
Programming Concepts

in the Silver Code Guide for Elders

Oana-Sorina Lupşe∗

Ciprian-Bogdan Chirila∗∗

Horia Ciocârlie∗∗

∗University Politehnica of Timişoara, Romania

Department of Automation and Applied Informatics

E-mail: oana.lupse@aut.upt.ro
∗∗University Politehnica of Timişoara, Romania

Department of Computers and Information Technology

E-mail: chirila@cs.upt.ro; horia@cs.upt.ro

Abstract—In the context of our digital society the elders
are using less the new technologies. In order to encourage
their interaction with the electronic devices they need a better
understanding of the underlying mechanisms. To facilitate the
understanding of the digital world we propose the idea of
creating a dedicated community named Silver Code community.
The community will be built with people from seven European
countries around a set of didactic materials on programming
published on web site.

I. INTRODUCTION

The modern society we live in depends more and more on

technology in general and more specifically on digital tech-

nology. In this context elders have a disadvantaged position

because they did not grow up with gadgets and programs.

Involving them in the digital world has several advantages

among others:

• they can benefit from the e-administration facilities to

access different services;

• they can use the electronic financial systems like e-

banking for paying bills;

• they can better use medical assistance devices;

• they can interact better with young people (e.g. nephews)

discussing about the new technologies and trends;

• they can spend quality time in a pleasant community.

In this sense we developed the Silver Code project having

an Erasmus+ financial funding and including partners from

seven European countries: Bulgaria, Italy, Austria, Portugal,

Slovenia, Romania, Poland. The project is about creating a

community of elders over 55 years old that should use blended

learning tools in order to learn programming for a better

integration in the digital world. It is considered that knowing

how hardware and software systems work will increase the

confidence and will give better skills to elders in using

computers and other electronic gadgets. One of the main goals

of the project is the creation of a learning material dedicated

to elders for learning computer programming. In this sense we

created the Silver Code programming guide.

In Figure 1 are depicted the main steps an elder has to

make in order to understand programming and to be able

Basic

digital

skills

Basic web

programming

Computational

thinking

Basics of

computer

programming

Coding

everyday

Fig. 1. Silver Code Programming Guide Structure

to write short programs. These represent the main structure

of the Silver Code project training materials [6]. We iterate

briefly the content of each chapter of the programming guide.

The first section is about learning the basic digital skills for

using the computer, writing emails, chatting online, posting

in social networks etc. The second section presents basic web

programming examples in HTML [5], CSS [4] and JavaScript

[9]. The third section describes the most important compu-

tational thinking patterns to be used in designing algorithms.

The fourth section presents the basic elements of computer

programming in JavaScript. The fifth section tutors the elders

in creating two complex web applications the former dedicated

to flower watering and the latter to pill reminding. In the

sixth section we have a glossary of terms used in the digital

world. The paper is structured as follows. Section II presents

related works in the field of computer programming guides

and concepts. Section III presents briefly the Silver Code

programming guide structure. Section IV presents one the

final web applications the elders have to build by themselves.

Section VI concludes and sets the future work.

II. RELATED WORKS

In [1], [3], [2] is presented the auto-generative learning

objects technology AGLO, which consists in reusable template

models instantiated with random values having a specific

learning objective. Their application is rich in the area of exact

sciences: mathematics, computer science, medicine.

In [8] are presented ideas in the field of block chain

cryptographic technology to be used in open education. Such

approach is useful according to the Silver Code project pro-

posal in the phase of issuing badges and certificates to the

elders when they finish a unit or a module.

The state of the art contains dozens of learning program-

ming materials (books, online tutorials, papers, videos, lec-

tures in open academies) for different programming languages

(Java, JavaScript, Python, Scratch etc.) and for different types

of users: beginners (like hobbyists), intermediate (like stu-

dents), experts (like IT companies developers, technicians),

researchers (who develop new technologies). In [7] are re-

searched some of the motivations, frustrations and design op-

portunities of older adults in learning computer programming.

III. THE SILVER CODE PROGRAMMING GUIDE IN A

NUTSHELL

In this section we present briefly the content of our pro-

gramming guide structured in modules and units.

A. Basic Digital Skills

Module 1 is about presenting basic digital skills.

Unit 1.1 presents briefly the computer parts for elders not

being familiarized at all with the digital technology: CPU,

mother board, memory, HDD, modem, speakers, mouse, key-

board, video card, network card, printer, microphone, optical

drive etc. Some details are given for memories like cache

memory and virtual memory. Text file editors are explained

in the context of UTF-8 and ASCII encoding together with

basic text operations: find and replace, cut, copy, paste, undo,

redo which work also in word processors. Finally, there are

explained the basic steps in the creation of a PowerPoint

presentation.

