
A Dialog Based Game Component for a

Competencies Based E-Learning Framework

Ciprian-Bogdan Chirila∗

∗University Politehnica of Timişoara, Romania

Faculty of Automation and Computer Science

E-mail: chirila@cs.upt.ro

Abstract—Traditional education systems are highly theoretical
and almost entirely based on student knowledge memorization.
Nowadays european society development is focused on practical
skills, globalization and competitiveness. Existing romanian e-
learning systems tend to present and explain knowledge in a
spectacular way using multimedia but none of them are based
on the concept of competence. The solution in this sense is a new
educational system which is based on competencies achieved in
real life scenarios.

I. INTRODUCTION

The current romanian educational system and some from

other european countries tend to be highly based on infor-

mation presentation, memorization and reproduction. Usually,

in the classroom, the teacher presents the information on

the white board expecting students to memorize it and then

reproduce it during their exams. In some romanian schools

e-learning systems [14] are used for this purpose. It is highly

possible that students are unable to use the memorized infor-

mation in their real life problems or in practical situations.

Sometimes hypothetical situations are imagined by teachers

in written or oral exam subjects which do not cope with real

life problems.

We consider that the concept of competence is a quality

participation of an individual in a real life situation. We

consider competence also the capability of an individual to be

able to use its acquired knowledge in order to solve or apply

it in a practical problem or in order to overcome a certain

situation [15].

In this paper we will present a dialog based game framework

which allows teachers to create real life situations scenarios

based on dialogs, images and student interaction in order

to train student competencies for different disciplines. The

framework is part of a complex e-learning system called ”The

Little Prince” inspired from the story with the same name

[3] written by Antoine Saint-Exupery french writer, poet and

pioneering aviator. We mention that our e-learning system has

a front-end further referred as the e-learning platform and a

back-end further referred as the e-learning content manager.

In figure 1 we can see the main blocks from of our compe-

tence based e-learning system: i) the dialog game file; ii) the

e-learning management system; iii) the e-learning platform;

iv) the database server; v) the dialog based game component.

The dialog game model is created and maintained by the

teacher according to an imagined scenario and a set of rules

Teacher

Palyer1 Player2

dialog

file

(real life

scenario)

internet

browser

internet

browser

database

engine

dialog based 

game

component

Little Prince e-learning system

edits
uses

training training

Fig. 1. The Dialog Based Game Framework

in order to train student competencies.

The e-learning management system is an online web ap-

plication designed only for teachers in order to offer them

support for loading and storing e-learning content, including

the dialog game files.

The e-learning platform is an online web application de-

signed for students where they can learn, train and evaluate

themselves. The e-learning platform is a pluggable framework

the dialog game based is a plugged in component.

Both web applications rely on a relational database engine

through which they communicate indirectly.

The dialog game based component is plugged into the e-

learning framework and thus it facilitates the interpretation of

dialog game files in web browsers for the training students to

play and train their competencies at the same time.

The paper is structured as follows. In section II we will

present some rationale for the concept of competence and our

competence based e-learning system. Section III presents our

competence based e-learning model. Section IV describes the

model of the dialog based game component. In section V we

present a few details of the component implementation written



in JavaScript. Section VI presents related works in the field of

e-learning systems. Section VII concludes and sets the future

work.

II. THE CONCEPT OF COMPETENCE

In order to understand the concept of competence we must

discuss the limits of the knowledge based learning. Nowadays

in the classic learning system the student is overwhelmed with

information in an unbalanced manner regarding his needs.

Thus, the knowledge gets a viral behavior in the moment it is

exploited at its real value.

Still some consider that the success of education is given by

the number of individuals who serve the purpose of knowledge

and not the mankind. The theories of knowledge are often

insufficient in order to perform a practical task. So we can

conclude that mankind is dominated by knowledge while it

should be vice-versa knowledge must serve the mankind.

The usage of the concept of competence in education

represents a revolution in this field. The purpose of education

changes and refers the student quality participation in a

supraindividual system. The competence gives us a power

based also on the native skills of the student. Knowledge

becomes a mean but not a goal and also a competence support.

The concept of competence takes into account this aspect.

The competence based ideas are part of a social constructivism

approach where the student is centered on both quality and

quantity coordinates. The approach is based on student high

attention and its authentic state, it opens the student for a

correct and free thinking [7].

