
A Logic Based Approach to Locate Composite

Refactoring Opportunities in Object-Oriented Code

Călin Jebelean1, Ciprian-Bogdan Chirilă1, Vladimir Creţu1

1Faculty of Automation and Computer Science

University Politehnica of Timişoara, E-mail: {calin.jebelean,ciprian.chirila,vladimir.cretu}@cs.upt.ro

Abstract—In today’s software engineering, more and more
emphasis is put on the quality of object-oriented software
design. It is commonly accepted that building a software system
with maintainability and reusability issues in mind is far more
important than just getting all the requirements fulfilled in one
way or another. Design patterns are powerful means to obtain
this goal. Tools have been built that automatically detect design
patterns in object-oriented code and help in understanding the
code. Other tools help in refactoring object-oriented code towards
introducing design patterns, but human intelligence is needed
to detect where these design patterns should be inserted. This
paper proposes a logic approach to the automatic detection of
places within object-oriented code where the Composite design
pattern could have been used. Suspects identified by such a tool
could very well be served as input data for other tools that
automatically refactor the code as to introduce the missing design
pattern.

I. INTRODUCTION

In today’s software engineering, more and more emphasis

is put on the quality of object-oriented software design. In

a world of rapidly changing requirements, it is vital for an

object-oriented software system to be able to adapt quickly,

saving time and, of course, saving money ([Bec99]). This kind

of adaptation is not always easily performed, especially when

the system’s design ignores certain quality guidelines.

In his well-known book ([Fow00]), Martin Fowler captured

a lot of potential design problems and called them bad smells.

He then showed how these bad smells can be removed from

the code by using refactorings. A very important issue here is

automation. Since there are large software systems with more

than 1 million lines of code, it is imperative for the detection

and removal of bad smells to be done automatically. Important

steps have been made towards the automatic detection of bad

smells in object-oriented code.

Software metrics ([SSL01]) proved to be a very elegant and

easy-to-use tool to detect object-oriented entities that fail to

achieve certain goals of good design. For example, a method

that accesses members of another class more often than it

accesses members of its own class ought to be moved in the

other class by means of refactoring. Such a situation could

be easily detected if a distance metric between a method

and a class was defined as the number of attributes of the

class that the method accesses. In [Mar04], results from many

measurements can be combined by means of logic operators

to detect even more complex design problems. For example,

a god class (a large class with many methods and very

few attributes) is a design problem which can hardly be

detected by only one measurement. Thus, a special language is

defined where complex detection strategies can be expressed

by filtering and combining the results of many measurements.

Logic metaprogramming is another well-known approach

towards detecting design flaws ([Ciu99], [TM03]). The code is

abstracted as a knowledge base of logic facts and an inference

machine based on a logic language (like Prolog, for example)

is fed with rules that describe potential design problems. By

inspecting the knowledge base with respect to the given rule,

the inference machine identifies suspects that verify the rule

and therefore, become candidates for refactorings. Among

others, such rules could detect classes that know about their

subclasses ([Ciu99]), which is a common design problem, or,

for example, methods that have unused parameters that can be

removed ([TM03]).

All these approaches have one thing in common: they

rely on models of the source code of the target system and

these models contain little information from inside the method

bodies. While package/class/method/attribute relationships are

fully considered and analyzed, the actual method bodies are

taboo zones. Only method/attribute accesses from within a

method body are modeled, other kinds of information like con-

trol flow within the method body being massively disregarded.

This situation is normal since a great deal of bad smells

concern relations between software entities regardless of the

control logic of the program. However, this situation changes

when we want to discover places where certain design patterns

([GHJV95]) could have been fit. In [Ker04], Kerievsky extends

the set of bad smells proposed by Fowler with a new set.

These new bad smells all describe situations where some

design pattern has been ignored and the author shows what

refactorings are required in order to introduce the missing

design pattern.

A very interesting idea would be to automatically dis-

cover situations presented by Kerievsky as problematic and

to suggest corresponding refactorings. However, since design

patterns usually describe more complex relationships between

software entities, such a task is not easily done unless we also

consider the full code of the software system under analysis,

including the bodies for all methods. Were such informa-

tion available, we could imagine detection rules for different

situations described in [Ker04]. We named these situations

symptoms, since there can be more than one symptom for each

design pattern misuse. Thus, this paper is going to show how

simple symptoms of ignored design patterns can be detected

in Java programs by means of logic metaprogramming.

