Towards Logic Based Representation of XML
Models

Calin Jebeleah Ciprian-Bogdan Chirilg, Vladimir Cretd' and Marieta Bsi€
*University Politehnica of Timisoara, Romania
Email: {calin,chirila,vcretg @cs.upt.ro, mariettar@yahoo.com

Abstract—Both code analysis and code transformation are entities (members of the right side of the rule) and a single
processes that rely on software models instead of actual softva parent entity (the left side of the rule). The two hierarshie
systems. In the context of software modeling, we have done sa'fa 5y very few in common since ProGen describes hierarchies
some efforts to attach logic representation to programs written t th tactic | | while XML debicts th t the textual
in any language by using an automatic and grammar-driven at the syntaclic eye while epicts em at the textua
approach. However, XML proved to be a difficult candidate for 1evel. The need arised for ProGen to perform different on XML
such an approach, because we discovered the XML format is files, such that the textual hierarchy is considered insbé#uke
already close to the logic format that we desired, and running syntactic hierarchy, thus alleviating the usage of the geiad
our generic grammar-driven approach on XML files would add logic model. This will be shown next.

unnecessary complications. Therefore, we imagined a different . L .
technique for transforming XML files into logic models, a XML is the de-facto standard for sharing information be-

technique that preserves useful information already present in tween different applications. It is not a surprise that UMbl
XML files. As a benefit of the approach we will show how UML use XML as the preferred format to export their artifactsug,h

models (also described in XML) can be transformed into logic if ProGen is used to translate such UML artifacts (described
models and analyzed or transformed further at a logical level. XML) to the realm of logic, the analysis and transformatio
steps that we mentioned at the beginning of this sectiondcoul
very well be used on them. Thus, analysis and transformation
Representing programs as logic factbases (Prolog-like) hef UML models is achieved. This is the main reason why we
become over the years a strong approach to support procegses considered XML for this discussion.
like program analysis and program transformation ([Ciu99] Analysis of UML models is not a very common research
[TMO3]). Analyses and transformations of programs can hepic and there are reasons for that. Analyzing models has th
described in a much more expressive manner than that ofgreat disadvantage of not being able to grasp all the infor-
imperative language. mation about the system being analyzed, because models are
The idea of logic representation for programs has led tmly abstractions of the system. Thus, model-based armlyse
the development of ProGen (PROlog GENerator), a fullyan't expect to be more successful than code-based analyses
automatic tool capable of constructing logic represeniteti ([Mar04], [SSLO1], [Ciu99], [TMO03], [Jeb04], [JLB02]). 8k
for programs written in any programming language ([CIJMO08nodel-based analyses have one major advantage. They can be
[JCMO08]). ProGen is equipped with a grammar repository fapplied early in the development phase and eventual prablem
several programming languages and the process of buildisguld be solved before the coding phase even begins, thus
a logic representation for a program is actually driven bgaving time and money. This is the reason why we believe
the grammar of that program. Thus, using the approach fillere is some potential in performing analyses directly on
different programming languages does not involve writing @ML models, even if the analyses are limited in power or
new tool for each new language, but rather configuring thiepth.
same tool with another input grammar. The next sections are structured as follows: section Il
In this paper we address the problem of building logipresents an overview of the logic based representations per
models for XML files. When we configured ProGen with théormed by ProGen, section Il shows how certain modeling
XML grammar and used it to parse XML files and build logidools like ArgoUML or Enterprise Architect describe UML
models for them we realized the result is in each case faodels using XML and also how ProGen should be adapted
more complicated than the initial XML file. Normally, anto better benefit from the information already present in the
XML file uses a hierchical structure to present informatiorXML format, section IV describes how the generated ProGen
there are XML tags (parents) that encapsulate other XML tagsdel can be used to perform analysis on UML models (even
(children). ProGen models also have a hierarchical strectuif XML was the modeled language), and section V concludes.
driven by the grammar of the language. Thus, parent entities
(non-terminals of the grammar) are linked to child entities Il. OVERVIEW OF LOGIC BASED REPRESENTATIONS
(non-terminals or terminals) as specified by the grammarhEa In this section we will briefly present how ProGen generates
grammar rule explicitly defines links between several childs logic models for programs written in any language. We