On the other hand if we consider the objectives of transmit-

ting knowledge, the goal is set to how much the student knows

and thus he becomes an encyclopedic, unadapted being. Such

an approach is highly disrespectful for the student because the

only important thing here is what the system wants and not

what the student needs. The student is ”doped” with someone

else ideas hoping that someday they will be useful. The actual

approach is based on transmitting information by the teacher

behind its desk. This approach is based on the lower state

based preoccupation. The student becomes the prisoner of the

solutions that must be taken and reproduced.

III. THE COMPETENCE BASED E-LEARNING MODEL

The competence based e-learning model is based on a

hierarchy of the competencies. In a top-down presentation on

the first level we find the domains. The competence domains

are the followings: i) communication in native language; ii)

mathematical competencies; iii) communication in foreign

languages; iv) scientific and technological competencies; v)

learning how to learn competencies; vi) interpersonal relation

and civic competencies; vii) initiative and entrepreneurial

competencies; viii) cultural sensibility and artistic expression;

ix) self-realization competencies. On the next level, compe-

tence domains are divided into general competencies. Further,

general competencies are divided into specific competencies.

Specific competencies are divided into competence variables.

Finally, competence variables have actions attached grouped

in lists. Action lists are grouped in activities, while activities

are grouped in activity lists. Each action list is dedicated to

one competence variable. Each activity from an activity list is

dedicated to one specific competence.

IV. THE DIALOG GAME COMPONENT MODEL

In this section we will present the core of the dialog based

game framework model.

A. Rules and Structure

The dialog game is designed as an online conversation

between two students. The dialog game is teacher driven

because there are available only a few choices at each step for

students to choose. The students will choose their sentences

alternatively. One student can not choose two sentences in a

row.

The dialog is a set of predefined sentences used in real

life situations. The dialog game is written in XML format. In

the next subsections we will explain into details each dialog

game component. A dialog game contains: i) a role table; ii)

a symbol table; iii) a verification condition table; iv) dialog

sentences; v) semantical actions. In figure 2 we can see the

skeleton of such an XML dialog file.

<dialog>

<tabRoles>...</tabRoles>

<tabSymbols>...</tabSymbols>

<tabVariables nSpecificCompetenceId="...">

...

</tabVariables>

<tabVerificationConditions>

...

</tabVerificationConditions>

<tabSentences>...</tabSentences>

</dialog>

Fig. 2. Dialog Game XML Structure

B. Roles

A role is a set of behaviors, rights and obligation for an

actor in a social situation. The student becomes an actor when

he is playing the dialog game. Roles are stored in an XML

list element that we consider the role table and is named

<tabRoles>. Each role is defined in a <role> element. The

”szGradeSymbol” attribute is used for storing the name of a

symbol where the grades for that role is stored. We have to

remember that each role is assigned to a student. In figure 3

we have an example of two roles: buyer and seller created

for a shopping game scenario. In our released games we

<tabRoles>

<role szGradeSymbol="nSellerMark">

idSeller

</role>

<role szGradeSymbol="nBuyerMark">

idBuyer

</role>

</tabRoles>

Fig. 3. Role table



imagined several scenarios having roles like: seller and buyer

in a growsery store, in an exchange office, in an electronics

supermarket; mechanic and driver in a car service, mobile

phone operator and customer in a mobile phone company,

tailor and customer in a taylor shop etc.

C. Symbols

By symbols we denote JavaScript runtime variables active

during the dialog game played online by two students. The

values of the symbols may change during the game. The

symbols were designed for: i) printing their values in dialog

sentences; ii) reading a value from a dialog sentence and

storing it into the symbol; iii) evaluating verification conditions

in order to decide the correctness of the student statements.

Verification conditions will be presented in details in subsec-

tion IV-E. Variables add an increased expression and realism to

the dialog game. Since the games run in browsers on the client

side, each student will have its own version of variables but

the framework will synchronize them at different moments in

order to store the same values and make the game consistent.

In figure 4 we present an example of a symbol table for a

growsery shopping scenario in which we test the competence

of addition and multiplication in a real life situation.

