
Generic Rules for Logic Representation

Transformations

Ciprian-Bogdan Chirila1, Călin Jebelean1, Günter Kniesel2, Philippe Lahire3

1 Automation and Computer Science Faculty, University Politehnica of Timisoara, Romania,

E-mail: {chirila,calin}@cs.upt.ro
2 Computer Science Department III, University of Bonn, Germany,

E-mail: gk@cs.uni-bonn.de
3 Computer Sciences Department, Faculty of Sciences, University of Nice, France,

E-mail: philippe.lahire@unice.fr

Abstract—Programs expressed using logic representations can
be more easily analysed and transformed. Transformations will
depend on the target language semantics. A field encapsulation
refactorization will be different for a Java program and an
Eiffel program. Logic based representations of programs and its
metamodel allows writing generic rules capable of performing
some language independent transformations like: syntactical
and semantical checking, searching specific nodes, cloning node
structures, replacing references, generating fact visualizations.
An example is given in this sense related to the implementation
of feature body exheritance mechanism of reverse inheritance
class relationship in the context of Eiffel language.

I. INTRODUCTION

Modeling programs by logic facts brings several benefits.

Logic represented programs can be analysed or modified by

queries written in declarative languages in a more expressive

manner than is permitted by imperative languages.

In [9] it is showed that any program represented by its

grammar can be transformed into logic representation. In

the context of logic representation, metaprogramming can

help writing language independent rules for tasks like: type

checking, subtree cloning, specific node searching, factbase

visualization.

In this paper we present several generic rules for language

independent program analysis [8] and transformation [13]. We

will show that such generic rules can help in program analysis

like anti-design pattern detection and in the implementation of

a new class reuse relationship.

The paper is structured as follows. In section two we present

the metamodel structure for the logic based representation.

The third section presents the generic rules and what kind of

transformation they do. In the fourth section we describe the

generic rules we designed to help program transformation. In

the fifth section related works are presented. Finally, in section

six we conclude and we set the perspectives.

II. METAMODEL

In this section we present the metamodel [10] of the factbase

representation for programs.

A. Node Structure

In figure 1 we present the structure of an AST node and a

relation node in the context of logic representation. To be more

precise, we present the structure of a class declaration and the

deferred relation from the Eiffel programming language [11],

[7]. In Eiffel a deferred class is an abstract class as it is known

in Java [3].

01 %classDecl(#id,#cluster,’ClassName’,

02 [#formalGeneric,...]).

03 ast_node_def(’Eiffel’,classDecl,[

04 ast_arg(id, mult(1,1,no),

05 id, [classDecl]),

06 ast_arg(parent, mult(1,1,no),

07 id, [cluster]),

08 ast_arg(className, mult(1,1,no),

09 attr, [atom]),

10 ast_arg(formalGenerics,mult(0,*,ord),

11 id, [formalGeneric])]).

12 ast_relation(’Eiffel’,deferred,[

13 ast_arg(classDeclRef, mult(1,1,no),

14 id, [classDecl])]).

15 ast_sub_tree(’Eiffel’,formalGenerics).

16 ast_ref_tree(’Eiffel’,classDeclRef).

17 ast_ancestor_tree(’Eiffel’,parent).

Fig. 1. Metamodel Example

In logic representation a class declaration is defined as a

fact having the following arguments:

i) unique global identifier for each AST node;

ii) parent class identifier - refers to the cluster the class

belongs to;

iii) class name - refers to the name of the field;

iv) formal argument list - refers to each formal generic

parameter.

The AST node is defined by the ast node def fact which

has as first argument the name of the programming language

the node refers to (Eiffel), the name of the node (classDecl),

followed by a list of arguments describing the AST node. In

the context of this work the notion of fact and node and

considered to be synonym. The name of the fact can be

considered its type. Each argument is described by a ast arg

fact and has its own properties like:

i) argument name - some names are predefined like id or

parent, but the rest can be freely chosen;



ii) multiplicity - can be zero to one (line 10), one to one

(lines 04, 06, 08), zero ot many or even one to many;

iii) ordering - it makes sense when multiplicity is zero to

many or one to many and in this case the argument is a list

which can be ordered or not. For example a class may have

zero or more formal generics and their order is important in

such cases.

iv) kind of value - it can be identifier (lines 05, 07, 11)

or attribute (line 09). Identifiers are positive integers, while

attributes are Prolog [5] atoms.

v) legal syntactic type(s) of argument values - there can be

one or many AST node types. For example, the type of the

identifier argument is classDecl, the type of class parent is

cluster, the type of the formal generics is a dedicated type

named formalGeneric.