Unit 1.2 presents web browsers, email clients and social

media tools like Skype and Facebook. In this unit we learn

what an email message is, what are the basic operations with

emails are and how to create an email account on Google

website. Then, the sending of a new message is exercised

paying attention to several details like: destination, carbon

copy (CC), blind carbon copy (BCC), subject and message.

Group mailing lists, attachments, automatic replies are also

exercised.

Next, a few browsers are presented like:

• Internet Explorer which is an outdated browser but still

available on older computers;

• Mozilla Firefox where the private browsing concept is

explained, which is available in all other browsers;

• Google Chrome as a browser which enables the use of

Google services on all your computers;

• Apple Safari that comes with the MacOS operating

system.

The emphasize is put also on mobile web browsers that run

on mobile phones and tablets:

• Android Browser;

• Chrome;

• Opera Mini;

• Internet Explorer;

• Safari.

The Skype tool is explained together with voice over IP,

Internet Protocol (IP) and addresses concepts. The steps for

installing Skype and setting up a call are exercised. Finally,

there is presented the Facebook social network with its facil-

ities.

Unit 1.3 presents algorithms, logical block diagrams and

control structures. One section is dedicated to variables ex-

plained in the context of JavaScript programming language.

Another section is about constants. Next section is about data

types:

• number;

• string;

• boolean;

• object together with the special null value;

• undefined a special type with its own unique value.

Once all ingredients are defined the next section presents

operators:

• additive +, -;

• multiplicative *, /, . . . ;

• incremental ++, --, . . . ;

• comparison and relational ==, !=, <=, . . . ;

• assignment =, +=, . . . ;

• logical &&, ||, !.

Another section is dedicated to simple algorithms or reading

two values and performing one formula written in natural lan-

guage, pseudocode, logical block diagrams. A special section

is dedicated to the block diagrams where the basic blocks are

presented:

• start block;

• stop block;

• input block;

• output block;

• assignment block;

• decision block.

A very simple algorithm is then exemplified using JavaScript

code. Basic control structures are explained:

• sequence;

• selection;

• looping.

Unit 1.4 presents array algorithms for uni-dimensional ar-

rays or vectors. The introductory section motivates the need for

the arrays with convincing examples and explains the indexing

mechanism. Then, specific array algorithms are described:

• reading an array from the input;

• writing an array to the output;

• linear searching of an element;

• searching for the minimum / maximum element;

• computing the sum of all elements.

Unit 1.5 presents two-dimensional arrays or matrix algo-

rithms. A blood pressure matrix is built on two dimensions

hourly measurements and daily series in order to exemplify

one of matrices uses. Reading and writing algorithms for

matrix elements are explained using two nested loops.

Unit 1.6 presents subroutines or functions. The introductory

section explains the concept. The routine definition section

explains how to declare a function in the context of JavaScript.

Unit 1.7 presents basic string operations. In the first section

a graphical explanation, hardware related representation is

given in an example. String constructions are exemplified in

the context of JavaScript. Small executable examples in HTML

embedded JavaScript code are also given. Details about ASCII

characters encoding are given in this context. Next, string

methods are described and exemplified as follows:

• concatenation or joining two strings;

• length of a string;

• indexOf a string;

• case conversion toLowerCase, toUpperCase;

• replace for replacing a substring in a string;

• slice for slicing a string into multiple ones based on a

separator;

• trim for eliminating leading and trailing white spaces;

• substring for extracting a substring from a string;

• match to check if a substring is part of a string.

B. Basic Web Programming

Module 2 presents basic elements of web programming.

Unit 2.1 presents the steps for building a simple web page.

The first section starts with a basic presentation for HTML:

• tags and attributes;

• head and body;

• images.

A valuable reference is set towards the

www.w3schools.com web site where all these aspects are

explained in details. Unfortunately, the accessibility of the

material is restricted to English speakers only.

Unit 2.2 describes basic concepts of Cascading Style Sheets

(CSS). A first section motivates the need for CSS. Next section

explains how selectors work:

• type selectors (e.g. h1{...})

• universal selectors (e.g. *{...});

• class selectors (e.g. .black{...});

• ID selectors (e.g. #panel{...}).

The next section is about measurement units:

• relative percentages (%);

• centimeters (cm);

• typographical em units (em);

• points (pt);

• pixels (px).

Colors can be expressed as:

• hex code (e.g. #FFAABB);

• short hex code (e.g. #8A9);

• RGB percentage (e.g. rgb(50%, 50%, 50%));

• RGB absolute values (e.g. rgb(0,0,255)).

