
Towards Auto-Generative Learning Objects for

Industrial IT Services

Felicia-Mirabela Costea∗

Ciprian-Bogdan Chirila∗

Vladimir-Ioan Creţu∗

∗University Politehnica of Timişoara, Romania

Department of Computers and Information Technology

E-mail: mirabela.costea@cs.upt.ro; chirila@cs.upt.ro; vcretu@cs.upt.ro

Abstract—In eastern Europe, in the last few years the IT ser-
vices industry has significantly grown due to the externalization
of IT operations from western Europe and America: production
plants, communications, satellites, etc. In this context the pressure
on the eastern IT services labor market has increased. IT services
companies employed students with no IT background and trained
them in their in house academies in order to respond fast to their
contractual obligations. The time frame to form IT operations
specialists is very narrow so they need to think of new strategies
to speedup their training. In this sense auto-generative learning
objects as the second generation of learning objects are a potential
solution since it allows autonomous learning anytime during
the day, when queuing, in the subway or during school or
job breaks. Learners are trained with automatically generated
dynamic content, get automatic evaluation of their responses and
receive dynamic feedback. Thus, they can exercise autonomously
different learning situations benefiting from automatic evaluation.

I. INTRODUCTION

In the current economical context the global Industry 4.0

trend is to automate as much as possible all processes, to

control production lines from remote using computers and to

exchange data in manufacturing technologies.

Mechanization

steam power

Mass

production

assembly line

Computers

and

automation

Cyber-

physical

systems

1st

2nd

3rd

4th

Fig. 1. Industrial Revolutions

In Figure 1 are reviewed briefly the main phases of the

industrial revolution. The first industrial revolution happened

with the advent of mechanization based on water and steam

power. The second industrial revolution happened when the

mass production begun using assembly lines and electricity.

The third industrial revolution was in the age of computers

and automation. The fourth industrial revolution is currently in

progress and it is based on cyber-physical systems, Internet of

things and cognitive computing. Several businesses outsources

their IT services to specialized departments from eastern

European countries. Well trained IT specialists are hard to

find on the labor market so companies use students and train

persons with non IT background just to fill in the qualified

human resource crisis.

The industrial equipments rely heavily on computers

grouped in clusters e.g. high availability clusters, which are

driven by several operating systems. Among these the Unix

and Linux based operating systems are very common so

we decided to focus on their learning. It is known that

Microsoft R© family operating systems are frequently used by

non-specialists and it is much easier to accommodate with their

server versions. Although Unix and Linux platforms graphical

user interfaces (GUIs) have been very well developed in the

last decade still have few users. An exception in this sense is

the use of Android operating system, which is based heavily

on Linux, on most of the mobile devices but the access is

limited to the GUI.

For example, the www.w3schools.com web site counted

in the month of December 2017 its browsers operating systems

and the results are:

• 76.6% Microsoft R© Windows (10, 8, 7, Vista, XP);

• 7.9% Mobile;

• 9.8% Mac;

• 5.5% Linux;

• 0.3% Chrome OS.

It is clear that autodidact learners of that website do not use

much Unix / Linux based operating systems in their everyday

life.

In this context a training technology for Unix learners

based on auto-generative learning objects (AGLO) is suitable

because of its features. AGLOs are reusable didactic patterns

that can be instantiated and are considered to be the second

generation learning objects [2]. Previous uses of AGLOs are in

middle school Arithmetic [6] and in data structures disciplines

[4], [5].

AGLOs can be instantiated any number of times given

always a new exercise of the same type. AGLOs are based on

random numbers so the exercise content is diverse. AGLOs

have automatic evaluation so they are suitable for autodidact

students.

The goal of this paper is to study the potential for AGLOs

to be used for learning Unix / Linux based operating systems.

For this study we propose the following strategy:

• to research Unix tests and materials that can be found in

technical documentations;

• to abstract the idea of each test item or concept and to

design an AGLO scenario;

• to implement the required functionality in JavaScript

support libraries;

• to generate the consumable learning object using the

AGLO online framework.

In academia the Unix / Linux operating system is studied

in the context of Operating Systems lectures. Usually such

lectures include a commands and shell-scripting section and

a systems call section where system calls are exercised in C

programs. In this paper we focus on the commands part which

is the most used in IT service businesses.

The paper is structured as follows. Section II presents

related works in the field of generative e-learning systems and

Unix / Linux online tutorials and quizzes. Section III presents

briefly the structure of AGLOs. Section IV presents ideas of

how AGLOs can be built for the learning objectives of Unix /

Linux operating systems. Section V presents a few examples

of AGLO implementations in the content of Unix commands.

Section VII concludes and sets the future work.

