RI to be a mirror image



of OI in this respect, i.e., the dependencies between classes to be the opposite of
what they are in RI (see [7]).

Rule 3: Invariant Class Structure and Behaviour

Introducing a foster class as a parent C of one or several classes C1, . . . ,

Cn using reverse inheritance must not modify the structure and behaviour
of C1, . . . , Cn.

Fourthly, the reverse inheritance relationship is intended to be symmetric
with ordinary inheritance. This means that it should be as completely inter-
changeable with ordinary inheritance as possible. In the new version of Eiffel [2]
this would imply also that conforming and non-conforming reverse inheritance
relationships must be distinguished.

Rule 4: Equivalence with Ordinary Inheritance

Declaring a reverse inheritance relationship from class A to class B should
be equivalent to declaring an ordinary inheritance relationship from class B

to class A.

Of course, this does not mean that the syntactic definitions of the two classes
would be the same in both cases.

As a consequence of this rule, it would be good if all adaptation capabilities
provided for RI had their counterparts in pure Eiffel language. However, we
actually wish to have some adaptations that cannot be exactly translated to
OI (see Section 4). On the other hand, we did not consider it worthwhile to
implement all possible complications of Eiffel OI also in RI; Rule 7 is an example
of that.

Fifthly, we want reverse inheritance to leave the existing inheritance hierarchy
as intact as possible.

Rule 5: Minimal Change of Inheritance Hierarchy

Introducing a foster class must neither delete direct inheritance relation-
ships (parent-heir relationships) nor create any inheritance relationships
(ancestor-descendant relationships) between previously existing classes.

Note that, taking Rule 4 into account, RI may well create new inheritance paths

between existing classes, but only for existing ancestor-descendant pairs (Section
6).

The paper [8] suggested that it could be possible to define also new parent-
heir relationships, and even equivalence relationships, between existing classes
(if they are feasible). However, we decided not to include that possibility in our
Eiffel extension, to keep things simpler.

Sixthly, we need to define which features are candidates to be exherited in
reverse inheritance. The following rule is essentially a consequence of the previous
rules and the adaptation possibilities of OI in Eiffel extended for RI (as just
mentioned).



Rule 6: Exheritable Features

The features f1, . . . , fn of the respective, different classes C1, . . . , Cn are
exheritable together to a feature in a common foster class if there exists a
common signature to which the signatures of all of them conform, possi-
bly after some adaptations. Each of the features f1, . . . , fn can be either
immediate or inherited.

In pure Eiffel these features could be similarly factored out to a common par-
ent, but any extended adaptations (see above) would require new or modified
methods in the heir classes.

Some common special cases are simpler than the general case: In single RI,
all features are trivially exheritable. In multiple RI, all fi may already have the
same signature, or one of them may have a signature to which all others can be
made to conform. We will explain the possible adaptations in Section 4.

Lastly, we want to avoid the complexity of allowing one feature in a foster
class to correspond to several features in the same exherited class, although this
would be a direct equivalent of repeated inheritance with renaming.

Rule 7: No Repeated Exheritance

Two different features of the same class must not be exherited to the same
feature in a foster class.

The definition of the semantics of reverse inheritance in the following sections,
on both the conceptual level and the concrete language level, relies on the above
six rules.

4 Basics of our approach

Where needed to avoid ambiguities, we will call the proposed extended language
‘RI-Eiffel’ in distinction to pure Eiffel. Details in the concrete syntax used in our
code examples are not important, and the syntax may be slightly modified in
the future.

Following the paper [7], a class defined using a RI relationship is called a
foster class and is preceded by the keyword foster in order to point out the
special semantics of this class with respect to normal Eiffel classes. In fact, a
foster class also requires special implementation (see [7]). In a new language
with both OI and RI, the ‘foster’ keyword would be needed no more than a
‘heir’ or ‘subclass’ keyword.

A foster class may be effective (concrete) or marked as deferred (abstract)
like any other class. It is a fully-fledged class in all respects; in particular, further
classes can be derived from it by both OI and RI. Otherwise reverse inheritance
would hardly be useful and interesting.

In order to reverse-inherit or exherit from one or several classes we use a
clause exherit4 in a foster class, in the same way as we use a clause inherit in

4 We do not use the keyword adopt from [7], because we have introduced adapt and
adapted (see later).



order to reuse and to extend the behaviour of one or several classes. Figure 1
was a simple example.

The set of exheritable features is defined by Rule 6 in Section 3. Because it
is not always desired to exherit all of them, the set of really exherited features
can be further restricted by using some rather intuitive keywords. The keyword
all in Figure 1 is actually redundant, because we take it as the default.