The next sections are about setting styles for:

• backgrounds using properties like

background-color, background-image;

• texts using properties like color and alignments

text-align;

• images using properties like border, width and height;

• tables using properties for border colors, padding and

margins.

Unit 2.3 presents the creation of a simple web application

in JavaScript having a more elaborated user interface than the

previous examples. The first section presents the syntactical

elements of the language, reminds the elders the variables, the

operators, the if-else instruction, the functions and the browser

related events. In this unit elders have all the elements to write

a small application that displays a bulb and reacts to the clicks

on that bulb by turning it on and off alternatively. For this they

will use two images: the former of an ”on” bulb and the latter

of an ”off” bulb that will be displayed interchangeably. In this

unit some JavaScript elements are overlapping the ones from

Unit 1.3.

C. Computational Thinking

Module 3 is more abstract and teaches computational

thinking concepts that are usually used in code writing by

programmers.

Unit 3.1 presents decomposition, pattern recognition, ab-

straction and algorithm design. Decomposition is breaking a

problem into parts. While breaking a problem into parts paral-

lelization may be applied to solve each of the part problems.

The opposite operation to decomposition is synthesis. Once

the part problems were solved their solutions can be assembled

back to form the solution of the initial problem. An example is

given in this sense with the help of a bicycle. The elders must

break down the bicycle into components, learn how each of

the components function independently and then putting them

together as a whole. Thus, they can understand how other

complex machines work.

In the next section patterns are emphasized from different

sources: nature, pictures, poems etc. Patterns are expected

to appear in the process of decomposition. Patterns imply

the repetition of operations so they imply efficient problem

solving. In this context patterns and patterns recognition are

very important elements of computational thinking.

Abstraction is another important dimension of computa-

tional thinking. A set of informal definitions are given followed

by some examples:

• a picture of Pablo Picasso where three musicians are

abstracted as geometric shapes and colors;

• the learning of a foreign language by sentences having

the structure: subject, action and object;

• universal orientation symbols like: H letter for hospitals,

airplane symbol for airports, anchor symbol for ports etc.

The algorithm design is the next section where algorithms

definitions are given: step by step instructions, recipes, sto-

ryboards. The algorithm design is the transformation phase

from modeling to operational. Next, code is explained as a

computer language that are translated from human language

for computers to understand.

Unit 3.2 contains only exercises for the previously four

presented concepts.

D. Basics of Computer Programming

Module 4 presents the basics of computer programming.

Unit 4.1 is an introductory to programming languages in gen-

eral. A definition of programming languages is given. In the

next section there are given several code samples in languages

like: C, C++, Java, C#, PHP, Ruby, Python, SQL, Visual Basic

and LaTeX. Then there are presented samples written in each

of these languages about how to write on the screen ”I like

Silver Code” text message. Finally, a table is compiled with

the most used websites and their implementation languages.

On the front-end most web sites use JavaScript, while on the

back-end the choices are divers.

Unit 4.2 focuses on JavaScript object-oriented programming

elements. First in order to define object-oriented programming

the other programming paradigm is explained, namely proce-

dural programming. The basic elements of object technology

are explained: classes, objects, state, behavior. Then several

concepts are presented like: encapsulation, aggregation, inher-

itance for ordering the abstractions, polymorphism explained

using an animal sounds example.

The next section focuses on object properties (attributes)

and methods. A runnable example in embedded in HTML is

given. Again the language primitive types are iterated and the

concept of object reference is explained. The built in types

are reviewed and object creation is explained using the new

operator and an example is given in the context of book objects

having attributes like author and title.

Unit 4.3 presents how to install Notepad++ text editor and

to create and edit a JavaScript project. These competences will

be used intensively from now on.

Unit 4.4 presents some captivating gaming applications in

JavaScript like: hello, telepathy, guessing game. Finally, a

library application is developed around the previously defined

book class.

E. Coding Everyday

Module 5 takes programming at the creativity level where

elders will implement and customize their own applications.

Unit 5.1 explains the code of a flower watering web appli-

cation. The application itself has its own modules in HTML,

CSS and JS.

Unit 5.2 will be explained in detail in section IV where the

design of a pill reminder application is presented.

Unit 5.3 presents some practical examples of how coding

helps people in their everyday life in the context of four

applications: Uber, Airbnb, food ordering and payments.

For Uber is presented the code sample from the front-end

in order to prove to elders that its code is very similar to what

they have previously learned.

For the Airbnb hospitality service marketplace some HTML

code is presented having the same purpose.

