
Compiler Design

Syntax Analysis

Top-Down Parsing

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Recursive-Descent Parsing

 FIRST and FOLLOW

 LL(1) Grammars

 Non-recursive Predictive Parsing

 Error Recovery in Predicting Parsing

Top Down Parsing

 constructing a parse tree from the input

string

◦ starting from the root

◦ creating the nodes in preorder

 finding the left-most derivation for an

input string

Grammar Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

Derivation Example for id+id*id

LL(k) Grammars

 LL(k) – class of grammar for which we

can construct predictive parsers looking k

symbols ahead

 LL(1)

 FIRST and FOLLOW sets

◦ are used to construct predictive parsing tables

◦ make explicit the choice of production

◦ are useful for bottom-up parsing

Recursive Descendant Parsing

Program
 set of procedures

 one procedure for each non-terminal

 the start symbol

◦ launches the execution

◦ announces success if the body scans it’s input

string

Recursive Descendant Parsing

void A()

{

choose an A-production, A->X1X2…Xk;

for(i=1 to k)

{

if (Xi is a non-terminal)

call procedure Xi();

else if (Xi equals the current symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

Recursive Descendent Parsing

Pseudocode
 non-deterministic

◦ the manner in which the A-production is

chosen is not specified

 generally requires backtracking

◦ repeated scans over the input

◦ rarely needed to parse programming language

constructs

◦ not very efficient – tabular methods such as

dynamic programming are preferred

Allowing Backtracking

void A()

{

choose an A-production, A->X1X2…Xk;

for(i=1 to k)

{

if (Xi is a non-terminal)

call procedure Xi();

else if (Xi equals the current symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

try each

production in

some order

try another

A-production

reset the input

pointer

Top-Down Parse Tree

 S -> c A d

 A -> a b | a

 w=cad

Step 1

 S has only one production

 we expand S

 first character of input w=cad matches

the leftmost leaf in the tree c

Step 2

 we expand A->a b

 we have a match for second input character a

 we go to next symbol d

 b does not match d

 we report failure

 we go back to A to try another alternative

 we reset input pointer to position 2

Step 3

 the second alternative for A is A->a

 leaf a matches second symbol

 leaf d matched the third symbol

 we halt with successful parsing message

FIRST and FOLLOW Functions

 two functions useful in creating parsers

for both

◦ top-down

◦ bottom-up

 helps which production to apply based on

next input symbol

 in panic mode error recovery tokens

produced by FOLLOW are used for

synchronization

The FIRST Function

 FIRST(α)

◦ set of terminals that begin strings derived

from α

◦ α is any string of grammar symbols

◦ if α=>ε then ε is in FIRST(α)

 A=>cγ

◦ c is in FIRST(A)

*

*

How FIRST function works ?

 A->α|β

 FIRST(α) and FIRST(β) are disjoint sets

 input symbol a can be in one of the two

sets

 if a is in FIRST(β) we can choose the

production A->β

The FOLLOW Function

 FOLLOW(A)

◦ the set of terminals a that can appear

immediately to the right of A in some

sentential form

◦ the set of terminals a such that

S=>αAaβ for some α and β*

How to compute FIRST ?

 if X is terminal then FIRST(X)={X}

 if X is non-terminal X->Y1Y2…Yk is a
production for some k>=1

◦ place a in FIRST(X) if for some i

 a is in FIRST(Yi) and

 ε is in FIRST(Y1)…FIRST(Yi-1)

◦ if ε is in all FIRST(Yj) j=1,…,k

 then add ε to FIRST(X)

 if X-> ε is a production

◦ then add ε to FIRST(X)

How to compute FIRST ?

 input string X1X2…Xn

 add to FIRST(X1X2…Xn)

◦ all non-ε symbols of FIRST(X1)

◦ all non-ε symbols of FIRST(X2) if ε is in

FIRST(X1)

◦ all non-ε symbols of FIRST(X3) if ε is in

FIRST(X1) and in FIRST(X2)

◦ …

◦ ε, if ε is in all FIRST(Xi) i=1,..,n

How to compute FOLLOW ?

 place $ in FOLLOW(S)

◦ S is the start symbol

◦ $ is the right end-marker

 if there is a production A->αBβ
◦ everything in FIRST(β) except ε is in

FOLLOW(B)

 if there is a production A->αB or

A->αBβ where first(β) contains ε
◦ everything in FOLLOW(A) is in

FOLLOW(B)

Example

 FIRST(F)={(,id}

 FIRST(T)=FIRST(F)={(,id}

 FIRST(E)=FIRST(T)=FIRST(F)={(,id}

 FIRST(E’)={+,ε}

 FIRST(T’)={*,ε}

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(E)={),$}

◦ E is the start symbol so it must

include $

◦ the body (E) tells that the) symbol must be

included

 FOLLOW(E’)={),$}

◦ E->TE’ so what follows after E will follow

after E’