I. INTRODUCTION

will study an example for that. Figure 1 contains a littleqgie The output of ProGen will be a Prolog knowledge base that

of code written in a C-like language. The grammar is vemnodels the code in figure 1 using clauses from the metamodel

simple, instructions between curly braces are only alloteed in figure 3 as dictated by the grammar in figure 2. A listing of

be assignments and expressions can only be built by usthgt knowledge base is presented in figure 4 and an equivalent

identifiers, numbers, the four basic arithmetic operatard agraphical representation is depicted in figure 5. The ddited

parantheses. follows the AST border and visits the atoms in the actual orde
they were discovered in the input file.

{
b = 4 bl ock(10000, -1).
_ . at on(10000, {*).
a=(8+b) ~5 instrlist(10001, 10000).
} i nstr (10002, 10001) .

assi gnnent (10003, 10002) .
aton(10003, b’).

Fig. 1. A sample program at om(10003,' =").
expr (10004, 10003) .

ProGen is a language independent tool. Thus, when dealﬁrg?f)rl?(fggbé?ggéég)_

with a program like the one in figure 1 it needs the grammaton(10006, 4").
. . . atom(10001,';’).
for the respective language. We present the grammar in figurg;r (10007, 10001) .

2 using an EBNF notation ([ebn]). assi gnment (10008, 10007) .
at om(10008,"a’).
at on(10008, ' =").

Block ::="{" InstrList '} expr (10009, 10008) .
D - ter m(10010, 10009) .
Instriist 2= (Instr ')= fact or (10011, 10010).
Cos pea atom(10011, (') .
Instr ::= Assignnent expr (10012, 10011).
- ol . term(10013, 10012).
Assignment ::= <ident> Expr fact or (10014, 10013).
o o atom(10014, " 8').
Bxpr ::= Term (AdditiveQp Term)« addi ti veop(10015, 10012).
o Sl atom(10015, " +').
Term::= Factor (MultiplicativeQp Factor)= fern{ 10016, 10012).
P oo v factor (10017, 10016) .
AdditiveQp :: + | aton(10017, ' b').
o= oo v N aton(10011,")").
Factor ::= <ident> | <constant> | (" Expr ') mul tiplicativeop(10018, 10010).
Mil tiplicativeQp ::= "+ | '/ atom(10018, ' «*) .

factor (10019, 10010).
aton(10019, 5").
atonm(10001,";").

Fig. 2. A sample grammar at on{ 10000," }").

The Prolog metamodel is listed in figure 3. The clauses
of the metamodel are simply non-terminals of the grammar
only in downcase, since Prolog treats identifiers startiitfy w
an uppercase as variables. The father-son relationshi®s ar |||, XML R EPRESENTATION OFUML M ODELS
modeled by using numeric identifiers for each clause. Thus,

each clause is associated with a numeric identifier which Sc’io\st n}ennt?]ned earherr,] XML prtO\éeq to bf. a (Ijl'ﬁ'(.:u“ C;r,\;L
unique in the system and also with the numeric identifier ate for the ‘approach presented in section i since

its parent clause, as specified by the grammar. The firste:laﬁ?éready contains a hierarchy of entities (tags) at the &xiu

will have a special value as the parent identifier (-1) simze t evel. P_roGen trgpsla_tes XML to Prolog by using the hlerw_ch
clause will normally have no parent. of entities specified in the XML grammar, and the two hier-

archies are not always compatible because the XML grammar

Fig. 4. The Prolog model

bl o;:kl(#l P,(#; é)' #b1 00kI D) introduces unnecessary levels of indirection betweertiesiti
inotr(#D . #instrlistiD). This is not an issue for a random programming language where
assi gglngnt(zl D, #i nstD)- no other hierarchy can be derived, but is annoying for XML
D s et o and we decided to write a special version of ProGen that will
addi tiveop(#ID , #expr|D). only deal with translating XML content to Prolog.

factor(#/ D, #termD).

miltiplicativeop(# D, #ermD). A. Translation of basic XML files

Fig. 3. The Prolog metamodel We will study the translation details on a comprehensive

example. Figure 6 contains an example of basic XML content.