The relation node defined between lines 12-14 has only one

reference to the parent class. The nature of metamodel AST

arguments is defined by special clauses like: i) ast sub tree

for subtree relations (line 15), e.g. formalGenerics AST argu-

ment denotes the subnodes of classDecl; ii) ast ref tree for

references relations (line 16), e.g. classDeclRef AST argument

denotes a relation with classDecl; iii) ast ancestor tree parent

relations (line 17), e.g. parent AST argument denotes the

cluster parent of class declaration.

B. Node Arguments

The fact arguments are very important to our generic

routines since our approach is based on them. We have several

kinds of arguments:

i) identifier arguments which represent the unique identifier

of the fact (like id for classDecl);

ii) parent arguments which represent the parent identifier of

the fact (like cluster for classDecl);

iii) ordered list of AST child identifiers (like formal generics

for classDecl);

iv) relation arguments which refer other nodes from the

structure.

cluster(10,’.’).

classDecl(100,10,’A’,[151,152]).

formalGeneric(151,100,’G1’).

formalGeneric(152,100,’G2’).

deferred(100).

featureBlock(200,100).

child node

parent node

attribute node 

main 

node

child node

child node

reference to 

parent (100)

reference to 

parent (100)

reference to

child (152)

reference to 

child (151)

reference to 

parent (100)

reference 

to parent (10)

reference to 

parent (100)

Fig. 2. AST Node Structure

In figure 2 we present an example of a class declaration

node and its potential relations with other nodes from the tree

structure:

i) classDecl fact models an Eiffel generic class and has an

argument which refers the parent fact cluster (Eiffel package

of classes);

ii) classDecl fact has a list of identifiers pointing towards

the two formal generics of the class, identified by 151 and

152;

iii) both formalGeneric facts (151 and 152) refer their

classDecl parent identified by 100;

iv) featureBlock fact is a child of classDecl, but the parent

is unaware of its existence;

v) deferred fact is a special kind of node, having the role

of attribute for classDecl, this fact has no own identifier being

strongly linked to its parent.

We can notice that the metamodel includes both syntactical

and semantical information. For example the fact that a formal

generic belong to a class is a syntactical information. But if we

consider a call instruction in the form of name or object.name

it will refer either a formal argument, local or class member

(method or attribute), which is a semantical information.

III. GENERIC RULES FOR FACTBASE TRANSFORMATION

In the following subsections we will present several factbase

transformation generic rules.

A. The Generic Algorithm Template

First, we will describe the main principles behind each

generic algorithm. A generic algorithm gets as argument the

identifier of the analysed structure root node. Because the

algorithm is recurrent we will refer the analysed node as

current node. Next, we describe the main steps:

(1) each node from the factbase is searched and decom-

posed into a list containing the type and the arguments of

the fact. For example classDecl(100,10,’A’,[]) fact becomes

[classDecl,100,10,’A’,[]]. The second element in the list is the

node id (100) while the first is the node type (classDecl). When

the fact is found the fact structure information is retrieved from

the metamodel and it is launched the arguments analysis.

(1a) if the argument is its own fact identifier some action

may be executed;

(1b) if the argument is a parent identifier some action may

be executed;

(1c) if the argument is a child identifier some action may be

executed and step (1) may be called recursively on the child

node;

(1d) if the argument is a child identifier list some action

may be executed and step (1) may be called recursively on

each child node;

(1e) if the argument is a reference identifier some action

may be executed;

(1f) if the argument is an atom some action may be

executed;

(2) we iterate the factbase in order to locate all children

nodes referring as parent the current node and step (1) may

be called recursively on each child node;



(3) we iterate the factbase to locate all relation nodes

pointing to the current node and on each node actions may

be executed.

B. Syntactical and Semantical Generic Checking

Syntactical and semantical checking are vital checks after

model transformations in order to assure model integrity. This

kind of checking verifies if all relations between facts respect

the constraints of the metamodel. Syntactical and semantical

checking works according to the following actions.