In ordinary inheritance, also the implementation of every feature is copied to
the heir class by default, but in Eiffel it is also possible to copy only its signature,
i.e., make it deferred, using the clause undefine. A reasonable approach for
exheritance is exactly the reverse: the default is that a feature is deferred in the
foster class. Therefore, the keyword undefine is not needed in RI. When the
implementation of a feature should be moved (or copied) to the foster class, that
is specified explicitly by the clause moveup5.

The strongest reason for the above default is that usually it is not even
possible to copy the body of a method from a heir class. That would require
all other features accessed by the method to be exherited also, but in multiple
RI they may not be even exheritable [8]. It seemed best to us to have the same
default also for attributes.

If an exherited feature is a method, a body can be written in the foster class
just as in an ordinary class. In that case, it seems consistent with OI to require a
redefine clause for each exherited class in which the feature is effective (either
as a method or as an attribute).

In Figure 1 the features of the exherited classes that should be unified in
the foster class have the same name. In general, it is very likely that some
corresponding features have different names, and in converse that some features
with the same name should not be unified. That has been recognized in all
previous papers, and was also taken into account in Rule 6 (Section 3). It is
therefore necessary that we allow renaming in an exherit clause by rename

subclauses; this facility exists for OI in standard Eiffel. Examples of that will
appear in later sections.

We already mentioned above the use of redefine in Eiffel to announce the
reimplementation (overriding) of methods. The same keyword — a bit unfor-
tunately — is used also to announce the redefinition (redeclaration) of method
signatures and attribute types. We allow such redefinitions also in RI, as might
be deduced from Rule 6. Since type/signature redefinitions in OI in Eiffel are
covariant, they must be the inverse in RI. This means that the type of an at-
tribute, or of a parameter or the result of a method, in the foster class must be
a common ancestor of the types of the corresponding entities in the exherited
classes.

In multiple RI, the type/signature of an exherited feature must be redefined
in most cases in the foster class. The exception are cases where the signature is
exactly the same in all exherited classes (ECs) and it is not changed in the foster
class. If the signatures in all other ECs conform to the common signature in a

5 We invented this keyword, because ‘move’ is probably a rather common identifier in
programs.



subset of the ECs, we could take the latter as the default for the foster class, but
for the sake of clarity we require a redefine clause for the other ECs. — Note
that even a feature that is to be deferred in the foster class needs a redefine

clause if its signature is changed.

It is a speciality of Eiffel that a method which has no parameters and returns
a result can be redefined as an attribute in a descendant class. The opposite is not
allowed, because assignment to an attribute has no counterpart with a method.
This implies for RI that a feature from the exherited classes can always be
redefined as a method in the foster class, but it can be redefined as an attribute
only if it is an attribute in all exherited classes.

Because the exherited classes often have not been developed in the same
context, it is possible that even the number of parameters, their scales or the
scale of the result or an attribute is not the same for features that represent the
same thing (see [4] for more). It should be possible to do some adaptations to
take into account these aspects and then unify the adapted features in RI. Such
adaptations do not exist in Eiffel, because they are not needed in OI.

Adapting a feature must not change the exherited class or its objects, accord-
ing to our Rule 3. Therefore, the conversion is made on the fly, when the feature
is accessed through a variable whose type is the foster class. This is one spe-
cial characteristic of foster classes: in standard Eiffel the type of the referencing
variable does not affect the behaviour of a feature, except that it may affect the
dynamic binding if repeated inheritance is involved. Note that adaptation makes
sense independently of whether the feature is deferred, moved or (re)defined in
the foster class.

We introduce two new keywords for expressing adaptation. In the exherit

clause, for every exherited class the features to be adapted must be listed after
the keyword adapt. After all these clauses, for every feature that needs adap-
tation from at least one heir class, the adaptations must be specified after the
keyword adapted. Each adaptation subclause must specify the name(s) of the
heir class(es) to which it applies, and then the adaptation itself.

For methods, the adaptation must specify by expressions, first the actual
parameters to be submitted to the method of the heir class, and second the result
to be returned to the caller. Formal parameters of the foster class method can be
used in both expressions, and the result from the heir class method in the latter
one. Features of the foster class can also be used, at their state before or after the
invocation of the heir class method, respectively. For attributes, the adaptation
must specify two conversion expressions, from the heir class representation to
the foster class representation and vice versa.

We omit describing the complete syntax for adaptation expressions here. It
is important to note that they must not cause side effects, as a corollary of Rule
3.