The rest of this paper is structured as follows: section II

presents the metamodel we used to implement our detection

rules, section III describes detection rules for one well-known

design pattern (the Composite design pattern), section IV

shows some practical results, section V studies some perfor-

mance issues of the approach, section VI deals with related

work and section VII concludes.

II. THE JTRANSFORMER FRAMEWORK

As said earlier, the detection rules we propose must be

based on a model that covers the entire source code of the

project under analysis, including the whole method bodies.

JTransformer is a query and transformation engine for Java

source code, available as an Eclipse plug-in. JTransformer

creates an Abstract Syntax Tree (AST) representation of a Java

project as a Prolog database consisting of Program Element

Facts (PEFs) ([Kni06]). Once the Java code is translated into

a Prolog database, one can use the Prolog inference machine

to reason about the Java sources.

A Program Element Fact (PEF) is a statement (a Prolog fact)

that tells something about a small aspect of the Java project

under analysis. Each PEF represents a node in the abstract

syntax tree of the source code. Since the Prolog database is

a linear structure that describes an abstract syntax tree, each

PEF is given an unique numeric identifier and the numeric

identifier of its abstract syntax tree parent.

Because of space limitations, we can’t provide a formal

definition for PEFs. This is achieved more successfully in

[Kni06]. We will rather present some examples that will ease

the understanding of the rest of this paper. For example, the

following PEF represents a class definition:

classDefT(10015, 10006, ’AbstractObject’,

[10024, 10039]).

The name of this class is AbstractObject, its numeric

identifier is 10015 which was the next free identifier at the

time the class definition was encountered by the Java parser

and 10006 represents the numeric identifier of the abstract

syntax tree parent for this class. There should be another PEF

in the knowledge base having 10006 as its ID and this PEF

should probably represent a package definition since classes

are logic descendants of packages in Java programs. The last

parameter of this PEF is a list of IDs of entities contained in

the AbstractObject class. There are only two members in the

AbstractObject class and by inspecting their respective PEFs

(10024 and 10039) one can identify what they are (attributes,

methods, internal classes, etc.).

The next PEF represents a member variable of a class:

fieldDefT(10024, 10015,

type(basic, int, 0), ’value’, null).

The name of the field is value, it is not initialized (null), its

numeric ID is 10024, its parent ID is 10015 (that makes value a

member variable in class AbstractObject) and its type is given

by the compound term type(basic, int, 0). Another possibility

for the type would be type(class, 10015, 2) which would make

value a bidimensional array of AbstractObjects, because of the

10015 ID which denotes the class AbstractObject and the final

2 which specifies the array dimension (0 is used for scalars).

Finally, the following PEF describes a while statement

within some method body:

whileLoopT(11105, 10924, 10039,

11106, 11125).

The first two parameters represent the ID of the while loop

and the ID of its parent (which could be another control

structure like a conditional statement or another loop statement

that encloses this while), 10039 represents the ID of the

method where this while loop is contained (and one can notice

that 10039 is also a member of class AbstractObject), 11106

represents the ID of the conditional statement guarding the

while body while 11125 represents the ID of the while body

itself. By further inspecting the PEF with ID = 11125, one

can find all the statements contained within the body of this

while statement.

Although this short presentation lacks a certain formality,

we believe it serves its purpose well, allowing a good under-

standing of the next section. Once a Prolog metamodel of the

Java project is obtained, one can implement different Prolog

rules to query the metamodel or even modify it.

III. THE DETECTION RULES

We currently have the possibility to detect a couple of

symptoms for five ignored design patterns in Java sources. In

this section, because of space limitations, we will only present

one of these symptoms together with its detection strategy. The

design pattern we will study is the Composite design pattern.

Other detection strategies are available for Abstract Factory,

Strategy, State and Visitor ([GHJV95]).

A. The Composite Design Pattern

A Composite’s intent is to compose objects into tree struc-

tures to represent part-whole hierarchies. It lets clients treat

individual objects and compositions of objects uniformly. Fig-

ure 1 presents the structure of a Composite, as it is described

in the original design patterns book ([GHJV95]).