Terminals of the grammar will be modeled by using a Regardless of the XML grammar, the hierarchy is obvious
special clause, calleastom The first parameter of such a clausérom the textual level. Thus, theourseentity descends from
will be the numeric identifier of the parent of that atom anthe coursesentity andname year and studentsdescend from

the second parameter will be the actual value of the atom.course Each XML tag will be translated as a Prolog clause

Fig. 5. AST representation

<courses>
<cour se i d=100>
<nane>
Conput er graphics
</ name>
<year >
2
</ year >
<students m n=30 max=60 />
</ cour se>
<course id=101>
<nane>
Artificial intelligence
</ name>
<year >
3
</ year >
<students m n=40 max=80 />
</ cour se>
</ cour ses>

Fig. 6. A sample XML file

cour ses(10000, -1, [10001, 10005])
course(10001, 10000, [10002, 10003, 10004], '100").

name(10002, 10001, [], ' Conputer graphics’)

year (10003, 10001, [], '2")

st udent s(10004, 10001, [], '30', '60').

cour se(10005, 10000, [10006, 10007, 10008], ’'101').
narme(10006, 10005, [], "Artificial intelligence’)
year (10007, 10005, [], '3")

st udent s(10008, 10005, [], '40', '80').

Fig. 7. The Prolog model (XML)

from children to parent is easily achieved. Bidirectionalin
gation in figure 7 can be observed, for example, in the second
clause:
course(10001, 10000, [10002, 10003, 10004], '100").
10001is the numeric ID of theourse 10000is the numeric
ID of the parent and the following list contains the IDs of
the coursés children. They belong to aameclause, ayear
clause and atudentslause, thus allowing navigation from the
courseto its children (downwards) and also from theurse
to its parent (upwards).

B. Translation of XMl files

All topics about modeling XML in Prolog are aimed at
a greater purpose. XML is the best file format to exchange
information between application and thus it comes as no
surprise that UML modeling tools use XML as a suitable way
to share data. For that, a special XML dialect was introduced
by the Object Management Group, called XMI. XMl is still
XML, but its main purpose is as an interchange format for
UML models. All major UML modeling tools have the option
of exporting UML models to XMI. The XML to Prolog
translator comes then as a first step in a greater procesgiof lo
based analysis of UML models, which is the whole purpose
of the approach we present here.

An exhaustive presentation of XMl is beyond the scope of
this article. However, for clarity purposes we should pnése
small excerpt from an XMI file and the details of translating
XMl to Prolog. Although XMl is still XML and translation of
XML to Prolog was covered in the previous subsection, there
are a few issues that have to be treated with special attentio
when dealing with XMl files.

Figure 8 depicts a simple class diagram with 4 classes, mod-
eled in ArgoUML ([arg]):ShapeLine, Circle andSquare with
Shapebeing the superclass and the others being subclasses.

Figure 9 presents a small excerpt from the XMI document
exported from the class diagram in figure 8. The excerpt
displays only the XMI content regarding classesapeand
Circle and the inheritance relation between them.

Figure 9 shows several interesting aspects:

and they will be linked by numeric identifiers according to « XML tag names have the common prefldML:” . There
the XML hierarchy. If an XML tag has arguments, they will are 2 problems with this prefix that prevent a naive

be added as further arguments in the corresponding Prolog
clauses. The Prolog output is presented in figure 7.

