
Language-Independent Generation of Logic Representations for

Programs
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Abstract: Logic representation is a strong foundation for program analysis and transformation. Obtaining meta-

model conforming logic representation for programs written in general purpose programming languages requires

a generic methodology. The declaration of a logic metamodel using generic AST node data access expressions

facilitates automatic generation of logic representation without requiring knowledge of advanced program trans-

formation tools.
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1 Introduction

A logic representation for a program is a suitable way

of dealing with the inherent complexity of certain

problems like program analysis and program transfor-

mation. It is generally accepted that declarative lan-

guages are more expressive than imperative languages

in this regard. Figure 1 shows this approach:
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Figure 1: Logic Based Approach

In [6] the authors present a tool called JTrans-

former which is capable of transforming Java pro-

grams into Prolog facts. All Java entities are mod-

eled in Prolog and navigation means are also provided.

Thus, one can access in Prolog all the packages of

the Java project, for each package a list of classes

can easily be obtained, each class provides access to

information about its attributes and methods, and so

on. By using the inference power of Prolog it is easy

to analyze the original Java code or even modify the

logic facts such as to add or delete a class, add or

delete a method, or even correct some of the problems

found by the analysis step that we have mentioned be-

fore. Currently, programming language logic repre-

sentation was succesfully used for design antipattern

detection ([4]) and in the implementation of a reverse

inheritance class reuse mechanism for Eiffel ([10]).

[5] is inspired from the previously mentioned

work and shows how simple representations in Pro-

log can be obtained for programs written in any lan-

guage. Using the grammar for the target language,

a collection of Prolog facts is generated by follow-

ing the structure of the abstract syntax tree (AST) of

the program. Each father-son relation in the AST is

modeled as a fact in Prolog. The representation is not

quite useful for analysis and transformation because

it is much too close to the grammar of the target lan-

guage and does not provide easy access to relations

between program entities. For example, obtaining at-

tribute or method information for a given class (if the

target language is an object-oriented one) is not an

easy task. Since the approach in [5] is a language in-

dependent one (this means the target language can be

any language), such a desiderate would be quite am-

bitious, because the grammar only provides syntactic

information about the language. Using only the lan-

guage grammar it is hardly possible even to detect if

the respective language is object-oriented.



In this paper we are going to combine the two

approaches presented before. Namely, we will show

how JTransformer-like output can be obtained for pro-

grams written in any language.

The paper is structured as follows: section 2

presents the logic based representation of programs,

section 3 describes the language independent pro-

gram translator, section 4 walks through the proposed

methodology using examples, section 5 studies related

works and section 6 concludes and sets perspectives.

2 Logic-Based Representation of

Programs

Logic based representation of programs is all about

writing Prolog facts that encapsulate in one form or

another all the information available in the original

program. Logic facts are linked to one another by

means of their unique integer identifiers, creating a

hierarchical structure much like a generalized tree.

Later we will show that this generalized tree is, in

fact, similar to the abstract syntax tree of the program.

There should be one root fact which points to its chil-

dren by specifying a list of their identifiers, while its

children all point to the root fact also by linking to its

identifier. This idea is preserved at all levels. A logic

fact will then look like this (first three parameters of

each fact are only for identification and navigation):

factName(<id>, <pid>, <cids>, <argument> ...).

where:

• <id> is the integer identifier of the current fact

• <pid> is the integer identifier of the current

fact’s parent

• <cids> is a list of integer identifiers of the cur-

rent fact’s children

• <argument> is the first argument of the current

fact and can be followed by others

For exemplification we present the Java code in

figure 2:

class Rectangle {

private double width;

private double height;

public double area() {

}

}

Figure 2: Sample Code

Representing such a program in Prolog using the

elements introduced earlier is straightforward. The

root fact will define the class, while child facts will

deal with attributes and methods. Each of these childs

will have childs of its own that further describe child-

related aspects, like type information and access mod-

ifiers for fields and methods, for example.

classDef(100, 0, [101, 104, 107], ’Rectangle’).

fieldDef(101, 100, [102, 103], ’width’).

accessDef(102, 101, [], ’private’).

typeDef(103, 101, [], ’double’).

fieldDef(104, 100, [105, 106], ’height’).

accessDef(105, 104, [], ’private’).

typeDef(106, 104, [], ’double’).

methodDef(107, 100, [108, 109], ’area’).

accessDef(108, 107, [], ’public’).

typeDef(109, 107, [], ’double’).

Figure 3: Sample Logic Representation

The logic representation is quite expressive and

easy to use. The class definition (id 100) offers quick

access to class members (ids 101, 104 and 107) which

turn out to be two fields and a method. Each of them

offers quick access to information such as the access

modifier and the type.