<tabSymbols>

<symbol szName="nApplePrice" szType="int"

nMinValue="1" nMaxValue="8">3</symbol>

<symbol szName="nPearPrice" szType="int"

nMinValue="2" nMaxValue="10">4</symbol>

<symbol szName="nBananaPrice" szType="int"

nMinValue="3" nMaxValue="12">5</symbol>

<symbol szName="nAppleQuantity" szType="int"

nMinValue="1" nMaxValue="4">0</symbol>

<symbol szName="nPearQuantity" szType="int"

nMinValue="1" nMaxValue="4">0</symbol>

<symbol szName="nBananaQuantity" szType="int"

nMinValue="1" nMaxValue="4">0</symbol>

<symbol szName="nPrice" szType="int">

10

</symbol>

<symbol szName="nAmount" szType="int">

100

</symbol>

<symbol szName="nChange" szType="int">

90

</symbol>

</tabSymbols>

Fig. 4. Symbol table

Next, we will analyze the XML symbol element attributes.

The initial value of a symbol is stored into the body of

the <symbol> XML element. The initial value is interpreted

according to its declared type. For instance if the initial value

is 4 and the variable type is integer then the value will be

integer 4. If the variable type is string then the value will

be the string ”4”. If the variable type is float or double then

the value will be 4.0. We will get back to types later in this

subsection.

A very important issue about initialization is that it can

contain not only literal constants but also any arithmetical

expressions in order to increase the expression power of

the scenario. The goal is to generate random values for the

symbols but still respecting a semantic of properties imposed

by the scenario. The basic feature of the initialization is to

generate integer of float numbers in a given range. Another

feature of initialization is to control the number of decimals

for the generated values. For example, the quantity of salt in

a bread recipe must be in between certain limits in order to

create a realistic scenario and not just a hypothetical one.

The name of the symbol is set as an XML attribute named

”szName”. The name of the symbol is a simple identifier

beginning with a letter. For example the first symbol from

the table in figure 4 is named ”nApplePrice”. An unwritten

naming convention is used for the symbols: i) the first letter

denotes the type (n for integer numbers, f for floating point

numbers, sz for strings, tab for arrays); ii) the rest of the name

is spelled in proper case.

The type of a symbol can be: i) integer; ii) float; iii)

string; iv) array. Type declaration is mandatory since we store

all symbols as strings and when verifications conditions are

evaluated the symbol values must be converted to their typed

values. For example if we want to check that the initial

amount is equal with the payed amount plus the change

we would write the following condition v(”nAmount”) ==
v(”nPrice”) + v(”nChange”). Le us suppose that the value

of ”nAmount” symbol is 10 and the value of ”nPrice” symbol

is 7 and the ”nChange” is 3 then we need to operate with

values of type integer where 10 = 7+3. Not knowing the types

of the symbols the comparison would operate with strings

like in ””10” = ”7 + ”3”” where ”10” == ”37” which is

false. This is because the additive operator in JavaScript is

overloaded and because we must provide the correct typed

values of the variables. To be noted that in order to access the

value of a symbol one must use the v(”name”) function which

has as argument the symbols name. The ”v” or value function

is part of the dialog framework and it returns the correctly

typed value according to its declared type.

The range of a symbol is set by two XML attributes named

”nMinValue” and ”nMaxValue”. Obviously they work only

for numeric symbols and not for strings or array symbols. We

designed these attributes for two reasons: i) in order to be

able to perform range checking if the variables are written by

a student and read at input by the framework in some sentence;

ii) for generating random values in some points of the dialog

game in order to simulate an autopilot behavior when the

dialog is played by only one student and its discussion partner

is the computer, namely the framework.

D. Competence Variables

Competence variables were described briefly in section III.

This concept is also present in the context of the dialog

game. Since a dialog game is built around the idea of training

competencies we need to list and refer their identifiers for: i)

attaching them the corresponding verification conditions when

designing the dialog game; ii) reporting student performance

grades to the e-learning platform at the end of the dialog

game play. In figure 5 we listed the containing XML elements



<tabVariables>

<variable nId="0438"

nSpecificCompetenceId="227"

szName="v0438"/>

<variable nId="0439"

nSpecificCompetenceId="227"

szName="v0439"/>

</tabVariables>

Fig. 5. Competence variable table

<tabVariables> and <variable>. The former elements act as

a container and the former element models the competence

variable. A <variable> XML element has several attributes: i)

”nId” is the integer value of the competence variable identifier

from the e-learning system database; ii) ”nSpecificCompe-

tence” is the integer value of the specific competence identifier

from the same database; iii) ”szName” is a freely chosen

identifier at game design time to be referred by verification

conditions.

E. Verification Conditions

Verification conditions are the hearth of the competence

evaluation. They are boolean expressions respecting the syntax

of JavaScript language and containing value accesses to sym-

bols. Verification conditions are more suitable to check com-

petences from mathematics discipline than other disciplines.

