
Towards Logic Based Representation of XML
Models

Călin Jebelean∗, Ciprian-Bogdan Chirila∗, Vladimir Creţu∗ and Marieta F̆aşie∗
∗University Politehnica of Timişoara, Romania

Email: {calin,chirila,vcretu}@cs.upt.ro, mariettaor@yahoo.com

Abstract—Both code analysis and code transformation are
processes that rely on software models instead of actual software
systems. In the context of software modeling, we have done so far
some efforts to attach logic representation to programs written
in any language by using an automatic and grammar-driven
approach. However, XML proved to be a difficult candidate for
such an approach, because we discovered the XML format is
already close to the logic format that we desired, and running
our generic grammar-driven approach on XML files would add
unnecessary complications. Therefore, we imagined a different
technique for transforming XML files into logic models, a
technique that preserves useful information already present in
XML files. As a benefit of the approach we will show how UML
models (also described in XML) can be transformed into logic
models and analyzed or transformed further at a logical level.

I. I NTRODUCTION

Representing programs as logic factbases (Prolog-like) has
become over the years a strong approach to support processes
like program analysis and program transformation ([Ciu99],
[TM03]). Analyses and transformations of programs can be
described in a much more expressive manner than that of an
imperative language.

The idea of logic representation for programs has led to
the development of ProGen (PROlog GENerator), a fully
automatic tool capable of constructing logic representations
for programs written in any programming language ([CJM08],
[JCM08]). ProGen is equipped with a grammar repository for
several programming languages and the process of building
a logic representation for a program is actually driven by
the grammar of that program. Thus, using the approach for
different programming languages does not involve writing a
new tool for each new language, but rather configuring the
same tool with another input grammar.

In this paper we address the problem of building logic
models for XML files. When we configured ProGen with the
XML grammar and used it to parse XML files and build logic
models for them we realized the result is in each case far
more complicated than the initial XML file. Normally, an
XML file uses a hierchical structure to present information:
there are XML tags (parents) that encapsulate other XML tags
(children). ProGen models also have a hierarchical structure,
driven by the grammar of the language. Thus, parent entities
(non-terminals of the grammar) are linked to child entities
(non-terminals or terminals) as specified by the grammar. Each
grammar rule explicitly defines links between several child

entities (members of the right side of the rule) and a single
parent entity (the left side of the rule). The two hierarchies
have very few in common since ProGen describes hierarchies
at the syntactic level while XML depicts them at the textual
level. The need arised for ProGen to perform different on XML
files, such that the textual hierarchy is considered insteadof the
syntactic hierarchy, thus alleviating the usage of the generated
logic model. This will be shown next.

XML is the de-facto standard for sharing information be-
tween different applications. It is not a surprise that UML tools
use XML as the preferred format to export their artifacts. Thus,
if ProGen is used to translate such UML artifacts (described
in XML) to the realm of logic, the analysis and transformation
steps that we mentioned at the beginning of this section could
very well be used on them. Thus, analysis and transformation
of UML models is achieved. This is the main reason why we
even considered XML for this discussion.

Analysis of UML models is not a very common research
topic and there are reasons for that. Analyzing models has the
great disadvantage of not being able to grasp all the infor-
mation about the system being analyzed, because models are
only abstractions of the system. Thus, model-based analyses
can’t expect to be more successful than code-based analyses
([Mar04], [SSL01], [Ciu99], [TM03], [Jeb04], [JLB02]). Still,
model-based analyses have one major advantage. They can be
applied early in the development phase and eventual problems
could be solved before the coding phase even begins, thus
saving time and money. This is the reason why we believe
there is some potential in performing analyses directly on
UML models, even if the analyses are limited in power or
depth.

The next sections are structured as follows: section II
presents an overview of the logic based representations per-
formed by ProGen, section III shows how certain modeling
tools like ArgoUML or Enterprise Architect describe UML
models using XML and also how ProGen should be adapted
to better benefit from the information already present in the
XML format, section IV describes how the generated ProGen
model can be used to perform analysis on UML models (even
if XML was the modeled language), and section V concludes.