Shape

+area()

+add()

+remove()

+getChild()

Rectangle

+area()

Composite

+area()

+add()

+remove()

+getChild()

 child

 parentEllipse

+area()

Fig. 1. Structure of a Composite

Ellipse, Rectangle and Composite are all subclasses of

Shape, but Composite is special in that it contains an array

(or another collection type) of objects of type Shape (or

derived from Shape). Each Shape can be either an Ellipse or

a Rectangle or a Composite, which means that this structure

allows us to nest Composites and treat them as regular leaves

of the structure. An operation applied on the Composite object

(such as computing the area) is executed by executing it on all

its components, regardless if they are Ellipses, Rectangles or

other Composites. Thus, a Composite design pattern indeed

provides uniform treatment for objects and compositions of

objects.

Problems arise when Composite is not a subclass of Shape

(if the red line in figure 1 is missing). Be that due to lack

of attention or ignorance of the Composite design pattern,

the structure loses the elegance of nesting complex composite

objects into one another and treating simple and composite

objects uniformly, although it is still usable for working with

collections of simple objects (ellipses and rectangles). The

flexibility provided by a Composite may not even be needed,

but what if it is? Such a situation would present itself like in

figure 2:

Shape

+area()

+add()

+remove()

+getChild()

Rectangle

+area()

Composite

+area()

+add()

+remove()

+getChild()

 child

 parentEllipse

+area()

Fig. 2. A Composite Anti-Pattern

B. Detecting the Anti-Pattern

We could use the infrastructure provided by JTransformer

to detect and pinpoint such situations in Java code. In case

a Composite is needed, a human operator may thus be given

the opportunity to modify the code (manually or automatically)

such as to introduce the missing Composite. With only a small

amount of code added to the system, flexibility is boosted

significantly.

We need to detect two IDs in our Prolog knowledge base,

one for the Shape class and the other for the Composite class.

The Composite class must have a member variable which

represents an array of Shape objects. The Shape class must

have at least one descendant (Ellipse, or Rectangle in figure

2) and must share an overridden method with this descendant

(method area() in figure 2). Finally, Composite must have a

method that contains a loop where it calls area() on elements

of its array of Shapes. If any of these conditions is not true,

then probably the structure was not intended to be used as a

Composite and it would probably be better to leave it as it is.

To find the two IDs for Shape and Composite we use (note

that in Prolog, all identifiers that start with a capital letter are

variables):

fieldDefT(FieldID, CompositeID,

type(class, ShapeID, 1), FieldName, _).

Thus, FieldID and FieldName are the ID and the name of

a field which is a member of class CompositeID (the ID of

the Composite class), where the type of the field is type(class,

ShapeID, 1), an array of objects of class ShapeID (the ID of

the Shape class). The ’ ’ symbol in Prolog means anything.

For example, the initial value of the field is not important

for the query, that’s why the last parameter of the fieldDefT

PEF is symbolized with an ’ ’. All these are possible with a

single query, because the JTransformer model contains (among

others) all the fields in the entire project and they are accessible

by using the fieldDefT PEF.

Next, the class with ShapeID (the Shape class) must have

at least one descendant. This is accomplished by using the

extendsT PEF:

extendsT(ChildID, ShapeID).

The ChildID variable can match either the ID of an ellipse

or the ID of a rectangle.

Composite must not be a descendant of Shape. If it were,

then we would detect an instance of the Composite design

pattern, when in fact we want to detect a Composite anti-

pattern, as shown in figure 2. We must define a descendant

predicate which recursively uses extendsT to detect if there is

an inheritance chain from CompositeID to ShapeID. The result

is:

not(descendant(CompositeID, ShapeID)).

Below is the descendant predicate, which is defined in a

recursive, simple way. A is a descendant of B if it inherits

directly from B, or if its superclass is a descendant of B:

descendant(A, B) :-

extendsT(A, B).

descendant(A, B) :-

extendsT(A, C),

descendant(C, B).

The next step is to find the name (or ID) of a method in

Shape that the detected subclass of Shape overrides.

overrides(ShapeID, ChildID, MethodName) :-

methodDefT(_, ShapeID,

MethodName, ParamList1, Type, _, _),

methodDefT(_, ChildID,

MethodName, ParamList2, Type, _, _),

params(ParamList1, ParamList2).