Since the XML to Prolog translator is custom-built and
not a particular case of a generic translator (like ProGen),
we decided to add bidirectional navigation in Prolog. Tlsis i
not available in normal ProGen output, where only navigatio

Prolog translation to be valid: first, it starts with a capita
letter and second, it contains a colon — thus, the Prolog
translator should be instructed to convert all letters te-lo
ercase and replace all non-letter and non-digit characters
with an underscore character:.’ According to this rule,
UML:Classwill be translated in Prolog asml_class

</ UML: Model >

Shape According to these aspects, the general translation dhgori
is sketched below:

computeArea() : double

T 1) The XMI tree is visited in preorder and each node

receives a unigue numeric ID - the uniqueness could be
achieved by incrementing a variable after it is assigned

Line Circle Square to the current node, for example
o bl bl 2) During the same visit, each node receives a suitable
;gfggﬁg:g radius : double length : double name, as mentioned earlier, by converting the original
. computeArea() : double computeArea() : double H
computeATea) - double name of the node to lowercase and replacing unwanted

characters with the ’ character
3) The XMI tree is visited the second time in preorder

Fig. 8. A sample class diagram ;
and each XMI node will generate a Prolog clause, as

<UML: Mbdel xnmi.id="B36" name="d assDi agrani > specified in subsection IlI-A.
<UML: Ol ass xmi.id=" CDE name=' Shape’ visibility="public'> 4) The_name of the Prolog clause is the suitable name
o received at step 2)
</ UML.: O ass> . . .
5) The first parameter of the Prolog clause is the numeric
<UML: O ass xni.id='CEL’ name="Circle’ visibility="public’> ID of the XMI node received during step 1), unless the
<UML: Attribute ...> ... </UM.:Attribute>
<UML: Qperation ...> ... </UM.:peration> XMI node has anxmi.id argument, in which case the
</UM: Ol ass> value of this argument is used as the first argument of
<UM.: General i zation xmi .id=" CEB > the Prolog clause. If the XMI node has ami.idref
o _ argument, then the same rule applies but furthermore,
<UML: General i zati on. chi | d> . .
UM O ass xmi . idrefz CEL' /> the name of the Prolog clause is appended with tieé
</ UML: General i zati on. chi | d> suffix
<UML: Gener al i zat i on. par ent > 6) The second parameter of the Prolog clause is the nu-
<UM.: Ol ass xmi . idref="CDE /> meric ID of the parent of the XMI node, with the same

</ UML: Gener al i zat i on. par ent > .
exception as above

</ UML: Gener al i zat i on> 7) The third parameter of the Prolog clause is the list of
numeric IDs of the children of the XMI node, with the
same exception as above

8) The next parameters of the Prolog clause are the rest of
the arguments of the XMI node

According the the previous algorithm, the Prolog tranelati
of the XMI excerpt in figure 9 is presented in figure 10.

« Some of the XMI entities have their own unique ID

Fig. 9. An XMI excerpt

.. . um _nodel (' B36’, -1, ['CDE', 'CE1l’, 'CEB'], 'ClassDiagrani).
called xmi.id and represented as a string valieFor ym “ciass(' coe . 'B36’, [..], 'Shape’. 'public').
example, theUML:Model entity has an associated IDun _class(’ CELl', "B36', [...], "Crcle’, "public’).

'B36". There are other XMI entities that don’t haverm :322‘;:2::izi:gﬂfcﬁﬁ%(m?gg&3000[2‘;’0]1}’

personal IDs, likeXMI:Generalization.childfor instance. um _cl ass_t fef(;cEl' ; 100?0,10%)1- S

It is not recommended to ignore these already generatfi-nes ref ¢ oot 10005 (1) eED.

IDs because all the relations between XMI entities are

described using them (take, for example, the inheritance Fig. 10. The Prolog model (XMI)
relationship betweeshapeand Circle). As a result, the