For food ordering an example is given from the United

Kingdom, namely the www.hungryhouse.co.uk website.

For electronic payments the selected example is the one

from the International Banking of Poland with some code

extracted from their website.

Unit 5.4 presents augmented reality examples:

• head-up displays present in airplanes and recent cars;

• augmented reality mobile phone applications;

• medical e-learning applications of the human body struc-

turing.

F. Glossary of Technical Terms

Module 6 is a glossary of technical terms heavily used in

the digital universe.

IV. THE PILL REMINDER APPLICATION

The Pill reminder application is a single web page applica-

tion that records the pills that an elder has to take. In Figure

Fig. 2. The pill reminder application

2 we have an example of a use case for the Pill Reminder

application. There are defined two medicines which happen to

be vitamins. The application allows pills recordings for each

day of the week and for the most important three moments of

the day: morning, noon and evening. When defining a pill, the

user can enable its consumption record on a certain day and

on a certain moment of the day in a week as the physician

wrote the prescription. The modules of the application are:

• index.html module contains the application HTML

layout;

• index.css module contains the formatting tags for the

HTML elements;

• index.js module contains the application entry point

and the instantiation of the main classes;

• pills.js module contains the class definition for the

pills collection;

• pill.js module contains the class definition for the

pill;

• week.js module contains the class definition for the

week schedule element;

• day.js module contains the class definition for the day

schedule element.

The JavaScript modeled classes are:

• Pills class is the collection class managing all the pills

in the application;

• Pill class models a medical pill the patient has to take;

• Week class models a collection of 7 days when the pills

have to be taken;

• Day class models a day with its the three important

moments for the pills to be taken.

Each class is set in a separate file module.

A. The Pills class

The Pills class manages the collection of Pill objects. The

persistent content is stored into a browser cookie. Next, we

will iterate the methods elders will have to implement. The

init() method performs the initialization tasks. If there is

no already saved cookie a data initialization method is called,

otherwise the data from the cookie is read for the pills list

instantiation.

The initData() method creates a sample hierarchy of

objects to be displayed to the users. The structure has three

layers:

• the pill objects that contains week objects;

• the week object that contains 7 day objects;

• the day objects, that contain primitive values like:

– day id;

– three integers as booleans (0,1) for the obligation

to take the pill in the three moments of the day

(morning, noon and evening);

– three integers as booleans (0,1) for the status of the

taken pill for each of the moments of the day.

The findById() function is defined to be used when

clicks are performed on the web page in different elements

and their corresponding objects must be retrieved from the

collection to perform operations on them.

The load() method reads the JSON representation of the

cookie and creates the list of pills. The week object with 7

days objects are embedded in each pill.

The store() method calls JSON library functions to

serialize the objects into JSON format and then to store them

into the cookie.

The create() method enables the appearance of the new

pill HTML panel where the user may add its details and hides

the pill creation button.

The doCreate() method performs the followings:

• computes the new id for the pill;

• gets the data from the HTML controls;

• instantiates the days, week, pill objects;

• pushes the newly created pill into the collection;

• hides the user interface creation panel;

• calls the storing method of the collection.

The doCancel() method hides the pill panel and restores

the pill creation button.

The show() method iterates all pill objects from the

collection, generates all the HTML representations and adds

these representations to a pills HTML div element.

The delete(id) method performs three operations:

• iterates the collection to find the pill;

• deletes it from the collection and removes the HTML

representation from the user interface;

• calls the storing method of the collection because its

content was changed.

The take() method marks one pill as taken in one moment

of the day.

B. The Pill class

The Pill constructor builds a pill object out of an integer

id, name and week object references.

The toHTML() method generates an identifiable HTML

div element containing an inner representation generated by

the next method.

The getInnerHTML() method generates an HTML table

with four rows (one for the day names and one for each

important moment of the day) and seven columns (for each

day of the week). The table cells contain radio buttons which

are checked or not depending on the user which took or not

the pill. Radio buttons are grayed (marked as inactive) if the

pills are not mandatory in that moment of the day.

C. The Week class

The Week constructor builds a week instance as an Array

collection of day objects.

The addDay(day) method adds a day object to the

collection.

The getDay(id) method retrieves a day object from the

indexed collection.

D. The Day class

The Day constructor creates a day object from seven

parameters:

• id codes the identifier of the day from 0 to 6, 0 is Monday

and 6 is Sunday;

• integer as boolean (0,1) neededM the pill is needed in

the morning;

• integer as boolean (0,1) neededN the pill is needed at

noon;

• integer as boolean (0,1) neededE the pill is needed in

the evening;

• integer as boolean (0,1) takenM the pill was taken in

the morning;

• integer as boolean (0,1) takenN the pill was taken at

noon;

• integer as boolean (0,1) takenE the pill was taken in

the evening.

