Compiler Design
Syntax Analysis
Writing a Grammar

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Qutline

 Lexical Versus Syntactic Analysis

* Eliminating Ambiguity

e Elimination of Left Recursion

* Left Factoring

* Non-Context-Free Language Constructs

Grammars

» describe most of the programming language
syntax

e some aspects can not be described by a
context-free grammar

o identifiers must be declared before they are used

e sequence of tokens accepted by the parser
forms a superset of the programming
language

* Subsequent phases of the compiler will
analyze the parser output to ensure
compliance with supplementary rules

Next...

* How to divide the work between lexical
analyzer and parser

* Transformations to make a grammar
suitable for top-down parsing
> Left recursion elimination

> Left factoring

* Programming language constructs which
cannot be described by any grammar

Lexical vs. Syntactic Analysis

* Everything that can be described by a
regular expression can be described by a
grammar

Why to use regular expressions to

define lexical syntax of a language ?

e Separating the syntactic structure into lexical and
non-lexical is a convenient way of modularizing
the front end of a compiler into two components

e Lexical rules

° are quite simple
> do not need a powerful notation such as grammars

e Regular expressions provide a concise and easier
to understand notation for tokens than grammars

o Efficient lexical analyzers can be constructed

automatically from regular expressions than from
grammars

Eliminating Ambiguity

* sometimes ambiguous grammar can be
rewritten to eliminate ambiguity

o stmt-> if expr then stmt
iIf expr then stmt else stmt

other
o if E,then §, else if E, then S, else S;

Parse Tree for a Conditional
Statement

stmt

expr then stmi else stmi

Esy 52 S3

Ambiguous Grammar Example

o if E,then if E, then S, else S,

stmit

// \\\H

ETPT then stml else stmt
E-z S 1 S 2
//mE mt\\\
if ﬂIpT ﬂly/ﬂmt\q gtmt
if exTpr then stmt

Eq S1

Ambiguous Grammar Example

e General rule
> match “else” with closest unmatched “then”
° it is the case also for C language which misses
the “then” keyword but it is implied by “{*,“}”
» disambiguation should be present in the
grammar

* in practice it is rarely present in the
production rules

Disambiguation Solution for the
Dangling Else Example

stmt ->
matched stmt | open_stmt

matched stmt ->
if expr then matched stmt else matched stmt
| other

open_stmt -~
if expr then stmt
| iIf expr then matched stmt else open_stmt

Elimination of Left Recursion

» general case

° a grammar is recursive if there is a derivation
+ -
A=>Aq for some string a

e particular case
> immediate left recursion A->Aa
o solution
A->Aa|f
A-> BA’
A-> oAl

Example

o E->E+T|T
. ->T*F | F
« F->(E) | id

o T>FT’
o T->¥FT|e
* F->(E) | id

Direct Left Recursion

® A->Aa||Aa2|“'|Aam| Bll BleBn
* no Bi begins with A

o A->B A BLA...|B A’

o A'-> o | A|oL,Al...|o A€

Indirect Left Recursion Example

*S->Aa|b
e A->Ac|Sd]|¢
e S=>Aa=>Sda

° not immediate left recursive

Eliminating Left Recursion

* Input

o grammar G with no cycles or €-productions
e Output

° an equivalent grammar with no left recursion

e Method

o

Method

|. arrange the non-terminals in some order
ALA,,. LA,

2. for (eachifrom | to n){
3. for(each jfrom I toi-l){

4. replace each production of the form Ai->Ajy
by the productions A->0,y| d,y|...| 0.V,
where Ai-> 04[0,|...| 6k are aﬁ A-
productlons

5.}

6. eliminate the immediate left recursion among
A-productions

7.}

Method

* iteration i=|
> eliminates any immediate left recursion
among A -productions

> any remaining A| productions of the form
A,->A.a must have t>1

e [teration I-1
> all A, where k<I are “cleaned”
> any production A, ->A.a must have t>k

Example - revisited

*S->Aa|b

«A>Ac|Sd|e

e we order S,A

o i=|
° no left recursion is in S

° =2
> we replace in A the S by the rule S->Aa| b
cA->Ac|Aad|bd]|ce

Example - revisited

*S->Aa|b
*c A->bdA' |A
e A->cA’|adA’| ¢

Left Factoring

e grammar transformation useful for
producing a grammar suitable for
predictive, top-down parsing

°e.g.

o stmt -> if expr then stmt else stmt
| iIf expr then stmt

o A->af, | afs,
o A->0A

e A->B, | B,

Left Factoring a Grammar

* Input
o grammar G
e Output
> equivalent left-factored grammar

e Method

° for each non-terminal A find the longest
prefix a to two or more alternatives

> replace A-productions A-> af, | a3, |...|
aBnly

Left Factoring a Grammar

° A->0A' |y
e A-> B Bl | By

Dangling-else Problem

eS->iEtS|iEtSeS|a
eE->b
eS->iEtSS|a

oS ->eS |

cE->Db

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi,
Jeffrey D. Ullman — Compilers, Principles,

Techniques and Tools, Second Edition,
2007