3 Language Independent Logic Gen-

eration

The current limitation is that Prolog output like the

one in figure 3 can only be obtained for specific

languages, by manually writing suitable translators

aimed at those respective languages. Such a Pro-

log transformation engine is JTransformer ([6]) which

only deals with Java programs. This article introduces

and describes a new methodology which we intend to

implement in a tool called ProGen aimed at perform-

ing language-independent generation of logic facts for

programs. In order to be able to generate such logic

facts for programs written in any language, our new

methodology should be based on two things:

• the grammar of the respective language – a cru-

cial artifact, since it is the only one that can pro-

vide information about language elements and

how they relate to each other;

• a set of mapping rules attached to each grammar

production that specify what needs to be done at

each point.

[5] presents a naive version of such a methodol-

ogy. It is language-independent but it is also naive

because it only uses the grammar for generating

logic facts, without the previously mentioned map-

ping rules. Thus, the output only contains instances of

father-son relations directly extracted from the gram-

mar. The main problem is that high-level relations



between program elements are very difficult to grasp

from the Prolog output unless they are directly con-

tained in the grammar. However, the fact that a class in

an object-oriented language contains fields and meth-

ods is not something directly specified in the gram-

mar, but rather deductible by following a number of

grammar rules. Such high-level relations between

program entities must be specified by some kind of

annotations which should accompany the language

grammar. Basically, the resulting Prolog model must

be an instance of a metamodel that should specify in

detail how program items are related to each other.

This is what the mapping rules introduced earlier ac-

tually are. The approach augments the one in figure

1 with the grammar and metamodel mapping rules,

as described earlier and is presented in figure 4. The

grammar and the metamodel mapping rules are used

together with JavaCC ([8]) to generate a special parser

for programs written in a language that conforms to

the grammar. Replacing the grammar and the meta-

model mapping rules will lead to the same methodol-

ogy being applied to another programming language.
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Figure 4: ProGen Approach

The parser in figure 4 can be generated by using

the language grammar (which is available, as men-

tioned) and JavaCC which is a parser generator that

generates parsers written in Java. The fact generation

behavior can be attached to the parser by using a Visi-

tor design pattern ([2]) which is instructed to generate

Prolog facts in every AST node it visits. The instruc-

tions for fact generation are the mapping rules in fig-

ure 4.

4 A Methodology Walkthrough

In this section we will show how things work by pre-

senting a comprehensive example which will include a

simple grammar and a simple set of mapping rules for

that grammar. The target language will be Eiffel ([7])

but the approach is language-independent anyway.

4.1 Grammar Rules

Our working grammar is presented in figure 5. It de-

scribes a simplified version of the syntax of class and

feature declarations in Eiffel (note that in Eiffel, both

fields and methods are referred to as features):

ClassDecl ::= [ "deferred" ] "class" <id> ( FeatureBlock )* "end"

FeatureBlock ::= "feature" ( FeatureDecl )*
FeatureDecl ::= <id> [ "(" FormalArgumentList ")" ]

[":" <id>] [ FeatureBody ]

FormalArgumentList ::= FormalArgument ( ";" FormalArgument )*
FormalArgument ::= <id> ":" <id>

FeatureBody ::= ...

Figure 5: Eiffel Grammar Excerpt

We will ignore everything under FeatureBody

(the body of features) because of space limitations.

4.2 JavaCC Library Extension

As mentioned earlier, the mapping rules which will

be the subject of the next subsection will use generic

AST node data access expressions. Specifically, they

will use concepts like: the identifier of an AST node,

the n-th direct descendant of an AST node, the parent

of an AST node, the next sibling of an AST node, etc.

JavaCC provides access to some of this data, but not

for all. Moreover, JavaCC treats lexical tokens sepa-

rately from AST nodes. Lexical tokens are instances

of class Token, while AST nodes are objects of de-

scendant types of class SimpleNode. By default, there

is no relation between class Token and SimpleNode in

the library, but JavaCC provides means to set ances-

tor for these classes. We decided that it was easier to

unify the two concepts by making them inherit from

the same superclass, called Entity. The new library

(original library plus extensions) is presented in fig-

ure 6:

Entity

+progenID: Integer

+getProgenID(): Integer

+setProgenID(Integer)

Token

+image: String

+next: Token

ProgenNode

+getParent(): Entity

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

+getPreviousSibling(String): Entity

SimpleNode

+jjtGetParent(): Node

+jjtGetChild(int): Node

+jjtGetNumChildren(): int

Production

+entities: ArrayList<Entity>

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

+getPreviousSibling(String): Entity

ASTClassDecl ASTFeatureBlock ASTFeatureDecl ...