5 Adding a root class as a parent

The simplest cases of RI are those where the foster class is on the top of the
hierarchy, i.e., it has no explicit parent. It will then implicitly have the universal
root class ANY 6 as parent, but we can ignore it, except in the rare case that
some exherited class has renamed, redefined or undefined some feature inherited
from ANY. Therefore, there is no interference caused by the combined use of OI
and RI in the same class. In order to illustrate such an RI relationship, but a
non-trivial one, we enhance slightly the example of Figure 1 (Section 1). Figure
2 contains only the code of the foster class.

01 deferred foster class FIGURE
02 exherit

03 CIRCLE
04 redefine location
05 adapt location
06 end

07 RECTANGLE
08 redefine location
09 rename display as draw
10 end

11 all – all exheritable features

12 feature

13 location: GEN POINT
14 adapted CIRCLE
15 to x := result.x/10, y := result.y/10
16 from x := result.x*10, y := result.y*10
17 end

18 end – class FIGURE

Fig. 2. Insertion of class FIGURE on top of two classes developed separately

We assume only one change in the exherited classes from Figure 1: class
RECTANGLE has a method named display instead of draw. However, it has
the same meaning as draw in class CIRCLE, and thus these two features should
be exherited together. To achieve this, display is renamed as draw in the exher-
itance. By default, the feature becomes deferred in class FIGURE, and so the
class itself has to be declared as deferred (line 01 ).

The attribute location is exherited automatically because it satisfies Rule 6
from Section 3. However, to keep it as an attribute and not a deferred feature
in the foster class, it must be either explicitly moved from one exherited class or
redefined. Here we choose the latter alternative (line 10 ): for some reason, we
want it to be of type GEN POINT, which must be an ancestor of POINT (line
12 ).

6 It corresponds to Object in many other languages.



Let us assume next that the class POINT has the attributes x and y of type
REAL. and that the scale of these attributes is in millimetres within an object
of type RECTANGLE, while in class CIRCLE it is in centimetres. We decide to
handle it in millimetres also in class FIGURE, and therefore we need the adapt

clause for CIRCLE. In the later adapted clause (lines 14 to 16 ), we present a
tentative syntax for the adaptation of an attribute. The to subclause specifies
the conversion needed for writing (assigning to) the attribute through a variable
of type FIGURE, and the from subclause the conversion needed for reading it.

Figure 3 is a class diagram of this situation. In this and later diagrams we use
“RI-UML”, where reverse inheritance is denoted by dashed lines and downward
pointing triangle arrowheads (upward might actually be a better choice).

<<foster>>

FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

Fig. 3. Class diagram for Figure 2

While renaming and redefinition are the inverses of the corresponding modi-
fications in OI, adaptation has no counterpart in OI (see Section 4). In this small
example we have no adaptation of methods; it would not even be relevant for
draw, because it has neither a result nor parameters.

6 Adding a class with both reverse and ordinary

inheritance

Here we study situations in which a foster class is defined “in the middle” of an
inheritance hierarchy, i.e., using both ordinary and reverse inheritance. Such a
foster class we will call ‘amphibious ’7 and other foster classes ‘non-amphibious’
when needed. Because RI must not create new inheritance relationships between
existing classes (Rule 5, Section 3), every class that the new foster class inherits
from must already be a common ancestor of all classes being exherited.

7 A metaphor from biology: the features of these classes come partly from above (“the
land”) and partly from below (“the water”) in the hierarchy.



In the simplest case, the exherited classes have a common parent and the
foster class is inserted between the parent and its original heirs. We present a
slightly more complex case, which is a continuation of our previous example (Fig.
3).

The classes CIRCLE and RECTANGLE have no method for moving the ob-
jects. Suppose that they are kept as such, but the heir classes MOVABLE CIRCLE

and MOVABLE RECTANGLE that have a move method are added. Later one
wants to give them a common parent MOVABLE FIGURE, which exherits at
least the move method. It is quite natural that this new class is also an heir of
FIGURE, and therefore inherits all its features.

Figure 4 gives the code of the new foster class (the new heir classes are trivial),
and Figure 5 shows the augmented class diagram. To prevent some possible
confusions, we have changed the RI relationships of Figure 3 into equivalent OI
relationships; this is possible according to Rule 4 (Section 3).

01 deferred foster class MOVABLE FIGURE
02 inherit FIGURE
03 redefine location
07 end

04 exherit

05 MOVABLE CIRCLE
06 moveup location
07 end

08 MOVABLE RECTANGLE
09 rename display as draw
10 end

11 feature

12 end – class MOVABLE FIGURE

Fig. 4. Inserting a class between a class and its descendants

The adaptation of the attribute location in class CIRCLE (Figure 2) makes
this example trickier. The implementation of that attribute is moved to the am-
phibious class MOVABLE FIGURE from CIRCLE. Therefore no scale conver-
sion must be performed when location in a CIRCLE object is accessed through
a reference of type MOVABLE FIGURE. However, the inverse conversion must
be performed when a MOVABLE RECTANGLE object is accessed through a
reference of that type. The case would be different if the implementation of
location were moved from MOVABLE RECTANGLE or simply inherited from
FIGURE.