Prolog translator will be configured to be aware of these

IDs IV. BENEFITS. ANALYSIS OF UML M ODELS

« Some XM entltles. have an<_m|.|dref argumept. Fgr . Once the XMl translation in Prolog is achieved, we can use
e_xample, when def|_n_|ng the inheritance r_elat|on_sh|p Yhe Prolog model to perform a few analyses on the initial UML
figure 9, the tWO_ entities that are part of th|s_ relatlOnSh'deel that generated the XMI representation. For example, i
are.referred using thQJML:Cle?SS tag, but instead of easy to detect long inheritance chains in Prolog since an
having anxmi.id a“-?l”mem (which WOl_Jl.d have meant 3nheritance chain is composed of sevenahl generalization
new class declaration), they hgve xmi.idref argument clauses linked one after another by means of their IDs.
(Wh.'Ch means that the respective <':Ias.,s has already bee{¬her easy-to-do analysis is the detection of large elss
defined earlier and the current entity is only a referen%ich is presented as a bad smell in [Fow00]. Class content is
to that class) available in XMI, but figure 9 failed at showing it because of

1The actual string values for the XMI IDs are much longer thah&acters, SPaCe limitations. However, method and attribute inforamat

but we truncated them to the last 3 characters because of $ipatations for classes is available insid#ML:Classtags and can serve to

detect either classes that have a large amount of methods (go
classes) and very few attributes or classes that have a large
amount of attributes (data classes) and very few methods tha
are not setters and getters. These amounts can be computed
either as absolute values, or relative to each other.

Still, it is not our intention to describe UML model analysis
using Prolog in this article. This subject will be treated in
greater detail in a future paper.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a solution to perform
analysis on UML models. As a first step, we have observed
that UML modeling tools use XML as a standardized way
of sharing information. Next, we used our general purpose
translator called ProGen to obtain a Prolog representétion
XML input. Since the Prolog representation we obtained was
not quite satisfactory for reasons we have already predémte
the paper, we have modified ProGen to produce a more suitable
output on XML input files. Thus, we believe the translator wil
be ready to perform on XMl files, an XML interchange format
for UML models.

The XML to Prolog translator is already under development.
As future work, we plan to finish the direct translation and
start working on a correspondent Prolog to XML convertor.
In the mean time, we also plan to implement as many model
analyses as possible and assess their accuracy on large scal
models.

REFERENCES

[arg] Argouml. http://argouml.tigris.org.

[Ciu99] Oliver Ciupke. Automatic detection of design prabkein object-
oriented reengineering. Broceedings of the Technology of Object-
Oriented Languages and SystertSEE Computer Society, 1999.

[CIMO08] Ciprian-Bogdan Chird, Calin Jebelean, and Ancadduta. Towards
automatic generation and regeneration of logic representéor
object-oriented programming languages. Pnoceedings of the
International Conference on Technical Informatitsniversity Po-
litehnica Timisoara, 2008.

[ebn] The ISO/IEC 14977:1996(e) standard.

[Fow00] Martin Fowler.Refactoring: Improving the design of existing code
Addison-Wesley, 2000.

[JCMO08] Calin Jebelean, Ciprian-Bogdan Chajland Anca Mduta. Gen-
erating logic based representations for programsProceedings
of the 2008 IEEE 4th International Conference on Intelligen
Computer Communication and Processim@ges 145-151, Cluj-
Napoca, Romania, 2008.

[Jeb04] @lin Jebelean. Automatic detection of missing abstracofgct
design pattern in object-oriented code. Rroceedings of the
International Conference on Technical InformaticBolitehnica
University in Timisoara, 2004.

[JLB02] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. Aonmated
refactoring approach to design pattern-based progransfoiana-
tions in Java programs. IfProceedings of the 9th Asia-Pacific
Software Engineering Conferenc2002.

[Mar04] Radu Marinescu. Detection strategies: metricetarules for
detecting design flaws. IRroceedings of the 20th IEEE Interna-
tional Conference on Software Maintenanpages 350-359. IEEE
Computer Society, 2004.

[SSLO1] Frank Simon, Frank Steinbruckner, and Claus LewiereMetrics
based refactoring. IfProceedings of the Conference on Software
Maintainance and Reengineeringages 30 — 38, 2001.

[TMO3] Tom Tourwé and Tom Mens. Identifying refactoring opportunities
using logic meta programming. Proceedings of the 7th European
Conference on Software Maintainance and Reenginegpages
91-100. IEEE Computer Society, 2003.