Figure 6: JavaCC Library Extension

Figure 7 shows the library at work on a simple

example:
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Figure 7: JavaCC Node Navigation Methods

Methods having ”jjt” as prefix are methods al-

ready supplied by JavaCC. These methods have some

annoying limitations. For example, methods jjt-

GetChild provides access to a child of a SimpleNode

given by its index among the children. However, only

children of type SimpleNode are counted and if there

are also children of type Token, they are disregarded.

We needed a method that would treat Tokens and Sim-

pleNodes in a unified manner, that’s why we intro-

duced a new version of this method called getChild.

Also, we needed some methods to obtain the next or

the previous sibling of a given child. These methods

are called getNextSibling() and getPreviousSibling().

4.3 Mapping Rules

The set of mapping rules defines the structure of the

desired metamodel by using expressions built with

node operations from the JavaCC extended library de-

scribed earlier. Mapping rules are divided into two

categories: rules that specify what Prolog code does

an AST node generate and rules that specify what

value does an AST node return to be used by the an-

cestors of that node.

4.3.1 FormalArgument Mapping Rule

The first example considers the grammar rule which

defines a FormalArgument:

FormalArgument ::= <id> ":" <id>

From the syntactic point of view, a formal argu-

ment definition is a sequence of 3 atoms: an identi-

fier, a colon and another identifier. From a semantic

point of view, the first identifier is the name of the ar-

gument and the second identifier is its type. A meta-

model builder who has access to language semantics

would know that.

The Prolog facts that would express the same

thing would be:

formalArgument(#ID, #ParentID, ’name’, ’type’).

To achieve that, we should use the mapping rule

in figure 8:

FormalArgument generate

formalArgument(

node.getProgenID(),

node.getParent().getProgenID(),

"’" + node.getPreviousSibling(":") + "’",

"’" + node.getNextSibling(":") + "’"

).

Figure 8: FormalArgument Mapping Rule

The mapping rule specifies that a FormalArgu-

ment node must generate a formalArgument Prolog

fact with 4 parameters: the first one is the ProGen

identifier of the node, the second one is the ProGen

identifier of the node’s parent, the third one is the pre-

vious sibling of the atom ”:” enclosed in simple quotes

and the fourth one is the next sibling of the atom ”:”

also enclosed in simple quotes.

Now this textual rule must be systematically tran-

sformed in a Java visitor method which will be part of

the generated parser in figure 4. The systematic trans-

formation is necessary because the mapping rules will

be processed automatically and the Java code (visitor

and helper methods) will be generated automatically.

public Object visit(ASTFormalArgument node, Object data) {

System.out.println(

"formalArgument" + "(" +

node.getProgenID() + "," +

node.getProgenParent().getProgenID()+ "," +

"’" + node.getPreviousSibling(":") + "’" +

"’" + node.getNextSibling(":") + "’" + ")."

);

data = node.childrenAccept(this, data);

return data;

}

Figure 9: FormalArgument Visitor Method

A parser that uses a Visitor that calls the method

in figure 9 when dealing with an ASTFormalArgu-

ment node will generate a Prolog fact according with

4 parameters, as needed. It is easy to observe that

the mapping rule in figure 8 can easily be transformed

in the Java method from figure 9, all the expressions

used to describe parameters should just be ”copied

and pasted” in the output Java code in the suitable

places. This is one of the most important advantages

of the approach we present here. Each mapping rule

use a simple syntax that is already compatible with

the Java compiler and its integration in a larger Java

project (like a parser generator) can be easily auto-

mated.



4.3.2 FormalArgumentList Mapping Rule

The FormalArgumentList grammar rule is chosen as

the second example because it will give us the chance

to explain the second type of mapping rules: rules that

specify return values for AST nodes.

FormalArgumentList ::= FormalArgument ( ";" FormalArgument )*

The Prolog facts that would express the same

thing would be:

formalArgumentsList(#ID, #ParentID,

[#FormalArgument1ID, #FormalArgument2ID, ...]).

Normally, since a FormalArgumentList contains

a number of formal arguments, it could be required to

generate a list of IDs of those formal arguments. For

that purpose, we will have a mapping rule that defines

what value should an ASTFormalArgumentList node

return and another mapping rule that defines what Pro-

log code should an ASTFormalArgumentList gener-

ate.

FormalArgumentList return list(FormalArgument)

FormalArgumentList generate

formalArgumentList(

node.getProgenID(),

node.getParent().getProgenID(),

node

).