In Eiffel terminology, those features of a class that are not inherited from
its parent(s) are called immediate features. In contrast, a foster class cannot
have immediate features, because all its features are exherited from its heir(s)
(even those that are also inherited). Thus it makes sense to classify them into
amphibious (those that are both inherited and exherited) and non-amphibious



FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

MOVABLE_CIRCLE

+move(to:POINT)

MOVABLE_RECTANGLE

+move(p:POINT)

<<foster>>

MOVABLE_FIGURE

+location: POINT

+move(to:POINT)

Fig. 5. Class diagram for Figure 4

features. In the rest of this section, we discuss only the amphibious ones, because
the existence of a parent class is irrelevant to the others.

In the sequel, we will use the abbreviations ‘PC’ for the parent class(es), ‘FC’
for the new foster class, and ‘EC’ for the exherited class(es). We assume at first
that there is only one PC. Thus, for each amphibious feature in the FC, there
exists a PC version, an FC version, and a version in each EC. We must study
what relationships are possible between these versions, and what are sensible
default relationships.

The type (or signature in the case of a method) of the FC version can always
be the same as that of the PC version, because all EC versions already conform
to it. Therefore, we choose this as the most natural default type for the FC
version. If all EC versions have the same type, that type is likewise trivially
possible also for the FC version. In general, the FC version can have any type
that conforms to the type in PC and to which the types in all ECs conform.8

The possibilities for the implementation of the FC version are slightly more
complicated. While the implementation of a method is a body, here we consider
the implementation of an attribute to be simply the fact of being an attribute
(in contrast to deferred or a parameterless method), and the implementation of
a deferred (abstract) feature to be empty.

The implementation in the FC can be the same as in the PC, except if it
is a method body and the signature is redefined; then the body must also be
redefined, as required in standard Eiffel. If the feature is an attribute in the PC,
it must be an attribute also in all ECs and in the FC, again by the rules of

8 In particular, if the feature has retained its original type in any EC, it cannot be
changed in the FC either.



standard Eiffel. Otherwise, it can be an attribute in the FC only if it is so also
in all ECs, but it can always be an effective (implemented) method or deferred.
However, exheriting the body of a method from an EC is usually impossible,
as explained in Section 4. — All in all, it is most natural that also the default
implementation for the FC version is inherited from the PC.

If an amphibious feature is effective in the PC and redefined (i.e., reimple-
mented) in the FC, a redefine clause is required in the inheritance by standard
Eiffel rules. For consistency, we require the clause likewise if the feature is moved
from an EC.

In Figure 4, the attribute location of the PC (FIGURE) has retained its name
in the ECs, although its type has been redefined. Therefore, it will by default
retain that name also in the FC. The name of the inherited method draw has
been changed to display in MOVABLE RECTANGLE, and therefore we require
it to be explicitly renamed in the exheritance. This is consistent with standard
Eiffel and makes things clear, although the correspondence between EC and FC
features would, in this case, be unambiguous even without explicit renaming.

In other situations, renaming in Eiffel can cause an inherited feature to be
replicated; this happens with repeated inheritance. For instance, if a common
heir of CIRCLE and RECTANGLE is defined without renaming, it will have
the two distinct methods draw and display.

Eiffel allows also the inverse of the previous situation, namely that two fea-
tures from the same parent class are unified into one feature in an heir class.
Likewise, two features from different parents can be unified in multiple inheri-
tance. We will not discuss these complications in this paper.

7 Conclusion and Perspectives

This paper proceeded from previous proposals to introduce a generalization rela-
tionship, reverse inheritance (RI), to object-oriented programming, in particular
to the Eiffel language. Its main goal is to improve the non-destructive reuse of
classes by adding new abstraction levels in the middle or on top of a class hier-
archy, whereas ordinary inheritance (OI) is devoted to extending the hierarchy
at the bottom.

Reverse inheritance is symmetric and complementary with ordinary inheri-
tance. In the design of this new relationship we gave particular attention to its
orthogonal integration with all other language constructs, and we also strove
to keep the traditional language flavour and code readability of Eiffel. We gave
tried preference to robustness and simplicity over expressiveness of the adapta-
tion mechanism. In our work, we have covered virtually the whole Eiffel language.
Unfortunately, the paper length limitation forced us to omit here even some very
interesting aspects, such as pre- and postconditions and genericity.

