
Compiler Design

Syntax Analysis

Writing a Grammar

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Lexical Versus Syntactic Analysis

 Eliminating Ambiguity

 Elimination of Left Recursion

 Left Factoring

 Non-Context-Free Language Constructs

Grammars

 describe most of the programming language
syntax

 some aspects can not be described by a
context-free grammar
◦ identifiers must be declared before they are used

 sequence of tokens accepted by the parser
forms a superset of the programming
language

 Subsequent phases of the compiler will
analyze the parser output to ensure
compliance with supplementary rules

Next…

 How to divide the work between lexical

analyzer and parser

 Transformations to make a grammar

suitable for top-down parsing

◦ Left recursion elimination

◦ Left factoring

 Programming language constructs which

cannot be described by any grammar

Lexical vs. Syntactic Analysis

 Everything that can be described by a

regular expression can be described by a

grammar

Why to use regular expressions to

define lexical syntax of a language ?
 Separating the syntactic structure into lexical and

non-lexical is a convenient way of modularizing
the front end of a compiler into two components

 Lexical rules

◦ are quite simple

◦ do not need a powerful notation such as grammars

 Regular expressions provide a concise and easier
to understand notation for tokens than grammars

 Efficient lexical analyzers can be constructed
automatically from regular expressions than from
grammars

Eliminating Ambiguity

 sometimes ambiguous grammar can be

rewritten to eliminate ambiguity

 stmt-> if expr then stmt

| if expr then stmt else stmt

| other

 if E1then S1 else if E2 then S2 else S3

Parse Tree for a Conditional

Statement

Ambiguous Grammar Example

 if E1then if E2 then S1 else S2

Ambiguous Grammar Example

 General rule

◦ match “else” with closest unmatched “then”

◦ it is the case also for C language which misses

the “then” keyword but it is implied by “{“, “}”

 disambiguation should be present in the

grammar

 in practice it is rarely present in the

production rules

Disambiguation Solution for the

Dangling Else Example
stmt ->

matched_stmt | open_stmt

matched_stmt ->

if expr then matched_stmt else matched_stmt

| other

open_stmt ->

if expr then stmt

| if expr then matched_stmt else open_stmt

Elimination of Left Recursion

 general case

◦ a grammar is recursive if there is a derivation

A=>Aα for some string α

 particular case

◦ immediate left recursion A->Aα

◦ solution

 A->Aα|β

 A-> βA’

 A’-> αA’|ε

+

Example

 E->E+T | T

 T->T*F | F

 F->(E) | id

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

Direct Left Recursion

 A->Aα1|Aα2|…|Aαm| β1| β 2|…|βn

 no βi begins with A

 A->β1A’| β 2A’|…|βnA’

 A’-> α1A’|α2A’|…|αmA’|ε

Indirect Left Recursion Example

 S-> A a | b

 A-> A c | S d | ε

 S=>Aa=>Sda

◦ not immediate left recursive

Eliminating Left Recursion

 Input

◦ grammar G with no cycles or ε-productions

 Output

◦ an equivalent grammar with no left recursion

 Method

◦ …

Method

1. arrange the non-terminals in some order
A1,A2,…,An

2. for (each i from 1 to n){

3. for(each j from 1 to i-1){

4. replace each production of the form Ai->Ajγ
by the productions Ai->δ1γ| δ2γ|…| δkγ,
where Aj-> δ1| δ2|…| δk are all Aj-
productions

5. }

6. eliminate the immediate left recursion among
Ai-productions

7. }

Method

 iteration i=1

◦ eliminates any immediate left recursion

among A1-productions

◦ any remaining A1 productions of the form

A1->Atα must have t>1

 iteration i-1

◦ all Ak where k<i are “cleaned”

◦ any production Ak->Atα must have t>k

Example - revisited

 S-> A a | b

 A-> A c | S d | ε

 we order S, A

 i=1

◦ no left recursion is in S

 i=2

◦ we replace in A the S by the rule S->A a | b

◦ A->A c | A a d | b d | ε

Example - revisited

 S->A a | b

 A-> b d A’ | A’

 A’ -> c A’ | a d A’ | ε

Left Factoring

 grammar transformation useful for
producing a grammar suitable for
predictive, top-down parsing

 e.g.

◦ stmt -> if expr then stmt else stmt

| if expr then stmt

 A->αβ1 | αβ2

 A->αA’

 A’->β1 | β2

Left Factoring a Grammar

 Input

◦ grammar G

 Output

◦ equivalent left-factored grammar

 Method

◦ for each non-terminal A find the longest

prefix α to two or more alternatives

◦ replace A-productions A-> αβ1 | αβ2 |…|

αβn | γ

Left Factoring a Grammar

 A->αA’ | γ

 A’-> β1 | β2 |…| βn

Dangling-else Problem

 S -> i E t S | i E t S e S | a

 E -> b

 S -> i E t S S’ | a

 S’ -> e S | ε

 E -> b

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