II. OVERVIEW OF LOGIC BASED REPRESENTATIONS

In this section we will briefly present how ProGen generates
its logic models for programs written in any language. We

will study an example for that. Figure 1 contains a little piece
of code written in a C-like language. The grammar is very
simple, instructions between curly braces are only allowedto
be assignments and expressions can only be built by using
identifiers, numbers, the four basic arithmetic operators and
parantheses.

{
b = 4;
a = (8 + b) * 5;

}

Fig. 1. A sample program

ProGen is a language independent tool. Thus, when dealing
with a program like the one in figure 1 it needs the grammar
for the respective language. We present the grammar in figure
2 using an EBNF notation ([ebn]).

Block ::= ’{’ InstrList ’}’

InstrList ::= (Instr ’;’)*

Instr ::= Assignment

Assignment ::= <ident> ’=’ Expr

Expr ::= Term (AdditiveOp Term)*

Term ::= Factor (MultiplicativeOp Factor)*

AdditiveOp ::= ’+’ | ’-’

Factor ::= <ident> | <constant> | ’(’ Expr ’)’

MultiplicativeOp ::= ’*’ | ’/’

Fig. 2. A sample grammar

The Prolog metamodel is listed in figure 3. The clauses
of the metamodel are simply non-terminals of the grammar
only in downcase, since Prolog treats identifiers starting with
an uppercase as variables. The father-son relationships are
modeled by using numeric identifiers for each clause. Thus,
each clause is associated with a numeric identifier which is
unique in the system and also with the numeric identifier of
its parent clause, as specified by the grammar. The first clause
will have a special value as the parent identifier (-1) since that
clause will normally have no parent.

block(#ID, -1).
instrlist(#ID , #blockID).
instr(#ID , #instrlistID).
assignment(#ID , #instrID).
expr(#ID , #assignmentID).
term(#ID , #exprID).
additiveop(#ID , #exprID).
factor(#ID , #termID).
multiplicativeop(#ID , #termID).

Fig. 3. The Prolog metamodel

Terminals of the grammar will be modeled by using a
special clause, calledatom. The first parameter of such a clause
will be the numeric identifier of the parent of that atom and
the second parameter will be the actual value of the atom.

The output of ProGen will be a Prolog knowledge base that
models the code in figure 1 using clauses from the metamodel
in figure 3 as dictated by the grammar in figure 2. A listing of
that knowledge base is presented in figure 4 and an equivalent
graphical representation is depicted in figure 5. The dottedline
follows the AST border and visits the atoms in the actual order
they were discovered in the input file.

block(10000, -1).
atom(10000,’{’).
instrlist(10001,10000).
instr(10002,10001).
assignment(10003,10002).
atom(10003,’b’).
atom(10003,’=’).
expr(10004,10003).
term(10005,10004).
factor(10006,10005).
atom(10006,’4’).
atom(10001,’;’).
instr(10007,10001).
assignment(10008,10007).
atom(10008,’a’).
atom(10008,’=’).
expr(10009,10008).
term(10010,10009).
factor(10011,10010).
atom(10011,’(’).
expr(10012,10011).
term(10013,10012).
factor(10014,10013).
atom(10014,’8’).
additiveop(10015,10012).
atom(10015,’+’).
term(10016,10012).
factor(10017,10016).
atom(10017,’b’).
atom(10011,’)’).
multiplicativeop(10018,10010).
atom(10018,’*’).
factor(10019,10010).
atom(10019,’5’).
atom(10001,’;’).
atom(10000,’}’).

Fig. 4. The Prolog model

III. XML R EPRESENTATION OFUML M ODELS

As mentioned earlier, XML proved to be a difficult can-
didate for the approach presented in section II since XML
already contains a hierarchy of entities (tags) at the textual
level. ProGen translates XML to Prolog by using the hierarchy
of entities specified in the XML grammar, and the two hier-
archies are not always compatible because the XML grammar
introduces unnecessary levels of indirection between entities.
This is not an issue for a random programming language where
no other hierarchy can be derived, but is annoying for XML
and we decided to write a special version of ProGen that will
only deal with translating XML content to Prolog.