II. RELATED WORKS

Generative learning objects (GLOs) [2] are the second

generation learning objects consisting in reusable patterns that

can be filled with content according to learning objectives. The

content can be manually written or generated through meta-

programming.

In the vision of Damasevicius and Stuikys [3] GLOs are

generated by feature diagrams and meta-programming. They

experimented with GLOs on learning programing concepts

using Lego robots.

[4], [5], [6] target AGLOs towards different disciplines from

academia: data structures and algorithms, fraction arithmetic

for primary and secondary school students. They use meta-

models for the generation of content based on random numbers

and domain specific reusable libraries.

[10] presents in detail key concepts of Unix operating

system like: philosophy, history, modularity, textuality, mul-

tiprogramming, transparency, configuration, languages and

tools. Such textbooks stand as references to industrial training

materials in IT services.

[1], [9] are two RedHat R© student workbook volumes on

system administration that cover topics of community enter-

prise operating systems which are highly used in industry.

III. AGLOS IN A NUTSHELL

In [5] is presented the AGLO model. One of the advantages

of using this model is the variability given by the random

instantiation of input data.

Database

develops

reads

instantiates

defines

stores

reads

JS Libraries
loads

Student

Educator

IAGLO in

Internet

Browser

HTML in

Internet

Browser

AGLO

meta model

XML file

Fig. 2. The AGLO model

In Figure 2 we represented schematically the AGLO work-

flow. As you can see, the educator using a web browser and

accessible environments develops a meta model. This model

is saved in an XML file and stored in a database. Students

interact with concrete learning object instances through the

web browser. When an instance is created, meta-data is loaded

from the database and methods from domain specific JS

libraries are called.

The AGLO model has the following sections:

• name (line 02);

• scenario (lines 03-10);

• theory (line 11);

• question (line 12);

• answers (lines 14-16);

• feedbacks (lines 17-18).

Figure 3 presents this structure.

The six sections are composed of static text and also of

dynamic values.

The first section is the AGLOs name.

The second section is the scenario where the variables

are defined through JavaScript compatible expressions. Each

variable is defined by a name, a type and its initialization

expression. In this section there is also a brief description in

natural language of what the exercise does. All the expressions

use both predefined JavaScript functions and domain specific

user defined functions.

The third section presents the theory which should be

applied in the exercise, its content is made of static text only.

The fourth section consists of the question composed for

the student. The question is based on the variables defined in

the scenario, which makes it dynamic and attractive.

In the fifth section the student introduces the answer that is

automatically evaluated.

01 AGLODef ::= "<action>"
Name Scenario [Theory] Question Answers

Feedbacks "</action>"
02 Name ::= "<name>" (ID)* "</name>"
03 Scenario ::= "<scenario>"

[Comment] Symbol* "</scenario>"
04 Comment ::= (ID|CT)*
05 Symbol ::= "<symbol>" SymbolName Type

Expression "</symbol>"
06 SymbolName ::= "<name>" (ID)* "</name>"
07 Type ::= "<type>" ("integer"|"string"|"fraction")

"</type>"
08 Expression ::= "<expr>" Function

"(" ExpressionList ")" "</expr>"
09 Function ::= (element from functions and

operators of JavaScript using random numbers)
10 ExpressionList ::= Expression (, Expression)*
11 Theory ::= "<theory>" (ID)* "</theory>"
12 Question ::= "<question>"(ID| Value)*

"</question>"
13 Value ::= "<value>" "<name>" (ID)* "</name>"

"</value>"
14 Answers ::= "<answer>" (Answer)+ "</answer>"
15 Answer ::= "<answer>" "<id>" INTEGER_LITERAL

"</id>" (ID|Value)* Correctness "</answer>"
16 Correctness ::= "<correct>" ("true" |"false")

"</correct>"
17 Feedbacks ::= "<feedbacks>" (Feedback)

"</feedbacks>"
18 Feedback ::= "<feedback>" (ID)* "</feedback>"

Fig. 3. AGLO structure

The sixth and last section contains the exercise feedback

which is also a combination of dynamic and static values.

We chose to develop this model because it offers students

an interactive way of practicing and evaluating knowledge.

Exercises are based on random instances that offer variability

and diversity in the learning process.

IV. UNIX TECHNICAL DOCUMENTATION ANALYSIS

In this section we will synthesize the Unix topics that

were found in the learning materials used in IT services local

companies. We organized our AGLOs in modules.

A. AGLOs for Working with Directories

In the first module we designed three exercises that tests

commands for directories. These are useful to test the cre-

ation of directories or whole directory hierarchies. To build

a hierarchy of directories, we used both the -p option and

the top-down descending step by step method. Tree geometry

and directory names are randomly generated, so for each

instantiation the student has to create another hierarchy of

folders.