The first methodDefT finds a method MethodName in class

ShapeID (the Shape class) having Type as the returned type.

The second methodDefT then checks if there is a method with

the same name MethodName in class ChildID (the child), and

the same returned type. The parameter lists may differ between

the two. For example, the first parameter in the superclass

method may be named x and the first parameter in the subclass

method may be named y. It is their types that matter, that’s

why we need a new predicate called params that checks the

type compatibility between two lists of parameters:

params([], []).

params([Param1|Rest1], [Param2|Rest2]) :-

paramDefT(Param1, _, Type, _),

paramDefT(Param2, _, Type, _),

params(Rest1, Rest2).

We should now return to the Composite class for the final

step. This class contains an array of Shapes. The corresponding

field in Composite is called FieldName and its ID is FieldID.

The overridden method in the Shape/Ellipse/Rectangle hier-

archy is called MethodName. We need to check if there is a

method in Composite that calls method MethodName on an

element of array FieldName. If this call is placed inside a

loop structure it will become even more suspect. A method

invocation in JTransformer is represented by means of the

applyT PEF ([Kni06]).

applyT(InvocationID, _, _,

ObjectID, MethodName, _, _).

InvocationID is the ID of the actual method call, ObjectID

is the ID of the object on which the method is called and

the name of the method should be MethodName which we

obtained earlier. We have two new variables now: InvocationID

and ObjectID. We should check that the method call (whose

ID we have) is placed inside a loop. For that, we define a

descendsFromLoop predicate:

descendsFromLoop(ID) :-

forLoopT(ID, _, _, _, _, _, _),

!.

descendsFromLoop(ID) :-

getTerm(ID, Term),

arg(2, Term, ParentID),

descendsFromLoop(ParentID).

We used the following rule here: a PEF descends from a

loop if it is a for loop or if its parent descends from a loop.

To find the parent of a PEF, we used the known fact that

the second argument of each PEF represents the ID of the

parent of that PEF. Of course, there are also while loops and

do ... while loops in Java, but that would be trivial yet space-

consuming to add, so we decided to leave them out in this

example. Normally, there would be descendsFromLoop clauses

above that would treat also while loops and do ... while loops,

but they are similar with the first descendsFromLoop clause,

which treats for loops. The last thing to do is to check if

ObjectID represents in fact an indexed version of the field

FieldID. This is done in JTransformer by using the indexedT

PEF ([Kni06]):

indexedT(ObjectID, _, _, _, FieldID).

When we put everything together, we come up with a de-

tection rule that successfully detects the problematic situation

described:

suspect(CompositeID, ShapeID) :-

fieldDefT(FieldID, CompositeID,

type(class, ShapeID, 1),

FieldName, _),

extendsT(ChildID, ShapeID),

not(descendant(CompositeID, ShapeID)),

overrides(ShapeID, ChildID, MethodName),

applyT(InvocationID, _, _,

ObjectID, MethodName, _, _),

descendsFromLoop(InvocationID),

indexedT(ObjectID, _, _, _, FieldID).

Fig. 3. The Detection Strategy

The suspect predicate returns the two IDs involved: the ID

of the Composite class and the ID of the Shape class from

figure 2. These are typically sufficient for a human operator

to study if a Composite solution is indeed needed and act upon

it by making Composite a subclass of Shape.

This is only one symptom of Composite misuse. There may

be many others and detection rules could be written for them

too. We believe this is the best way to handle the problem,

because a general panacea for all the symptoms at once may

be impossible to find.

IV. PRACTICAL RESULTS

To evaluate our approach, we’ve chosen 2 Java projects

freely available on the Internet: JHotDraw and BranchView.

JHotDraw is a Java GUI framework for technical and

structured graphics. It has been developed as a design exercise.

Its design relies heavily on some well-known design patterns.

JHotDraw’s original authors have been Erich Gamma and

Thomas Eggenschwiler ([jho]). Version 5.3 that we used

for our evaluation contains about 150 classes and interfaces

(we used an older version of this software because newer

versions have less chances of containing the antipatterns we

are searching).