A. Translation of basic XML files

We will study the translation details on a comprehensive
example. Figure 6 contains an example of basic XML content.

Regardless of the XML grammar, the hierarchy is obvious
from the textual level. Thus, thecourseentity descends from
the coursesentity andname, year andstudentsdescend from
course. Each XML tag will be translated as a Prolog clause

’;’

’{’ ’}’

’;’

’=’’b’

. . .

’4’

b l o c k
1 0 0 0 0

ins t r l i s t
1 0 0 0 1

i n s t r
1 0 0 0 2

i n s t r
1 0 0 0 7

a s s i g n m e n t
1 0 0 0 3

e x p r
1 0 0 0 4

t e r m
1 0 0 0 5

f a c t o r
1 0 0 0 6

Fig. 5. AST representation

<courses>
<course id=100>

<name>
Computer graphics

</name>
<year>
2

</year>
<students min=30 max=60 />

</course>
<course id=101>

<name>
Artificial intelligence

</name>
<year>
3

</year>
<students min=40 max=80 />

</course>
</courses>

Fig. 6. A sample XML file

and they will be linked by numeric identifiers according to
the XML hierarchy. If an XML tag has arguments, they will
be added as further arguments in the corresponding Prolog
clauses. The Prolog output is presented in figure 7.

Since the XML to Prolog translator is custom-built and
not a particular case of a generic translator (like ProGen),
we decided to add bidirectional navigation in Prolog. This is
not available in normal ProGen output, where only navigation

courses(10000, -1, [10001, 10005]).
course(10001, 10000, [10002, 10003, 10004], ’100’).
name(10002, 10001, [], ’Computer graphics’).
year(10003, 10001, [], ’2’).
students(10004, 10001, [], ’30’, ’60’).
course(10005, 10000, [10006, 10007, 10008], ’101’).
name(10006, 10005, [], ’Artificial intelligence’).
year(10007, 10005, [], ’3’).
students(10008, 10005, [], ’40’, ’80’).

Fig. 7. The Prolog model (XML)

from children to parent is easily achieved. Bidirectional navi-
gation in figure 7 can be observed, for example, in the second
clause:

course(10001, 10000, [10002, 10003, 10004], ’100’).
10001is the numeric ID of thecourse, 10000is the numeric

ID of the parent and the following list contains the IDs of
the course’s children. They belong to anameclause, ayear
clause and astudentsclause, thus allowing navigation from the
courseto its children (downwards) and also from thecourse
to its parent (upwards).

B. Translation of XMI files

All topics about modeling XML in Prolog are aimed at
a greater purpose. XML is the best file format to exchange
information between application and thus it comes as no
surprise that UML modeling tools use XML as a suitable way
to share data. For that, a special XML dialect was introduced
by the Object Management Group, called XMI. XMI is still
XML, but its main purpose is as an interchange format for
UML models. All major UML modeling tools have the option
of exporting UML models to XMI. The XML to Prolog
translator comes then as a first step in a greater process of logic
based analysis of UML models, which is the whole purpose
of the approach we present here.

An exhaustive presentation of XMI is beyond the scope of
this article. However, for clarity purposes we should present a
small excerpt from an XMI file and the details of translating
XMI to Prolog. Although XMI is still XML and translation of
XML to Prolog was covered in the previous subsection, there
are a few issues that have to be treated with special attention
when dealing with XMI files.

Figure 8 depicts a simple class diagram with 4 classes, mod-
eled in ArgoUML ([arg]):Shape, Line, Circle andSquare, with
Shapebeing the superclass and the others being subclasses.

Figure 9 presents a small excerpt from the XMI document
exported from the class diagram in figure 8. The excerpt
displays only the XMI content regarding classesShapeand
Circle and the inheritance relation between them.