B. AGLOs for Working with Files

In the second module we created several exercises to test

the creation of a file and the population of an existing

hierarchy with files. The directory hierarchy and the file names

are randomly generated for the purpose of our exercises. In

addition to the file creation commands, we also implemented

other file commands. So we designed an AGLO to exercise the

permissions changing for accessing a file, and one to exercise

the mounting of a file system.

C. AGLOs for Working with Processes

In the third module we designed a few exercise ideas dealing

with processes. The first exercise tests how a process - which

displays data on the screen - is started in the background. In

the second exercise we test how current user processes can

be listed together with their extended information. In the next

exercises the students test how to kill a process, and how to

kill a process from the background. In the last exercise we test

how to bring a process in the foreground.

D. AGLOs for Working with Disk Partitions

In the fourth module we designed exercises that test the

creation of Linux ext3, ext4, swap partitions. The partition

sizes are randomly generated and the student exercises the

fdisk utility commands.

E. AGLOs for Working with Packages

In the fifth module we have exercises that relate to package

management commands. Here the students can test how to

install and uninstall program packages using apt-get and

yum commands.

F. AGLOs for Administrative Commands

In the sixth module we designed some exercises that tests

administrative Linux commands. In this module students can

test commands for:

• creating a user;

• deleting a user;

• adding a user to an existing group;

• removing a user from an existing group;

• changing a user’s password;

• getting information about a user.

These are simple atomic actions, not complicated to implement

and has the main utility of exercising commands which are im-

portant in industrial environment. For diversification purposes

the user names are generated using random values.

G. AGLOs for Networking

In the seventh module we have five AGLOs that exercise

basic networking commands. We have created the following

exercises:

• to find the user’s hardware address;

• to delete a hardware address;

• to configure a new software address with a netmask;

• to manually activate or deactivate a network interface

• add or delete a route connected via a network interface.

We developed exercises that have the purpose to test and

practice static commands, but also there are exercises that

have random variables. In these exercises the addresses and

the network interfaces are randomly generated so that each

instance is different.

V. CASE STUDY FOR WORKING WITH UNIX COMMANDS

In this section we will present a set of AGLOs dedicated to

exercising the mkdir Linux command.

The first AGLO for mkdir Linux command is trivial. In

its scenario the student is asked to write the command that

creates a folder with a given name. The student has to type

the mkdir Linux command followed by the folder name.

The second AGLO for mkdir Linux command exercises

it’s -p argument. The exercise implies the creation of full

directory chains from the relative root to each terminal node.

This exercise will be abstracted and designed as an AGLO

while presenting its implementation in detail.

The third AGLO for mkdir Linux command is used in

combination with the cd (change directory) command. The

exercise is about creating folders one by one, incrementally,

while visiting the directory hierarchy. This exercise has several

valid visiting paths depending on the order of the visited nodes,

thus making the automatic assessment challenging.

<scenario>
<text>...</text>
<symbol name="n" type="integer">random(5,8,0);
</symbol>
<symbol name="d" type="integer">random(2,3,0);
</symbol>
<symbol name="ft" type="FolferTree">
new FolderTree({"nNoOfNodes" : v("n")});
</symbol>
<symbol name="st" type="string">
v("ft").toString();
</symbol>
<symbol name="commmands" type="string">
v("ft").toPathsString();
</symbol>

</scenario>

Fig. 4. AGLO Scenario Example

In Figure 4 we present the AGLO scenario of our example.

The scenario builds randomly a folder tree and contains

symbols having the following semantics:

• n is the number of nodes or folders and is generated as

a random value between 5 and 8;

• d is the degree of the tree (the maximum number of

children a node may have) and is generated as a random

number between 2 and 3;

• ft is a reference to the root of the generated tree through

FoldersTree class instantiation with the previously

defined parameters;

• st is the string representation of the generated tree (see

Figure 5) to be displayed to the student;

• commands is a string containing the correct expected

answer (see Figure 6) computed by a library method

named toPathsString() from the FoldersTree class.

Figure 5 depicts the randomly generated tree. The genera-

tion is implemented in JavaScript [7] as a reusable function

that create node objects taking random names augmented with

two integer digits to avoid conflicts.

Figure 6 depicts the correct answer which is obtained by

concatenating the mkdir command with every path of the

Create the folder hierarchy from the next
figure using mkdir command and -p option.
Quebec12
*Sierra69
*Charlie81
**November83
***November77
***Lima9

Fig. 5. AGLO Generated Question Example

mkdir -p Quebec12/Sierra69/
mkdir -p Quebec12/Charlie81/November83/November77/
mkdir -p Quebec12/Charlie81/November83/Lima9/

Fig. 6. AGLO Answer Example

folder tree. In order to obtain all the paths the tree is visited

recursively from its root to each terminal node.