We think that RI can have several useful application possibilities besides
those already mentioned in Section 1. One example is interface inheritance,
which is often recommended in theoretical papers, but not offered by any well-
known language. In our approach, it can be achieved simply by exheriting all



public features of a class as abstract (deferred). Another example is bridging
the gap between subobject-oriented (as in C++) and attribute-oriented (as in
Eiffel) multiple inheritance: any set of attributes of a class can be made into a
subobject by exheriting them into the same foster class.

Introducing and using RI in an object-oriented language can also have neg-
ative effects. One is that it may decrease the readability of code: with OI you

don’t know the descendants of a class, and with RI you don’t know even all its

ancestors, as Peter Grogono remarked at the ECOOP 2002 Inheritance Work-
shop [10]. Also, the set of features that a parent class inherits in RI is not as
straightforward as the set of features that a child class inherits in OI (see Section
3).

Another negative effect is that RI makes a language larger and more complex.
That disadvantage can be minimised if a language is originally designed with RI,
or at least RI is designed to be as completely as possible a mirror image of OI.
Because this paper proposes an extension to an existing language, we have striven
to achieve the latter goal (see Section 3).

In the design of RI it did not appear convenient to keep the syntax so similar
to that for OI as we had originally done. We could also not maintain complete
symmetry between OI and RI. That was because RI clearly requires stronger
adaptations between parents (superclasses) and heirs (subclasses) than are of-
fered for OI in Eiffel or other well-known languages.

Eiffel was a good target for introducing RI, but we intend to look also on other
languages and propose adapted solutions for reverse inheritance. That should be
rather simple but nevertheless interesting for single-inheritance languages such
as C# or Java. It would be very interesting for C++, but probably too difficult
because the language is already very complicated, especially its mechanisms of
multiple inheritance. A large part of the advantages of RI concern typing, and
therefore it would be far less useful for dynamically typed languages such as
Smalltalk and CLOS.

Acknowledgments

We gratefully acknowledge Pierre Crescenzo and K. Chandra Sekharaiah for their
comments and feedback on previous versions of the paper, and the anonymous
reviewers of earlier versions for their useful observations. A significant part of
the work by the authors Sakkinen and Chirila was performed during their visits
at the I3S Laboratory.

The implementation of RI-Eiffel by transformation to standard Eiffel is based
on an approach of Günter Kniesel and his valuable cooperation. It was to a large
part performed by Mathieu Acher and Jean Ledesma.

References

1. Meyer, B.: Eiffel: The language. http://www.inf.ethz.ch/˜meyer/ (June 2006)



2. ECMA International: Standard ECMA-367 Eiffel: Analysis, design and program-
ming language. http://www.ecma-international.org (June 2006)

3. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
4. Schrefl, M., Neuhold, E.J.: Object class definition by generalization using upward

inheritance. In: Proceedings of the Fourth International Conference on Data Engi-
neering, February 1-5, 1988, Los Angeles, California, USA, IEEE Computer Society
(1988) 4–13

5. Qutaishat, M., Fiddian, N., Gray, W.: Extending OMT to support bottom-up
design modelling in a heterogeneous distrubuted database environment. Data &
Knowledge Engineering 22 (1997) 191–205

6. Pedersen, C.H.: Extending ordinary inheritance schemes to include generalization.
In: Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, ACM Press (1989) 407–417

7. Lawson, T., Hollinshead, C., Qutaishat, M.: The potential for reverse type in-
heritance in Eiffel. In: Technology of Object-Oriented Languages and Systems
(TOOLS Europe’94). (1994) 349–357

8. Sakkinen, M.: Exheritance — class generalization revived. [10] 76–81
9. Chirilă, C.B., Crescenzo, P., Lahire, P.: A reverse inheritance relationship for

improving reusability and evolution: The point of view of feature factorization.
[11] 9–14

10. Black, A.P., Ernst, E., Grogono, P., Sakkinen, M., eds.: Proceedings of the In-
heritance Workshop at ECOOP 2002. Number 12 in Publications of Information
Technology Research Institute, University of Jyväskylä (June 2002)

11. Lahire, P., et al., eds.: Proceedings of The 3rd International Workshop on MechAn-
ims for SPEcialization, Generalization and Inheritance – MASPEGHI’04, Sophia-
Antipolis, France, Laboratoire I3S (2004)

12. Cook, S., ed.: ECOOP ’89 - European Conference on Object Oriented Program-
ming (Nottingham, July 1989) Proceedings. BCS Workshop Series, Cambridge
University Press (1989)