The checking algorithm follows the template presented in

subsection III-A, but the actions are the following:

(1a) for own fact identifier no action is taken;

(1b) for the parent identifier we check if a fact with the given

identifier and type (extracted from the metamodel) exists;

(1c) for the child identifier we check if a fact with the given

identifier and type (extracted from the metamodel) exists;

(1d) for the child identifier list we check if fact with the

given identifiers and type (extracted from the metamodel)

exist;

(1e) for the reference identifier we check if a fact with

the given identifier and type (extracted from the metamodel)

exists;

(1f) for the atom arguments we check if the argument value

is a Prolog atom;

(2) we call the checking algorithm on each child node;

(3) for each relation node we check if a fact with the given

parent identifier and type (extracted from the metamodel)

exists.

To illustrate how syntactical and semantical checking works

in practice we will take the example (see figure 3) and its

equivalent logic model (see figure 4) and we will present all

the necessary tests step by step.

class A[G1,G2]

feature

m(p1,p2:INTEGER) is do end

end

Fig. 3. Syntactical and Semantical Checking (Eiffel Code)

First, let us present an example of a simple Eiffel class

subject for checking. The class has two formal generic argu-

ments, one feature block, one method with two parameters and

an empty body.

01 cluster(10,’.’).

02 classDecl(100,10,’A’,[151,152]).

03 formalGeneric(151,100,’G1’).

04 formalGeneric(152,100,’G2’).

05 featureBlock(200,100).

06 featureDecl(300,200,’m’).

07 formalArguments(400,300,[501,502]).

08 formalArgument(501,400,’p1’,600).

09 formalArgument(502,400,’p2’,600).

10 type(600,610).

11 classType(610,700).

12 classDecl(700,10,’INTEGER’,[]).

Fig. 4. Syntactical and Semantical Checking (Prolog Factbase)

The example from figure 3 is translated in the Prolog

factbase depicted in figure 4.

Next, we will present how our earlier described algorithm

works on the factbase of figure 4.

Step (1)

We intend to check class A. Class A is denoted by class-

Decl(100,10,’A’,[151,152]) fact. The first argument is 100,

which represents the class own idenfier, information retrieved

from the metamodel (see figure 1). For this argument no

action is taken as we stated in step (1a) of the algorithm.

Next argument, identifier 10 represents a reference to the class

parent. From the metamodel we find out that it is a cluster

node. At this point we check if there is in the factbase a cluster

fact having identifier 10. As we can see in the factbase, this

verification checks. Further we have an atom, which needs no

actions to be taken. Next, we have a list of two identifiers

151 and 152. From the metamodel we get the information

that they should represent formal generic facts. Interrogating

the factbase by searching for formal generic facts with the

given identifiers, the response is positive. Now, each formal

generic node is checked recursively. This implies decomposing

the node, interrogating its meta-information and analyzing its

arguments in the same manner.

Step (2)

After analyzing the node and its arguments we proceed

in finding all nodes reffering it. To be more accurate, we

search for any fact having own identifier and having 100

as parent. The following nodes will result after the search:

featureBlock(200,100), formalGeneric(151,100,’G1’) and for-

malGeneric(152,100,’G2’). These nodes will be verified recur-

sively starting at step (1).

Step (3)

Finally, we search for all relation nodes having no own

identifier, but only reference to the parent. In our example

only one such node exists and it is the deferred node. We

check according to its metamodel description if the type of its

reference is a classDecl.

C. AST Node Subtree Generic Search

Searching AST nodes globally by type or by identifier

is quite a simple task which can be carried out by the

Prolog term decomposition operator ASTNode =.. [Functor,

Id | NodeArgumentIdList]. But locating nodes by type within

a given subtree is a more complicated task. There are two

searching solutions:

i) top-down - by exploring the structure from the root to the

leaf nodes;

ii) bottom-up - by assembling the global list using the

decomposition operator and selecting only the nodes which

have the given ancestor.

In our work we implemented the top-down searching ap-

proach. The algorithm works following the very same template

presented earlier:

(1) we locate the node with the given identifier and we

check its type, if it is equal to the searched one, the current

fact is stored in a result list;

(1a) for own fact identifier no action is performed;

(1b) for the parent identifier no action is performed;



(1c) for the child identifier we call the search recursively;

(1d) for the child identifier list we call the search recursively

on each child;

(1e) for the reference identifier we check its type, if it is

equal to the searched one, the current fact is stored in a result

list;

(1f) for the atom arguments no action is performed;

(2) we call the searching algorithm on each child node;

(3) each relation node’s type is compared to the searched

type, if it is equal to the searched one, the current fact is stored

in a result list.