VI. PROTOTYPE IMPLEMENTATION

The AGLOs are instantiated on the online platform written

in JavaScript [7] and assisted by jQuery [8] library. The

platform contains several modules:

• user interface module;

• AGLO parser module;

• table of symbols;

• AGLO content generator module;

• domain specific module;

• result persistence module;

The user interface module presents the AGLOs to the user in

a competence tree. The AGLO parser module reads the XML

elements and creates a set of JavaScript objects in the memory

of the browser.

The table of symbols module stores all the symbols from

the AGLO scenario section and initializes them with their

expressions.

The content generator module generates the combination of

dynamic and static content in HTML format to be consumed

to the learner.

The domain specific module contains all the classes and

methods with specific domain semantic, in our example the

FoldersTree class with its toPathsString() method.

The result persistence module is in charge of evaluating the

learner’s response and for storing it in the database via AJAX

calls.

Figure 7 depicts the view of our prototype when running the

previous, thoroughly explained mkdir -p example instanti-

ated with different random data.

VII. CONCLUSIONS AND FUTURE WORK

We conclude that we accomplished an abstracting research

covering Unix / Linux concepts and topics used in industrial

IT services.

One Unix / Linux topic, namely the one about files, was

abstracted and compiled into an AGLO model example, which

was explained thoroughly. We consider directories to be spe-

cial files.

Fig. 7. Prototype Implementation

Most commands seem to perform simple atomic actions

which are easy to implement with AGLOs. The utility of such

related AGLOs are the exercising of command line arguments

of a very same command which is important in industrial

environments.

Other commands like the fdisk utility, which is interac-

tive, demands the generation of a complex partitions scenario

and can be exercised better separately for each micro com-

mands.

Some commands like ps, ifconfig do not have any

variability symbols for the input, but they output a complex

scenario where the random data (processes, network interface

configurations) must be carefully generated in order to be

realistic.

The Unix / Linux command tests seem to make use of the

feedback section from the AGLO model. Thus, the student can

see the output of his command.

We can also estimate that there is a large initial effort in

creating reusable library components, currently implemented

as JavaScript classes and methods, that mimic the Unix / Linux

commands features.

From the economical point of view, such an AGLO col-

lection could be interesting for companies and tertiary educa-

tional academic or non-academic systems that would like to

train technicians able to handle IT service development and

maintenance projects.

As future work we plan to extended the topics of AGLOs

in the area of cluster configurations, clouds for industrial

environments in order to get closer to realistic challenges.

On a long term perspective we intend to abstract domain

knowledge, to capture semantics in ontologies and to infer

automatically as much as possible corresponding AGLOs from

them.

Another perspective is to publish the student AGLO re-

sponses in a block chain distributed public ledger that uni-

versities and companies may use for human resources skills

and knowledge assessment.

REFERENCES

[1] Wander Boessenkool, Bruce Wolfe, Scott McBrien, George Hacker, and
Chen Chang. Red Hat System Administration II Student Workbook. 2014.

[2] Tom Boyle. The design and development of second generation learning
objects. In World Conference on Educational Multimedia, Hypermedia

& Telecommunications, Orlando, Florida, June 28 2006.
[3] Renata Burbaite, Kristina Bespalova, Robertas Damasevicius, and Vy-

tautas Stuikys. Context-aware generative learning objects for teaching
computer science. International Journal of Engineering Education,
30(4):929–936, 2014.

[4] Ciprian-Bogdan Chirila. Auto-generative learning objects for it disci-
plines. In Proceedings of the International Conference on Virtual Learn-

ing 2015, pages 1–6, Bucharest, Romania, October 2015. University of
Bucharest, Romania.

[5] Ciprian-Bogdan Chirila. Auto-generative learning objects in online
assessment of data structures disciplines. BRAIN - Broad Research in

Artificial Intelligence and Neuroscience, 8(1):24–34, April 2017.
[6] Felicia-Mirabela Costea, Ciprian-Bogdan Chirila, and Vladimir Creţu.

Auto-generative learning objects for middle school arithmetic. In
Proceedings of the 14-th International Scientific Conference eLearning

and Software for Education, pages 1–8, Bucharest, Romania, April 2018.
[7] ECMA International. Standard ecma-262 ecmascript

2016 language specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm, 2016.

[8] The jQuery Foundation. jquery project. https://www.jquery.com, 2018.
[9] Susan Lauber, Philip Sweany, Rudolf Kastl, and George Hacker. Red

Hat System Administration I Student Workbook. 2014.
[10] Eric Steven Raymond. The Art of Unix Programming. 2003.