Figure 9 shows several interesting aspects:
• XML tag names have the common prefix“UML:” . There

are 2 problems with this prefix that prevent a naive
Prolog translation to be valid: first, it starts with a capital
letter and second, it contains a colon – thus, the Prolog
translator should be instructed to convert all letters to low-
ercase and replace all non-letter and non-digit characters
with an underscore character: ’’. According to this rule,
UML:Classwill be translated in Prolog asuml class

Shape

computeArea() : double

Line

computeArea() : double

x1 : double
y1 : double
x2 : double
y2 : double

Circle

computeArea() : double

x : double
y : double
radius : double

Square

computeArea() : double

x : double
y : double
length : double

Fig. 8. A sample class diagram

<UML:Model xmi.id=’B36’ name=’ClassDiagram’>

<UML:Class xmi.id=’CDE’ name=’Shape’ visibility=’public’>
...

</UML:Class>

<UML:Class xmi.id=’CE1’ name=’Circle’ visibility=’public’>
<UML:Attribute ...> ... </UML:Attribute>
<UML:Operation ...> ... </UML:Operation>

</UML:Class>

<UML:Generalization xmi.id=’CEB’>

<UML:Generalization.child>
<UML:Class xmi.idref=’CE1’/>

</UML:Generalization.child>

<UML:Generalization.parent>
<UML:Class xmi.idref=’CDE’/>

</UML:Generalization.parent>

</UML:Generalization>

...

</UML:Model>

Fig. 9. An XMI excerpt

• Some of the XMI entities have their own unique ID
called xmi.id and represented as a string value1. For
example, theUML:Model entity has an associated ID
’B36’. There are other XMI entities that don’t have
personal IDs, likeXMI:Generalization.child, for instance.
It is not recommended to ignore these already generated
IDs because all the relations between XMI entities are
described using them (take, for example, the inheritance
relationship betweenShapeand Circle). As a result, the
Prolog translator will be configured to be aware of these
IDs

• Some XMI entities have anxmi.idref argument. For
example, when defining the inheritance relationship in
figure 9, the two entities that are part of this relationship
are referred using theUML:Class tag, but instead of
having anxmi.id argument (which would have meant a
new class declaration), they have anxmi.idref argument
(which means that the respective class has already been
defined earlier and the current entity is only a reference
to that class)

1The actual string values for the XMI IDs are much longer than 3 characters,
but we truncated them to the last 3 characters because of space limitations

According to these aspects, the general translation algorithm
is sketched below:

1) The XMI tree is visited in preorder and each node
receives a unique numeric ID - the uniqueness could be
achieved by incrementing a variable after it is assigned
to the current node, for example

2) During the same visit, each node receives a suitable
name, as mentioned earlier, by converting the original
name of the node to lowercase and replacing unwanted
characters with the ’’ character

3) The XMI tree is visited the second time in preorder
and each XMI node will generate a Prolog clause, as
specified in subsection III-A.

4) The name of the Prolog clause is the suitable name
received at step 2)

5) The first parameter of the Prolog clause is the numeric
ID of the XMI node received during step 1), unless the
XMI node has anxmi.id argument, in which case the
value of this argument is used as the first argument of
the Prolog clause. If the XMI node has anxmi.idref
argument, then the same rule applies but furthermore,
the name of the Prolog clause is appended with theref
suffix

6) The second parameter of the Prolog clause is the nu-
meric ID of the parent of the XMI node, with the same
exception as above

7) The third parameter of the Prolog clause is the list of
numeric IDs of the children of the XMI node, with the
same exception as above

8) The next parameters of the Prolog clause are the rest of
the arguments of the XMI node

According the the previous algorithm, the Prolog translation
of the XMI excerpt in figure 9 is presented in figure 10.

uml_model(’B36’, -1, [’CDE’, ’CE1’, ’CEB’], ’ClassDiagram’).
uml_class(’CDE’, ’B36’, [...], ’Shape’, ’public’).
uml_class(’CE1’, ’B36’, [...], ’Circle’, ’public’).
uml_generalization(’CEB’, ’B36’, [10000, 10001]).
uml_generalization_child(10000, ’CEB’, [’CE1’]).
uml_class_ref(’CE1’, 10000, []).
uml_generalization_parent(10001, ’CEB’, [’CDE’]).
uml_class_ref(’CDE’, 10001, []).