D. Subtree Generic Cloning

Cloning a subtree generically can help in situations where

parts of programs are adapted or evolved. The goal of the

algorithm is to create a copy of the source structure. The

algorithm respects the earlier presented template and uses the

following actions:

(1) we locate the node with the given identifier;

(1a) for own fact identifier we return a new generated

identifier;

(1b) for the parent identifier we return the node identifier

where the new structure will be located, usually it is given

through a parameter;

(1c) for the child identifier we call the cloning node recur-

sively and we return its result identifier;

(1d) for the child identifier list we call for each node

the cloning rule recursively and we return the cloned nodes

identifiers list;

(1e) for the reference identifier we return the very same

reference;

(1f) for the atom argument we return the very same value

of the atom;

(1) in this point we assemble the new fact from the cloned

arguments;

(2) we call the cloning algorithm on each child node;

(3) for each relation node we clone it and link it to the clone

of the current node.

Generic subtree deletion belongs to the same category of

generic rules. Such rules may be useful also in program

transformations.

An example illustrating how this algorithm works is pre-

sented in section IV.

E. Reference Generic Replacement

The proposed algorithm is useful when a node structure

needs to be adapted to a different context. Usually, the

structure is kept as such and references are replaced according

to the new context using a map filled with the old and new

references. The algorithm template actions are the followings:

(1) we locate the node with the given identifier;

(1a) for own fact identifier no action is performed;

(1b) for the parent identifier no action is performed;

(1c) for the child identifier we call the replacing rule

recursively;

(1d) for the child identifier list we call for each node the

replacing rule recursively;

(1e) for the reference identifier we replace it with its

counterpart if it is present in the map;

(1f) for the atom argument no action is taken;

(2) we locate all children referring current node and we call

the replacing rule recursively on each child node;

(3) for each relation node we analyze and replace its

arguments from the map.

An example illustrating how this algorithm works is pre-

sented in section IV.

F. Generic Visualizations

These rules are able to provide human readable representa-

tions for facts in transformation debug contexts. One proposed

representation is Prolog fact listing with tabular indentation

which increases dramatically the readability of facts, especially

for large factbases.

cluster(10,’.’).

classDecl(100,10,’A’,[151,152]).

formalGeneric(151,100,’G1’).

formalGeneric(152,100,’G2’).

featureBlock(200,100).

featureDecl(300,200,’m’).

formalArguments(400,300,[501,502]).

formalArgument(501,400,’p1’,600).

formalArgument(502,400,’p2’,600).

type(600,610).

classType(610,700).

classDecl(700,10,’INTEGER’,[]).

Fig. 5. Indented Factbase Visualization Example

In figure 5 we present such a fact listing. The generic

rules which implemented the listing have one basic principle:

printing the facts with a computed identiation.

Another useful representation is based on XML. Even large

factbases can be easily navigated and inspected using XML

browsers.

<?xml version="1.0" encoding="UTF-8" ?>

<project>

<fact factname="cluster" id="10"

clusterName=".">

<fact factname="classDecl" id="100"

cluster="10" name="A"

formalGenerics="[151,152]">

<fact factname="formalGeneric" id="151"

class="100" name="G1"></fact>

<fact factname="formalGeneric" id="152"

class="100" name="G2"></fact>

<fact factname="featureBlock" id="200"

class="100">

<fact factname="featureDecl" id="300"

featureBlock="200" name="m">

...

</fact>

</fact>

</fact>

</fact>

</project>

Fig. 6. XML Factbase Visualization Example

In figure 6 a fragment of such a generation is listed.



IV. CASE STUDY: IMPLEMENTING METHOD BODY

EXHERITANCE FOR EIFFEL REVERSE INHERITANCE

Informally, reverse inheritance (exheritance) [13] is an in-

heritance class relationship where the subclasses exist first and

the superclass is created afterwards. Reverse inheritance imple-

ments the generalization class relationship of UML [12]. On

the other hand reverse inheritance is a class reuse mechanism

which has several capabilities of:

i) allowing a more natural class hierarchy design;

ii) feature factorization from existing classes;

iii) reusing behavior from a class;

iv) extending a class hierarchy;

v) decomposing and recomposing classes;

vi) adding a new layer of abstraction in an existing hierar-

chy;

vii) favoring the use of design patters [6].