On the other hand, BranchView is a 100% pure Java pro-

gram that offers a graphical view of selected depot files with

all available information about file revisions. It is written by

Andrei Loskutov and contains about 60 classes. In both cases,

the projects had to be opened in Eclipse since JTransformer

works as an Eclipse plugin. The JTransformer engine then

generated a knowledge base containing program element facts

(PEFs) for each of the two Java projects. Figure 4 shows

the size of each knowledge base and the number of seconds

required to build it.

Even though BranchView is smaller than JHotDraw in terms

of number of classes, the generated knowledge base is larger,

which means the classes in BranchView are bigger than the

ones in JHotDraw. Without anticipating, this looks like a bad

Projects Classes KB Build Time KB Size

__

JHotDraw ˜150 4-5 seconds ˜5.1M

BranchView ˜60 4-5 seconds ˜5.3M

Fig. 4. Test Subjects

smell, a proof of an imperfect design, since classes should be

as small as possible and should limit their implementation to

their responsabilities. Next, we were interested in running our

analysis on the knowledge bases generated by JTransformer.

As we suspected, running the suspect rule on the JHotDraw

sources ended up with no suspects at all. The Prolog infer-

ence machine responded with a NO to our queries, after it

spent some time inspecting the knowledge base. However, the

analysis of BranchView was more successful, and one suspect

was found. After manually inspecting the code, the Composite

anti-pattern we found turned out to be a positive suspect.

Indeed, the design would have been better if a Composite

design pattern had been used there. Running the detection

strategy on JHotDraw took 345 seconds, and running it on

BranchView took 232 seconds. Unfortunately, there are no

similar approaches available to our knowledge to test these

results against.

Even though the symptom presented in this paper seems

unlikely to appear in code written by professionals, we believe

it is helpful to have a tool capable of testing such a symptom.

Even in code written by professionals it is still possible for the

tested symptom to be found, since it might be the case that

the versatility provided by the Composite design pattern was

not desired in the first place, but later on, one could conclude

that it was not bad to have, either.

V. PERFORMANCE ISSUES

The results were obtained on a Pentium III notebook with

512 megabytes of memory running Windows XP. We used

a slower machine on purpose, to see if the results are still

obtained in reasonable time. Should the projects under analysis

have been bigger, the amount of time required to complete the

analyses would have grown. The purpose of this section is to

find a theoretical relation between the size of the project under

analysis and the time required to complete the analysis.

In order to perform the analysis, we must refer to the Prolog

rule in figure 3. The great thing about Prolog rules is that

the Prolog inference machine never walks past a predicate

that fails. It always backtracks to find the closest point in the

inference process where there have been alternatives to the

chosen path. There, the next possible alternative is chosen

and the process continues. Our strategy begins by finding

a field FieldName which is member of a class with ID =

CompositeID and whose type is an array of ShapeID. Prolog

walks through all the facts in the knowledge base and only

continues the analysis when it finds one that matches these

criteria. Once such a field is found, a descendant of ShapeID

(called ChildID) is located very fast because there can’t be

many direct descendants of ShapeID. ChildID has to override

a method of ShapeID and detecting such a method is another

straightforward process: for each method in ShapeID, we

verify if a method with the same name also belongs to ChildID

and if so, we check that the parameter lists for the two methods

contain matching types. This process is linear with the number

of methods in ShapeID. Next, we have to check all calls to this

method localized in CompositeID and verify if one of them is

enclosed within a loop (a for loop, a while loop, etc.). This

process is linear with the number of calls of the target method

in CompositeID.

Therefore, the performance of the whole detection strategy

depends on the following three factors:

• on the number F of fields in the whole project

• for each field that is an array of type ShapeID, on the

number M of methods in class ShapeID;

• for each method, on the number C of times that method

is called within the CompositeID class

Being so difficult to give an exact performance function, we

choose to express the performance of the suspect detection

strategy as a product: F * M * C. It certainly is not an

exponential analysis, which is encouraging for extending it

to bigger projects.