Fig. 10. The Prolog model (XMI)

IV. B ENEFITS: ANALYSIS OF UML M ODELS

Once the XMI translation in Prolog is achieved, we can use
the Prolog model to perform a few analyses on the initial UML
model that generated the XMI representation. For example, it
is easy to detect long inheritance chains in Prolog since an
inheritance chain is composed of severaluml generalization
clauses linked one after another by means of their IDs.

Another easy-to-do analysis is the detection of large classes,
which is presented as a bad smell in [Fow00]. Class content is
available in XMI, but figure 9 failed at showing it because of
space limitations. However, method and attribute information
for classes is available insideUML:Classtags and can serve to

detect either classes that have a large amount of methods (god
classes) and very few attributes or classes that have a large
amount of attributes (data classes) and very few methods that
are not setters and getters. These amounts can be computed
either as absolute values, or relative to each other.

Still, it is not our intention to describe UML model analysis
using Prolog in this article. This subject will be treated in
greater detail in a future paper.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a solution to perform
analysis on UML models. As a first step, we have observed
that UML modeling tools use XML as a standardized way
of sharing information. Next, we used our general purpose
translator called ProGen to obtain a Prolog representationfor
XML input. Since the Prolog representation we obtained was
not quite satisfactory for reasons we have already presented in
the paper, we have modified ProGen to produce a more suitable
output on XML input files. Thus, we believe the translator will
be ready to perform on XMI files, an XML interchange format
for UML models.

The XML to Prolog translator is already under development.
As future work, we plan to finish the direct translation and
start working on a correspondent Prolog to XML convertor.
In the mean time, we also plan to implement as many model
analyses as possible and assess their accuracy on large scale
models.

REFERENCES

[arg] Argouml. http://argouml.tigris.org.
[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-

oriented reengineering. InProceedings of the Technology of Object-
Oriented Languages and Systems. IEEE Computer Society, 1999.

[CJM08] Ciprian-Bogdan Chiril̆a, C̆alin Jebelean, and Anca M̆aduţa. Towards
automatic generation and regeneration of logic representation for
object-oriented programming languages. InProceedings of the
International Conference on Technical Informatics, University Po-
litehnica Timişoara, 2008.

[ebn] The ISO/IEC 14977:1996(e) standard.
[Fow00] Martin Fowler.Refactoring: Improving the design of existing code.

Addison-Wesley, 2000.
[JCM08] C̆alin Jebelean, Ciprian-Bogdan Chirilă, and Anca M̆aduţa. Gen-

erating logic based representations for programs. InProceedings
of the 2008 IEEE 4th International Conference on Intelligent
Computer Communication and Processing, pages 145–151, Cluj-
Napoca, Romania, 2008.

[Jeb04] C̆alin Jebelean. Automatic detection of missing abstract-factory
design pattern in object-oriented code. InProceedings of the
International Conference on Technical Informatics, Politehnica
University in Timişoara, 2004.

[JLB02] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. An automated
refactoring approach to design pattern-based program transforma-
tions in Java programs. InProceedings of the 9th Asia-Pacific
Software Engineering Conference, 2002.

[Mar04] Radu Marinescu. Detection strategies: metrics-based rules for
detecting design flaws. InProceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance, pages 350–359. IEEE
Computer Society, 2004.

[SSL01] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics
based refactoring. InProceedings of the Conference on Software
Maintainance and Reengineering, pages 30 – 38, 2001.

[TM03] Tom Tourẃe and Tom Mens. Identifying refactoring opportunities
using logic meta programming. InProceedings of the 7th European
Conference on Software Maintainance and Reengineering, pages
91–100. IEEE Computer Society, 2003.