Eiffel [7], [11] programming language has several charac-

teristics like: multiple inheritance, no overloading, adaptations,

covariance, so it was decided that Eiffel is the most suitable

language for the implementation of reverse inheritance. In

Eiffel class members both attributes and methods are named

features.

As mentioned earlier, one of the goals of this class relation-

ship is to factor common features from existing subclasses and

to create a new representant feature in the foster class. Implic-

itly, several candidate features from subclasses are exherited

as deferred (abstract) in the superclass. The other choice is to

explicitly select an implementation from one candidate class

and to adjust it to the context of the superclass.

01 class RECTANGLE

02 feature

03 ...

04 perimeter:REAL

05 semiperimeter is

06 do

07 Result:= perimeter/2

08 end

09 end

10

11 class ELLIPSE

12 feature

13 ...

14 perimeter:REAL

15 semiperimeter is

16 do

17 -- ellipse implementation

18 end

19 end

20

21 foster class SHAPE

22 exherit

23 RECTANGLE

24 moveup semiperimeter

25 end

26 ELLIPSE

27 end

Fig. 7. Method Body Exheritance Example (Eiffel Code)

In figure 7 we present two existing classes RECTANGLE

and ELLIPSE and a new class SHAPE created by reverse

inheritance. The first two classes have two common features

perimeter and semiperimeter which are intended to be exher-

ited into SHAPE superclass. The decision taken is to exherit

perimeter as an abstract feature and semiperimeter together

with its implementation from RECTANGLE in order to be

reused in other subclasses of SHAPE. In order to migrate

the implementation from RECTANGLE into SHAPE we have

to take three actions: i) to analyze the semiperimeter code

from RECTANGLE and to search for all calls pointing to

class features and to detect if all those calls point to features

which were exherited (abstract or concrete); ii) if the condition

in i) holds then we clone the feature implementation nodes

(body of the method); iii) to replace all local references from

RECTANGLE with references from SHAPE.

featureDecl(302,201,’semiperimeter’)

routine(402,302)

compound(502,402,[601])

assign(601,502,701,702)

identifier(701,’Result’) binaryOperator(702,801,802)

call(801,702,301)

featureDecl(301,201,’perimeter’)

manifestConstant(802,’2’,’integer’)

featureBlock(201,101)

classDecl(101,10,’RECTANGLE’,[])

reference towards

perimeter of RECTANGLE

Fig. 8. Local Calls Search

In figure 8 we present the result of the local calls search.

Using the generic search rules we extract all calls from

the method body subtree. In our case we found only one

call to feature perimeter. Since the called feature exists in

both RECTANGLE and ELLIPSE subclasses having the same

signature, this feature is exheritable in class SHAPE. Now we

know that the implementation of semiperimeter is exheritable

and we can proceed to the cloning step.

In figure 9 we duplicated the nodes of the method body in

class SHAPE using the generic cloning rules. One can notice

that there is an invalid call reference pointing towards perime-

ter attribute of class RECTANGLE instead of the attribute from

class SHAPE.

In figure 10 we correct all invalid references. Using the

generic replacement rules and the feature correspondence

map from the exheritance process we replace all the invalid

ex-local references with the correct ones.

V. RELATED WORKS

Program transformation techniques are used in a many ar-

eas of software engineering: program synthesis, optimization,

refactoring, reverse engineering and documentation [1].

Using generated parsers, AST tree builders and imple-

menting visitors [6] program transformation can be achieved.