For instance in order to check the addition and multiplication

competence one could design a dialog in a growsery store

where the buyer asks for a few kg of apples knowing their

price, hands out an amount to the seller and the seller must

give him the correct change. Such a verification condition can

be written with the symbols declared in symbol table listed in

figure 4:

v(”nAmount”) ==

v(”nApplePrice”)∗v(”nAppleQuantity”)+v(”nChange”)

This verification condition can be evaluated on the seller side

because he is the one writing the amount, but also on the

buyers side if he gives a correct or wrong change. Verification

conditions are listed in a table like in figure 6. In figure 6

we listed four verification conditions embedded in the XML

element named <tabVerificationConditions>: i) the first one

checks if the price computed for the bought fruits is correct; ii)

the second checks if the same price is computed incorrectly;

iii) the third verifies if the given change is correctly computed;

iv) the fourth verifies if the given change is incorrectly

computed. Actually, we have two verification conditions each

one has a negated version. The motivation for this duplication

is that in some sentences a correct answer may involve

recognizing partner mistakes. In such a situation the very same

but negated verification condition must be evaluated. One can

notice that verification conditions are expressed through XML

elements named <verificationCondition>. The first attribute

for a verification condition element is the ”name” which

denotes identifiers for later references. Verification conditions

will be referred from dialog sentences and the evaluation will

be detailed in subsection IV-F. The second attribute is named

”szVariableName” and its value points to a variables table

<tabVerificationConditions>

<verificationCondition name="vc1"

szVariableName="v0439">

v("nApplePrice")*v("nAppleQuantity")+

v("nPearPrice")*v("nPearQuantity")+

v("nBananaPrice")*v("nBananaQuantity")

==v("nPrice")

</verificationCondition>

<verificationCondition name="vc1n"

szVariableName="v0439">

v("nApplePrice")*v("nAppleQuantity")+

v("nPearPrice")*v("nPearQuantity")+

v("nBananaPrice")*v("nBananaQuantity")

!=v("nPrice")

</verificationCondition>

<verificationCondition name="vc2"

szVariableName="v0439">

v("nAmount")==v("nPrice")+v("nChange")

</verificationCondition>

<verificationCondition name="vc2n"

szVariableName="v0439">

v("nAmount")!=v("nPrice")+v("nChange")

</verificationCondition>

</tabVerificationConditions>

Fig. 6. Verification condition table

entry. This referring mechanism is used to link the competence

variable with the corresponding verification conditions.

F. Dialog Sentences and Variants

A sentence represents a grammatical unit formed out of

words which have a semantic relation with the words that

precede and follow it. The sentence is said by a student playing

a role in order to participate in a discussion. Sentences are

modeled by <sentence> XML elements which are grouped

in a table named <tabSentences>. Sentences are formed of

<variant> XML elements which represent several variants of

the same dialog semantics in order to be chosen at one point

in the discussion. The reason for having several variants in the

same sentence are: i) to allow selecting the variant that suits

better the role player state of mind or its nature, for example,

one player which is more polite will choose the variant from

the current sentence which expresses better this feature; ii) to

be able to choose a variant for changing the flow of the dialog

according to the choice made, for example, in a discussion at

some point one player may choose to buy apples and another

one to buy pears; iii) to be able to choose a correct variant in a

given context, which will be used for evaluation. For example,

a player who buys some fruits may have to choose from two

different variants expressing the correct and incorrect change

he has to receive. If he choses the right variant he will get a

good grade for the trained competence, otherwise he will get a

poor grade. If we look at the sentences from the technical point

of view we can notice that they are equipped with attributes

like: i) ”nState” - identifying the state in which the sentence

is played; ii) ”nRoleIdentifier” - referring the role to which

the sentence belongs to; iii) ”szImage” - referring a relative

image path to an image to be shown according to the context

of the sentence. The dialog is modeled as a state machine

where each sentence represents a state. The dialog starts at



state 0 and each variant drives a transition into a different

state. The last state of the automaton is set to be -1. When the

game component reaches the -1 state the game play is stopped.

Each sentence is designed to be played by a role player and

the next sentence will be player by the other role player. The

image is set in order to offer a visual representation of the

current state of the dialog according to past made choices. In

<tabSentences>

...

<sentence nState="0" szRoleId="idBuyer"

szImage="/img/01.jpg">

<variant id="41" nNextState="5">

Hello, how much cost the fruits ?