Figure 10: FormalArgumentList Mapping Rules

The generated Prolog fact will have 3 arguments:

the ProGen identifier of the node, the ProGen iden-

tifier of the node’s parent and the value of the node

itself. This node value is specified by the other map-

ping rule. The value of an ASTFormalArgumentList

node is a list of all ASTFormalArgument nodes that

descend from it. These mapping rules will be trans-

lated into 2 Java methods. The rule containing the

”generate” clause will be translated in the same man-

ner like in the previous example, but for the rule con-

taining the ”return” clause we will use a special type

of translation. The Java output is visible in figure 11:

Again, the Java code can be obtained mechani-

cally from the mapping rules and can be the subject of

automatic generation.

5 Related Works

In this section we will focus on the most representative

and similar program transformation works related to

our proposed methodology.

Stratego/XT [1] is a framework for implement-

ing software transformation systems. Stratego is a

language for software transformation based on the

public Object visit(ASTFormalArgumentList node, Object data) {

System.out.println(

"formalArgumentList" + "(" +

node.getProgenID() + "," +

node.getProgenParent().getProgenID() + "," +

computeReturnValue(node) + ")."

);

data = node.childrenAccept(this, data);

return data;

}

public String computeReturnValue(ASTFormalArgumentList node) {

String szValue = "[";

for(int i = 0; i < node.jjtGetNumChildren(); i++) {

ProgenNode pgNode=(ProgenNode)node.jjtGetChild(i);

if (pgNode instanceof ASTFormalArgument)

szValue += pgNode.getProgenID() + ",";

}

// cutting the trailing comma

if(szValue.length() > 1)

szValue = szValue.substring(0, szValue.length() - 1);

szValue += "]";

return szValue;

}

Figure 11: FormalArgumentList Visitor Methods

paradigm of rewriting strategies. Basic transforma-

tions are defined using conditional term rewrite rules.

These are combined into transformations by means

of strategies, which control the application of rules.

The approach is based also on Syntax Definition For-

malisms (SDF) and Annotated Terms (ATerm) which

is an abstract data type designed for the exchange of

tree-like data structures between distributed applica-

tions. Our approach is much simpler, it relies on:

metamodel design, basic Java knowledge and a few

JavaCC API node data access methods.

EMFText [3] is an Eclipse plug-in that allows the

definition of language syntax described by an Ecore

model. It is designed for textual representation of Do-

main Specific Languages (DSL). Our work has the

same goal of creating models from text. Our mod-

els are represented by Prolog facts, while EMFText

models are of Ecore based. The EMFText approach

works in both ways: text to model (by a parser) and

model to text (by a printer), while our methodology

is oriented from text to logic model. Both approaches

are based on parser generators ANTLR, respectively

JavaCC, which are limited to a subset of context-free

grammars.

Kermeta-Sintaks [9] is a tool which defines

bridges between concrete (textual files) and abstract

syntax (models). The bridge is a Sintaks model used

to parse a text in order to get the corresponding model

(conforming to a metamodel) and to explore a model

for printing in into textual representation. Our map-

ping rules are similar to the text to model transfor-

mation. Both approaches generate metamodel driven

models one based on Ecore and the other on Prolog.

Other program transformation tools and langua-

ges offer specific methodologies for language engi-

neers like: Fermat - industrial strength program trans-

formation system based on WSL language; Design

Maintenance System (DMS) - set of industrial tools



for complex source program analysis and transforma-

tion; Monticore - framework for the design and pro-

cessing DLS, etc.

6 Conclusions and Perspectives

In this paper we show how a program can be trans-

lated into logic representation conforming to a desired

metamodel by using a grammar aware approach. The

source code was parsed by a JavaCC grammar gener-

ated parser that produces the AST of the code. The

logic model is obtained by collecting data from the

AST following the metamodel rules. To help access-

ing data from the AST we configured and extended

the Java AST nodes with special methods.

Our approach is simple and pragmatic having the

determined goal of generating logic representation for

object-oriented programming languages. One of the

main advantages of this approach is that mapping

rules are written in a language that conforms to the

Java syntax and even make use of the JavaCC ex-

tended library that we implemented. Thus, there is no

need to parse the expressions used to specify mapping

rules. The automatic generator can copy and paste

them in the output Java code and possible errors will

be discovered by the Java compiler itself upon compi-

lation of the generated Java sources.

The approach was experimented with success on

an industrial strength language, namely Eiffel. The

complexity of the Eiffel grammar prevented us from

describing the whole process, we only managed to of-

fer a simple idea about the methodology being used.

As perspectives, we plan to implement the auto-

matic generator of semantic actions in a visitor of the

abstract syntax tree. We also plan to provide mapping

rules for other general purpose programming langua-

ges like C++, Java, C#. Another useful feature would

be to be able to automatically regenerate the target

program from Prolog facts. That way, the full path

presented in figure 4 is complete.
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