Compiler Design Lexical Analysis From Regular Expressions to Automata

conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

Outline

- Conversion of a NFA to DFA
- Simulation of an NFA
- Construction of an NFA from a Regular Expression

From Regular Expressions to Automata

- regular expression describes
 - lexical analyzers
 - pattern processing software
- implies simulation of DFA or NFA
- NFA simulation is less straightforward
- Techniques
 - to convert NFA to DFA
 - the subset construction technique
 - simulating NFA directly
 - when NFA to DFA is time consuming
 - to convert regular expression to NFA and then to DFA

Conversion of a NFA to a DFA

- subset construction
 - each state of DFA corresponds to a set of NFA states
- DFA states may be exponential in number of NFA states
- for lexical analysis NFA and DFA
 - have approximately the same number of states
 - the exponential behavior is not seen

Subset construction of an DFA from an NFA

- Input
 - ° an NFA N
- Output
 - DFA D accepting the same language as N
- Method
 - to construct a transition table *Dtran* for D
 - each state of D is a set of NFA states
 - to construct Dtran so D will simulate in parallel all possible moves N can make on a given input string
 - $^\circ$ to deal with ϵ –transitions of N properly

Operations on NFA states

Operation	Description
ε-closure(s)	set of NFA states reachable from NFA state s on ε- transition alone
ε-closure(T)	set of NFA states reachable from some NFA state s in set T on ϵ -transitions alone
move(T,a)	set of NFA states to which there is a transition on input symbol a from some state s in T

Transitions

- s₀ start state
- N can be in any states of ε-closure(s₀)
- reading input string x
 - N can be in the set of states T after
- reading input a
 - N can go in ε-closure(move(T, a))
- accepting states of D are all sets of N states that include at least one accepting state of N

The Subset Construction

```
while(there is an unmarked state T in Dstates)
  mark T;
  for(each input symbol a)
  ł
      U=ε-closure(move(T,a));
      if (U is not in Dstates)
             add U as unmarked state to Dstates;
      Dtran[T,a]=U;
```

Computing ε-closure(T)

push all states of T onto stack; initialize ϵ -closure(T) to T; while(stack is not empty)

pop t, the top element, off stack; for(each state u with an edge from t to u labeled ε) if(u is not in ε-closure(T))

> add *u* to ε-enclosure(T); push *u* onto stack;

• A= ε-closure(0) or A={0,1,2,4,7}

- A={0,1,2,4,7}
- Dtran(A,a) = ε-closure(move(A,a))
- from {0,1,2,4,7} only {2,7} have a transition on *a* to {3,8}

- Dtran[A,a] = ε-closure(move(A,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8}
- Dtran[A,a]=B

- from {0,1,2,4,7} only {4} has a transition on b to {5}
- Dtran[A,b] = ε-closure({5})={1,2,4,5,6,7}
- Dtran[A,b]=C

. . .

- $ft(B,a) = \{3,8\}$
- eps-closure({3,8})=B

start

• eps-closure({5,9})={5,9,6,7,1,2,4}=D

6

- $ft(B,b) = \{5,9\}$

- ft(C,a)={3,8}
- eps-closure({3,8})=B
- ft(C,b)={5}
- eps-closure({5})=C

start

- ft(D,a)={3,8}
- eps-closure({3,8})=B
- eps-closure({5,10})={5,10,6,7,1,2,4}=E

6

• ft(D,b)={5,10}

- ft(E,a)={3,8}
- eps-closure({3,8})=B
- ft(E,b)={5}
- eps-closure({5})=C

NFA State	DFA State	a	b
{0,1,2,4,7}	А	В	С
{1,2,3,4,6,7,8}	В	В	D
{1,2,4,5,6,7}	С	В	С
{1,2,4,5,6,7,9}	D	В	Е
{1,2,3,5,6,7,10}	E	В	С

Simulation of an NFA

- the strategy in text editing programs is
 - to construct a NFA from a regular expression
 - to simulate NFA using on-the-fly subset construction
- Input
 - input string x terminated by **eof**
 - NFA N
 - start state s₀
 - accepting states F
 - transition function move
- Output
 - yes / no
- Method
 - \circ to keep the current states S reached from s₀
 - if c is the next input read by nextChar()
 - we compute *move*(S,c) and then we use ε -closure()

Algorithm: Simulating an NFA

- 01 S= ϵ -closure(s0);
- 02 c=nextChar();
- 03 while(c!=eof) {
- 04 $S=\epsilon$ -enclosure(move(S,c));
- 05 c=nextChar();
- 06 }
- 07 if(SOF!=ø) return "yes";

```
08 else return "no";
```


Implementation of NFA Simulation

two stacks each holding a set of NFA states

- a boolean array alreadyOn
- a two dimensional array move[s,a]

NFA Simulation Data Structures

- two stacks each holding a set of NFA states
 - used for the values of S in both sides of assign
 - = operator in line 4
 - S=e-enclosure(move(S,c));
 - right side oldStates
 - left side newStates
 - newStates->oldStates

NFA Simulation Data Structures

- boolean array alreadyOn
 - indexed by NFA states
 - indicates which states are in *newStates*
 - array and stack hold the same information
 - it is much faster to interrogate the array than to search the stack
- two dimensional array move[s,a]
 - the entries are set of states
 - implemented by linked lists


```
Implementation of step 1
01 S=\epsilon-closure(s0);
addState(s)
 push s onto newStates;
 alreadyOn[s]=TRUE;
 for(t on move[s,ε])
    if(!alreadyOn(t))
         addState(t);
```

Implementation of step 4

```
04 S=\epsilon-enclosure(move(S,c));
```

```
for (s on oldStates)
{
  for (t on move[s,c])
      if(!alreadyOn[t])
             addState(t);
  pop s from oldStates;
}
for (s on newStates)
ł
  pop s from newStates;
 push s onto oldStates;
  alreadyOn[s]=FALSE;
```

}

Construction of an NFA from a Regular Expression

- to convert a regular expression to a NFA
- McNaughton-Yamada-Thompson algorithm
- syntax-directed
 - it works recursively up the parse tree of the regular expression
- for each subexpression a NFA with a single accepting state is built

Construction of an NFA from a Regular Expression

- Input
 - $^\circ$ regular expression r over an alphabet \varSigma
- Output
 - An NFA accepting L(r)
- Method
 - to parse r into constituent subexpressions
 - basis rules for handling subexpressions with no operators
 - inductive rules for creating larger NFAs from subexpressions NFAs
 - union, concatenation, closure

Basis Rules for Constructing NFA

for expression ε

• for expression a

NFA for the Union of Two Regular Expressions

- r=s|t
- N(s) and N(t) are NFA's for regular expressions s and t

NFA for the Concatenation of Two Regular Expressions

- r=st
- N(s) and N(t) are NFA's for regular expressions s and t

Induction Rules for Constructing NFA

- r=s*
- N(s) is the NFA for the regular expressions

r=(s)
L(r)=L(s)
N(s) is equivalent to N(r)

parse tree for (a|b)*abb

r11

• NFA for r l

• NFA for r2

• NFA for r3=r1 | r2

• NFA for r5=(r3)*

• •

• NFA for r7=r5r6

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles, Techniques and Tools, Second Edition, 2007