</variant>

<variant id="42" nNextState="5">

Hi, how much for the fruits ?

</variant>

</sentence>

...

</tabSentences>

Fig. 7. Sentence table

figure 7 we present an example of a sentence corresponding

to the first state in automaton, state 0. The sentence belongs

to the buyer role and the sentence refers one image which

depicts a buyer entering a growsery store and engaging in a

conversation with the seller.

G. Values and Fields

In order to favor diversity and to create interesting and

diverse dialog sentences and in order to get feedback from the

players we use in the sentence texts special XML elements

named values and fields. A <value> XML element will be

used to display the value of a symbol in the text of the

sentence. Thus, using symbols with random generated values

one dialog game played several times will always behave

differently and the correct answers can not be memorized

and reused illegally. A <field> XML element can be used

to generate a text field in the sentence so the student can enter

data when giving a reply in a dialog play. Fields are linked

to symbols together with their types and range such that an

invalid input will be detected, warned and not validated.

H. Semantical Actions

Semantical actions represent JavaScript code which is

to be run or evaluated and they are of three types: i)

<semanticAction> - is used when a new state is entered and

it is located inside a sentence; ii) <preSemanticAction> - is

run before the evaluation of a verification condition and it is

located inside a variant; iii) <postSemanticAction> - is run

after the evaluation of a verification condition and it is located

inside a variant. The main use for such semantical actions is

to set symbols to different computed values necessary in the

current context of the dialog. This usage is typical to state

semantical actions.

Pre-semantic actions are designed for reusing symbols and

preparing them with special values for the very next verifica-

tion condition.

Post-semnatic actions are designed for cleaning, reseting

symbols with specific values needed in the next states of the

dialog.

Semantical actions of any type can be also used for debug

purposes like printing in the browser console the value of some

symbols.

V. PROTOTYPE IMPLEMENTATION

The code of the prototype is written in JavaScript [4] and is

using the jQuery [11] library for HTML element manipulation.

The code was tested on browsers like: Mozilla FirefoxTM[6],

Google ChromeTM[9], Apple SafariTM[8], OperaTM[1]. From

the technical point of view the dialog game component: i)

manipulates div HTML elements; ii) fills them with texts

and images; iii) evaluates conditions and executes semantical

actions; iv) transfers texts and the symbol table from one

browser to another through a server-side chat protocol.

The chat protocol consists in a few calls: i)startGame(object)

is called by the server side when a new dialog game is

initiated; ii) stopGame(object) is called by the client in order

to notify the server side that the dialog game is over and

reports the player results; iii) sendMessage(object) is called

at each step of the game when the game control is handled

from one player to the other. The structure of the parameter

object is well structured. The object passed when starting the

game contains the player identifier, name and role identifier.

The object passed to the server side and the end of the game

contains the mark achieved by the player. The object passed

with the ”sendMessage” call contains the table of symbols and

the currently chosen sentence.

The integration of the dialog game component consists in

creating a zipped file with all the dependencies and uploading

it into the e-learning system. Such uploads should occur rarely

only when an upgrade is made to the dialog game component.

The integration of a dialog game file into the e-learning

system consists is uploading a zipped archive containing the

dialog XML file and the referred images in a predefined

directory structure.

For testing the dialog game component we used the FireBug

[5] plugin for Mozilla FirefoxTMwhere each step of the game

an all variables can be inspected. In order to favor more the

testing process we created an offline chat protocol for loading

both player game windows into the very same browser as

frames. The dialog game developer can test its game locally

without accessing the e-learning framework.

The most occurring errors were due to floating point arith-

metical expressions.

VI. RELATED WORKS

In [2] is presented an e-learning system embedding semantic

web technologies. One of the components are able to evaluate

open questions by semantic similarity measurements of the

student answer versus teacher answer. In our work the eval-

uation is done automatically but not using open questions.

The presented e-learning system results accuracy is based

on parameters while ours is exact, based on mathematical



expressions evaluation. AeL [13] is a romanian learning man-

agement system. The AeL e-learning system has media rich

online lessons which are based on curricula and practically on

knowledge while the Little Prince e-learning system has not

the same extent but is oriented on competencies. In [10] is

presented an engine for producing e-learning content based on

semantic metadata. Our work is similar in this sense the engine

is the dialog component and the metadata is the dialog file. In

cite [12] are presented challenges regarding the semantic web,

social software and technology agents in e-learning environ-

ments. Our work includes learning semantics, the framework

is a social software and the verification conditions related code

from the dialog component behave like a software agent.

