
Compiler Design 

Lexical Analysis

From Regular Expressions to 

Automata

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila



Outline

 Conversion of a NFA to DFA

 Simulation of an NFA

 Construction of an NFA from a Regular 

Expression



From Regular Expressions to 

Automata
 regular expression describes 
◦ lexical analyzers

◦ pattern processing software

 implies simulation of DFA or NFA

 NFA simulation is less straightforward

 Techniques
◦ to convert NFA to DFA

◦ the subset construction technique
 simulating NFA directly

 when NFA to DFA is time consuming

◦ to convert regular expression to NFA and then to 
DFA



Conversion of a NFA to a DFA

 subset construction 

◦ each state of DFA corresponds to a set of 

NFA states

 DFA states may be exponential in number 

of NFA states

 for lexical analysis NFA and DFA 

◦ have approximately the same number of 

states

◦ the exponential behavior is not seen



Subset construction of an DFA from 

an NFA
 Input

◦ an NFA N

 Output

◦ DFA D accepting the same language as N

 Method

◦ to construct a transition table Dtran for D

◦ each state of D is a set of NFA states

◦ to construct Dtran so D will simulate in parallel 
all possible moves N can make on a given input 
string

◦ to deal with ε –transitions of N properly



Operations on NFA states

Operation Description

ε-closure(s) set of NFA states reachable from NFA state s on ε-

transition alone

ε-closure(T) set of NFA states reachable from some NFA state s in set 

T on ε-transitions alone

move(T,a) set of NFA states to which there is a transition on input 

symbol a from some state s in T



Transitions

 s0 – start state

 N can be in any states of ε-closure(s0)

 reading input string x

◦ N can be in the set of states T after

 reading input a
◦ N can go in ε-closure(move(T, a))

 accepting states of D are all sets of N 
states that include at least one accepting 
state of N



The Subset Construction 

while(there is an unmarked state T in Dstates)

{

mark T;

for(each input symbol a)

{

U=ε-closure(move(T,a));

if (U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[T,a]=U;

}

}



Computing ε-closure(T)

push all states of T onto stack;

initialize ε-closure(T) to T;

while(stack is not empty)

{

pop t, the top element, off stack;

for(each state u with an edge from t to u labeled ε)

if(u is not in ε-closure(T))

{

add u to ε-enclosure(T);

push u onto stack;

}

}



 A= ε-closure(0) or A={0,1,2,4,7}

Example (a|b)*abb



Example (a|b)*abb

 A={0,1,2,4,7}

 Dtran(A,a)= ε-closure(move(A,a))

 from {0,1,2,4,7} only {2,7} have a 

transition on a to {3,8}



Example (a|b)*abb

 Dtran[A,a]= ε-closure(move(A,a)) =

ε-closure({3,8}) = {1,2,3,4,6,7,8}

 Dtran[A,a]=B



Example (a|b)*abb

 from {0,1,2,4,7} only {4} has a transition 

on b to {5}

 Dtran[A,b]= ε-closure({5})={1,2,4,5,6,7}

 Dtran[A,b]=C

 …



Example (a|b)*abb

 ft(B,a)={3,8}

 eps-closure({3,8})=B

 ft(B,b)={5,9}

 eps-closure({5,9})={5,9,6,7,1,2,4}=D



Example (a|b)*abb

 ft(C,a)={3,8}

 eps-closure({3,8})=B

 ft(C,b)={5}

 eps-closure({5})=C



Example (a|b)*abb

 ft(D,a)={3,8}

 eps-closure({3,8})=B

 ft(D,b)={5,10}

 eps-closure({5,10})={5,10,6,7,1,2,4}=E



Example (a|b)*abb

 ft(E,a)={3,8}

 eps-closure({3,8})=B

 ft(E,b)={5}

 eps-closure({5})=C



Example (a|b)*abb

NFA State DFA State a b

{0,1,2,4,7} A B C

{1,2,3,4,6,7,8} B B D

{1,2,4,5,6,7} C B C

{1,2,4,5,6,7,9} D B E

{1,2,3,5,6,7,10} E B C



Simulation of an NFA

 the strategy in text editing programs is

◦ to construct a NFA from a regular expression

◦ to simulate NFA using on-the-fly subset construction

 Input

◦ input string x terminated by eof

◦ NFA N 
 start state s0

 accepting states F

 transition function move

 Output

◦ yes / no

 Method

◦ to keep the current states S reached from s0

◦ if c is the next input read by nextChar()

◦ we compute move(S,c) and then we use ε-closure() 



Algorithm: Simulating an NFA

01 S=ε-closure(s0);

02 c=nextChar();

03 while(c!=eof) {

04 S=ε-enclosure(move(S,c));

05 c=nextChar();

06 }

07 if(S∩F!=ø) return “yes”;

08 else return “no”;



Implementation of NFA Simulation

 two stacks each holding a set of NFA 

states

 a boolean array alreadyOn

 a two dimensional array move[s,a]



NFA Simulation Data Structures

 two stacks each holding a set of NFA 

states

◦ used for the values of S in both sides of assign 

= operator in line 4 

S=ε-enclosure(move(S,c));

 right side – oldStates

 left side – newStates

◦ newStates->oldStates



NFA Simulation Data Structures

 boolean array alreadyOn

◦ indexed by NFA states

◦ indicates which states are in newStates

◦ array and stack hold the same information

◦ it is much faster to interrogate the array than 

to search the stack

 two dimensional array move[s,a]

◦ the entries are set of states

◦ implemented by linked lists



Implementation of step 1

01 S=ε-closure(s0);

addState(s)

{

push s onto newStates;

alreadyOn[s]=TRUE;

for(t on move[s,ε])

if(!alreadyOn(t))

addState(t);

}



Implementation of step 4
04 S=ε-enclosure(move(S,c));

for (s on oldStates)

{

for (t on move[s,c])

if(!alreadyOn[t])

addState(t);

pop s from oldStates;

}

for (s on newStates)

{

pop s from newStates;

push s onto oldStates;

alreadyOn[s]=FALSE;

}



Construction of an NFA from a 

Regular Expression
 to convert a regular expression to a NFA

 McNaughton-Yamada-Thompson 

algorithm

 syntax-directed

◦ it works recursively up the parse tree of the 

regular expression

 for each subexpression a NFA with a 

single accepting state is built



Construction of an NFA from a 

Regular Expression
 Input

◦ regular expression r over an alphabet Σ

 Output

◦ An NFA accepting L(r)

 Method

◦ to parse r into constituent subexpressions

◦ basis rules for handling subexpressions with no 
operators

◦ inductive rules for creating larger NFAs from 
subexpressions NFAs

 union, concatenation, closure



Basis Rules for Constructing NFA

 for expression ε

 for expression a



NFA for the Union of Two Regular 

Expressions
 r=s|t

 N(s) and N(t) are NFA’s for regular 

expressions s and t



NFA for the Concatenation of Two 

Regular Expressions
 r=st

 N(s) and N(t) are NFA’s for regular 

expressions s and t



Induction Rules for Constructing 

NFA
 r=s*

 N(s) is the NFA for the regular expressions 
s

 r=(s)

◦ L(r)=L(s)

◦ N(s) is equivalent to N(r)



Example

 parse tree for (a|b)*abb



Example

 NFA for r1

 NFA for r2



Example

 NFA for r3=r1 | r2



Example

 NFA for r5=(r3)*



Example

 NFA for r7=r5r6

 …



Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, 

Jeffrey D. Ullman – Compilers, Principles, 

Techniques and Tools, Second Edition, 

2007