In such frameworks transformation rules are expressed in

an imperative manner being less expressive than using the

declarative approach. It is more natural to express a program



featureDecl(1002,1000,’semiperimeter’)

routine(1003,1002)

compound(1004,1003,[1005])

assign(1005,1004,1006,1007)

identifier(1006,’Result’) binaryOperator(1007,1008,1009)

call(1008,1007,301)

featureDecl(1001,1000,’perimeter’)

manifestConstant(1009,’2’,’integer’)

featureBlock(1000,103)

classDecl(103,10,’SHAPE’,[])

invalid reference

towards perimeter of RECTANGLE

Fig. 9. Method Body Clone

featureDecl(1002,1000,’semiperimeter’)

routine(1003,1002)

compound(1004,1003,[1005])

assign(1005,1004,1006,1007)

identifier(1006,’Result’) binaryOperator(1007,1008,1009)

call(1008,1007,1001)

featureDecl(1001,1000,’perimeter’)

manifestConstant(1009,’2’,’integer’)

featureBlock(1000,103)

classDecl(103,10,’SHAPE’,[])

reference towards

perimeter of SHAPE

Fig. 10. Local Calls Replacement

transformation at conceptual level using the expressiveness of

Prolog than writing the methods of a Visitor design pattern.

On the other hand in order to benefit from genericity the im-

perative language must have generic capabilities. For example

in Java [3] there is a meta-programming facility known as

reflection.

Our generic rules provide compiler functionalities [2], like

syntactical and semantical checking or pretty printing. These

functionalities are not within our main goals, they came

implicitly from the metamodel description and they prove to

be crucial in testing the consistency of model represented

programs.

In [4] are presented refactoring techniques in order to

improve the design of the code.

We consider that using logic based representation respecting

a metamodel and the generic rules some code transformations

can be done more easily than with other formalisms.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we showed that generic rules can be written

for the analysis and transformation of logic representation

described by a metamodel. We presented the implementation

descriptions for these rules. Finally, we tackled about how

these rules can help in the implementation of a new class

reuse mechanism. We presented an Eiffel example of code

reengineering method implementation reuse.

Generic rules expressiveness and their multi language capa-

bility are based on the metamodel. Generic rules help concrete

rules in achieving the goal of program transformations.

The main drawback of generic rules is that they are time

consuming. In our experiments on a factbase of 27 MB of

Prolog facts, a cloning generic rule takes 3-4 minutes to clone

an Eiffel method on a usual personal computer. This drives us

to the conclusion that such rules are suitable to prototyping.

Another drawback is related to the complexity added to the

program transformations by the generic rules. This however

is balanced by the nature of the Prolog language itself which

treats uniformly the meta and concrete levels.

In order to ameliorate generic rules time consumption there

could be generated automatically concrete rules (checking,

cloning, ...) for each programming language separately. Since

the execution trace of the generic rules follows closely the

metamodel, concrete rules may be generated for each meta-

model entity.

REFERENCES

[1] http://www.program-transformation.org.
[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles,

Techniques and Tools. Addison Wesley, 1986.
[3] K. Arnold and J. Gosling. The Java Programming Language. Sun

Microsystems, 3rd edition, USA, 2000.
[4] Martin Fowler. Refactoring. Addison-Wesley, March 2000.
[5] Free Software Foundation. SWI-Prolog, 2008.
[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign patterns: Elements of reusable object-oriented software. Addison-
Wesley, 1995.

[7] ECMA International. Standard ECMA-367 Eiffel: Analysis, design and
programming language. www.ecma-international.org, June 2006.

[8] Călin Jebelean. Automatic detection of missing abstract-factory design
pattern in object-oriented code. In Proceedings of the International

Conference on Technical Informatics, University Politehnica Timişoara,
2004.

[9] Călin Jebelean, Ciprian-Bogdan Chirila, and Anca Măduţa. Generating
logic based representation for programs. In In Proceedings of 2008 IEEE

4-th International Conference on Intelligent Computer Communication

and Processing, pages 145–151, Cluj-Napoca, Romania, August 2008.
[10] Günter Kniesel. A logic foundation for conditional program transforma-

tions. Technical Report IAI-TR-2006-1, Computer Science Department
III, University of Bonn, January 2006.

[11] Bertrand Meyer. Eiffel: The language. http://www.inf.ethz.ch/˜meyer/,
September 2002.

[12] Object Management Group. UML Superstructure version 2.0.
www.omg.org/uml, October 2004.

[13] Markku Sakkinen, Philippe Lahire, and Ciprian-Bogdan Chirila. To-
wards fully-fledged reverse inheritance in Eiffel. In In Proceedings of

11th Symposium on Programming Languages and Software Tools SPLST

09 and 7th Nordic Workshop on Model Driven Software Engineering

NW-MODE 09, pages 132–146, Tampere, Finland, 2009.