VI. RELATED WORK

The field of detecting design anti-patterns is quite new

in today’s software engineering. This is probably due to the

following reasons:

• such a detection typically requires deep analysis of code

within method bodies, which is not easily achieved be-

cause of metamodel limitations - the solution we chose

(the JTransformer framework) seems quite solid in this

respect

• analyses are much more complicated than other analyses

that check for simple bad smells in code, which may

greatly affect scalability; this aspect is something that

we, too, have to study in greater detail (see future work)

• the heuristic nature of these analyses is much more

evident; results are often subject to interpretation and

rejection by human operators

[JLB02] presents an approach where Java programs are

analyzed to find places where the Abstract Factory design

pattern could have been used. The approach is based on a

Prolog metamodel (much simpler than the one offered by

JTransformer) and the possibility to use Abstract Factory

appears by analyzing at least two versions of the system. If

a client creates a set of objects in one version of the system

and it creates another set of objects in the second version such

that each object in the first set is the brother of an object in

the second set, an Abstract Factory pattern is suggested as a

better solution. However, the results are not clearly pointed

out and the work was not continued.

In [Jeb04], the same problem is tackled. However, the set of

instantiated objects in a method is more accurately computed,

by using the control graph of the method. If two objects are

created along different branches of a conditional statement,

they won’t be part of the same set of instantiated objects.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented how logic metaprogramming can

help in detecting simple symptoms of ignored design patterns

and developed a detection strategy to capture such a symptom

in Java programs. The symptom is rather simple (a missing

extends statement) but we believe the whole scenario and the

underlying tests involved are by no means trivial. However, the

elegant use of Prolog language simplifies much of the inherent

complexity of dealing with program structures and allows a

straightforward and logic specification of the problem.

Our tool is currently able to process about 1-2 symptoms

for each one of the following five design patterns: Composite,

Abstract Factory, Strategy, State and Visitor. We plan to study

how it can be extended to deal with others, too. The analysis

of symptoms works well on small to medium-scale projects

and provides answers in decent amounts of time. However, it

is the backtracking aspect of Prolog that could be a problem

on large-scale projects. We plan to study this aspect as future

work.

We also plan to extend analyses to a language-independent

level. For that, we are currently working on language indepen-

dent models for programs, using the same declarative language

as a base language ([CJM08], [JCM08]).

REFERENCES

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-
oriented reengineering. In Proceedings of the Technology of

Object-Oriented Languages and Systems. IEEE Computer Society,
1999.

[CJM08] Ciprian-Bogdan Chirilă, Călin Jebelean, and Anca Măduţa. To-
wards automatic generation and regeneration of logic representa-
tion for object-oriented programming languages. In Proceedings

of the International Conference on Technical Informatics, Univer-
sity Politehnica Timişoara, 2008.

[Fow00] Martin Fowler. Refactoring: Improving the design of existing code.
Addison-Wesley, 2000.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: Elements of reusable object-oriented software.
Addison-Wesley, 1995.

[JCM08] Călin Jebelean, Ciprian-Bogdan Chirilă, and Anca Măduţa. Gen-
erating logic based representations for programs. In Proceedings

of the 2008 IEEE 4th International Conference on Intelligent

Computer Communication and Processing, pages 145–151, Cluj-
Napoca, Romania, 2008.

[Jeb04] Călin Jebelean. Automatic detection of missing abstract-factory
design pattern in object-oriented code. In Proceedings of the

International Conference on Technical Informatics, Politehnica
University in Timişoara, 2004.

[jho] Jhotdraw as open source project. www.jhotdraw.org.

[JLB02] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. An automated
refactoring approach to design pattern-based program transforma-
tions in Java programs. In Proceedings of the 9th Asia-Pacific

Software Engineering Conference, 2002.

[Ker04] Joshua Kerievsky. Refactoring to patterns. Addison-Wesley, 2004.

[Kni06] Günter Kniesel. A logic foundation for conditional program
transformations. Technical Report IAI-TR-2006-1, Computer
Science Department III, University of Bonn, January 2006.

[Mar04] Radu Marinescu. Detection strategies: metrics-based rules for
detecting design flaws. In Proceedings of the 20th IEEE Inter-

national Conference on Software Maintenance, pages 350–359.
IEEE Computer Society, 2004.

[SSL01] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics
based refactoring. In Proceedings of the Conference on Software

Maintainance and Reengineering, pages 30 – 38, 2001.
[TM03] Tom Tourwé and Tom Mens. Identifying refactoring opportunities

using logic meta programming. In Proceedings of the 7th Euro-

pean Conference on Software Maintainance and Reengineering,
pages 91–100. IEEE Computer Society, 2003.