The getId() method returns the identifier of the day (0-

6).

The getName() method returns the literal name of the

day (e.g. Monday).

The two projects implementation require only a text editor

like Notepad++ and a web browser like Mozilla for debugging

and running the applications.

V. DISCUSSION

In this section we analyze the concepts that we defined

throughout the material and how are they used in the web

applications to be designed by elders.

At the end of Unit 1 the elders should know how to

use all the tools in order to interact with the online Silver

Code community. One open point for improvement would

be the presentation of an online forum and its philosophy

(users, threads, posts) to facilitate its use in the context of the

Silver Code project. In module 1 we explained all the basic

programming concepts, notations and algorithms and they

were compiled in a compact material with links to auxiliary

bibliography to enable further documenting.

After attending the modules of Unit 2 the elders have the

first hands on programming by implementing the bulb web

application.

Module 3 somehow separates the concepts definition from

their testing in two separate units. The solution would be to

split the four concepts into two concepts per unit together with

their exercises.

In module 4 some concepts are redundant in the sense that

they are already presented in other modules. It is the case for

the programming languages definition and JavaScript types.

On the other hand the Notepad++ editor setup module should

be placed earlier in the material probably a the beginning of

Module 2.

Module 5 uses the jQuery JavaScript library to access the

elements from the applications web pages. The library was

not presented to elders in our materials but it uses object-

oriented instances and methods for the accesses. Regarding

persistence, presenting a relational database to elders would be

too difficult so we used the JSON format for representation and

the cookie mechanism from browsers for persistence storing.

Cookies can store a limited size quantity of information, a

few tens of kilobytes, so the textual representations has to be

very compact. Booleans were represented as integers because

”true” and ”false” constants take up 4, respectively 5 bytes

while 0 and 1 take only 1 byte in the JSON representation.

VI. CONCLUSIONS AND FUTURE WORK

We conclude that the Silver Code project team created a

programming guide covering all concepts necessary to under-

stand programming. Using the guide the elders will be able

to write small size runnable programs. There are included all

the necessary programming concepts at a decent level for the

elders.

The next step of the project is to embed the learn-

ing materials in the Ilias [10] LMS platform on the

silvercodeproject.eu website. As immediate future

work we intend to pilot test with 30 elders in face to face

meetings and then to get the feedback in order to improve the

programming guide materials.

ACKNOWLEDGMENTS

We would like to thank the Silver Code team members for

the ambition and effort put into this project.

REFERENCES

[1] Ciprian-Bogdan Chirila. Auto-generative learning objects for it disci-
plines. In Proceedings of the International Conference on Virtual Learn-

ing 2015, pages 1–6, Bucharest, Romania, October 2015. University of
Bucharest, Romania.

[2] Ciprian-Bogdan Chirila. Auto-generative learning objects in online
assessment of data structures disciplines. BRAIN - Broad Research in

Artificial Intelligence and Neuroscience, 8(1):24–34, April 2017.
[3] Ciprian-Bogdan Chirila, Horia Ciocarlie, and Lacramioara Stoicu-

Tivadar. Generative learning objects instantiated with random numbers
based expressions. BRAIN - Broad Research in Artificial Intelligence

and Neuroscience, 6(1-2):1–16, October 2015.
[4] Mozilla Corporation. Cascading style sheet (css).

https://developer.mozilla.org/en-US/docs/Web/CSS, 2018.
[5] Mozilla Corporation. Web technology for developers, html, 2018.
[6] Valentina Georgieva, Maria-Elena Antunes, Elisa Chiesa, Karina Sirk,

Erol Koc, Alexander Kobylarek, and Ciprian-Bogdan Chirila. Silvercode
training material, 2018.

[7] Phillip J. Guo. Older adults computer programming: Motivations,
frustrations, and design opportunities. In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems, pages 7070–7083,
Denver, Colorado, USA, May 06-11 2017.

[8] Carmen Holotescu. Openeduchain: Design and applications of a
blockchain for open education. In In Proceedings of the 14-th Inter-

national Scientific Conference eLearning and Software for Education

(ELSE), Bucharest, Romania, April 2018.
[9] ECMA International. Standard ecma-262 ecmascript

2016 language specification. http://www.ecma-
international.org/publications/standards/Ecma-262.htm, 2016.

[10] Ilias Team. Ilias e-learning. http://www.ilias.de, 2018.