VII. CONCLUSIONS AND FUTURE WORK

We conclude that we build a role playing game component

for an e-learning framework. Students participate as players

in driven dialogs this developing their competencies. Teachers

can express their dialog scenarios by writing simple XML

elements. The XML elements are filled with texts and images

and they are grouped as a directed graph of states. XML

elements embed mathematical expressions to be checked at

game play in order to assess players competencies.

A JSON implementation for the dialog file keeping the

same structure would eliminate the XML parsing stage, but

its syntax seems to be complex to the teachers writing the

scenarios.

The symbols used in the dialog texts as field or value

elements increase the degree of diversity and variability of the

scenarios. Thus, the same scenario can be played several times

with different values for symbols creating different situations

and demanding different answers.

The authors of scenarios may need a minimum knowledge

of programming skills but they do not have to be professional

software developers. Without such a dialog based game com-

ponent the scenario authors would have to write the same

JavaScript code from the component for each independent

game they would like to develop. Such a task can be performed

only by professional programmers only. Thus, the dialog based

game component offers the possibility to non-programmers

with a small programming knowledge to develop their own

dialog scenarios.

Using the dialog based game component the author can

focus on the scenario rather than on implementation details

like: HTML elements manipulation, dialog state transitions,

animations, chat protocols etc.

The XML structure contained in the game file offers a

certain semantics to the dialog game. In some situations new

additional semantics may be necessary and for that purpose

we designed the semantical actions at the level of symbol

initialization, sentence, pre- and post- verification conditions.

We can not say that it can cover any imagined semantics but

it can help to achieve it.

In the case of a dialog game play where one partner is lost

because of some connection errors or when a human partner is

not available online for a game play we can consider building

a software agent capable of playing instead of a human. For

such an agent to be consistent with the dialog scenario the

game file should contain formulas for computing the correct

answers not just formulas for checking the correctness of the

given answers. The agent can be configured to give correct

or bad answers deliberately in order to stimulate its human

partner.

ACKNOWLEDGMENTS

We would like to thank to all members of the Little Prince

project www.miculprint.eu developed under the POSDRU con-

tract number 85/1.1/S/64320 and namely to: Ioan Vlaşin the

general manager of the project, Andraş Sorin the software team

manager, Iulian Necea the head of the e-learning system devel-

opment team, Samuel Bogdan the graphic interface designer.

REFERENCES

[1] Opera Software ASA. Opera. https://www.opera.com, 2013.
[2] Dagoberto Castellanos-Nieves, Jesualdo Toms Fernndez-Breis, Rafael

Valencia-Garca, and Rodrigo Martnez-Bjar. A semantic web
technologies-based system for students assessment in e-learning envi-
ronments. In IADIS International Conference e-Learning 2007, 2007.

[3] Antoine de Saint-Exupery. The little prince, 1943.
[4] Mozilla Foundation. Java script. https://www.mozilla.org, 2011.
[5] Mozilla Foundation. Firebug. https://www.mozilla.org, 2013.
[6] Mozilla Foundation. Mozilla firefox. https://www.mozilla.org, 2013.
[7] Timothy W. Gallwey. The Inner Game of Work. Random House, New

York, 2000.
[8] Apple Inc. Safari. https://www.apple.com/safari, 2013.
[9] Google Inc. Google chrome. https://www.google.com/chrome, 2013.

[10] A.Seyedeh Sara Mousavi Jabbari and B.Seyed Ehsan Mousavi Jab-
bari. Semantic metadata in an engine producing e-learning content.
International Journal of e-Education, e-Business, e-Management and
e-Learning, 1(4), October 2011.

[11] The jQuery Foundation. jquery project. https://www.jquery.com, 2013.
[12] Bolanle A. Olaniran. Challenges facing the semantic web and social soft-

ware as communication technology agents in e-learning environments.
18 International Journal of Virtual and Personal Learning Environments,
1(4), October-December 2010.

[13] Siveco Romania. Advanced e-learning.
http://www.advancedelearning.com/.

[14] Marc J. Rosenberg. e-Learning: Strategies for Delivering Knowledge in
the Digital Age. McGraw-Hill, 2001.

[15] Ioan Vlaşin. Competenţa - O participare de calitate. Editura Unirea,
Alba Iulia, Romania, 2013.