◦ FOLLOW(E’)=FOLLOW(E)

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(T)={+,),$}

◦ E->TE’ so FOLLOW(T) includes

FIRST(E’)={+} (except ε)

◦ E->TE’ and E’ includes ε, so

FOLLOW(E)={),$} is included in FOLLOW(T)

 FOLLOW(T’)={+,),$}

◦ T->FT’ so FOLLOW(T) is included in

FOLLOW(T’)

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(F)={+,*,),$}

◦ T’->*FT’ so FOLLOW(F) includes

FIRST(T’)={*} (except ε)

◦ T->FT’ and T’->ε so FOLLOW(F) includes

FOLLOW(T)={+,),$}

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

LL(1) Grammars

 predictive parsers

◦ recursive descendant with no backtracking

 can be constructed for LL(1) grammar
class

◦ first L stands for scanning the input from left
to right

◦ second L for producing leftmost derivation

◦ the 1 is for using one input symbol of
lookahead at each step to make parsing
actions decisions

Transition Diagrams for Predictive

Parsers
 useful for visualizing predictive parsers

◦ E->TE’

◦ E’->+TE’|ε

Building a Transition Diagram

 eliminate left recursion

 left factor the grammar

 for each non-terminal

◦ create an initial and a final state

◦ for each production A->X1X2…Xk

 create a path from initial state to final state with edges
labeled X1,X2,…,Xk

 if A->ε the path is an edge labeled ε

 label of edges can be tokens or non-
terminals

 ε-transitions are the default choice

LL(1) Grammar Definition

 rich enough to cover most programming

constructs

 a grammar G is LL(1) iff A->α|β

◦ for no terminal a do both α and β derive

strings beginning with a

◦ at most one of α and β can derive the

empty string

◦ if β=>ε

 α does not derive any string beginning with a

terminal in FOLLOW(A)

*

LL(1) Grammar Definition

 FIRST(α) and FIRST(β) are disjoint sets

 If ε is in FIRST(β) then FIRST(α) and

FOLLOW(A) are disjoint sets

 vice versa if ε is in FIRST(α)

Example

 control flow constructs having

distinguishable keywords generally

satisfies the LL(1) constraints

 stmt-> if (expr) stmt else stmt

| while(expr) stmt

| {stmt_list}

 keywords like: if, while, { tells which

alternative to take in order to succeed in

finding a statement

The Construction of a Predictive

Parsing Table
 to collect information from FIRST and

FOLLOW

 to store them into a predictive parsing table
M[A,a] – two dimensional array
◦ A – non-terminal

◦ a – terminal or the $ end marker

 main idea
◦ A->α is chosen if the next input symbol a is in

FIRST(α)

◦ if α=>ε or α=>ε production A->α is chosen
when the current input symbol or $ is in
FOLLOW(A)

*

The Construction Algorithm

 Input
◦ Grammar G

 Output
◦ Parsing table M

 Method
◦ for each production A->α

 for each terminal a in FIRST(A) add A->α to M[A,a]

 if ε is in FIRST(α) then for each terminal b in FOLLOW(A)
add A->α to M[A,b]

 if ε is in FIRST(α) and $ is in FOLLOW(A) the add A->α to
M[A,$]

◦ after filling the table if there is no production in
M[A,a] then set M[A,a] to error, represented by an
empty entry in the table

Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

id + * () $

E E->TE’ E->TE’

E’ E’->+TE’ E’->ε E’->ε

T T->FT’ T->FT’

T’ T’->ε T’->*FT’ T’->ε T’->ε

F F->id F->(E)

Example

 E->TE’

◦ FIRST(TE’)=FIRST(T)={(,id}

◦ added to M[E,(] and M[E,id]

 E’->+TE’

◦ FIRST(+TE’)={+}

◦ added to M[E’,+]

 E’->ε

◦ FOLLOW(E’)={),$}

◦ added to M[E’,)] and M[E’,$]

Example 2

 S->iEtSS’ | a

 S’->eS | ε

 E->b

a b e i t $

S S->a S->iEtSS’

S’ S’->ε
S’->eS

S’->ε

E E->b

Non-recursive Predictive Parsing

 to maintain a stack explicitly

 rather than implicitly by recursive calls

 the parser simulates the leftmost

derivation

 if w is the input matched so far

◦ then the stack holds a sequence of grammar

symbols α such that S=>wα
*

lm

Model of a Table Driven Predictive

Parser

Model of a Table Driven Predictive

Parser
 input buffer

◦ string to be parsed

◦ end marker $

 stack containing grammar symbols

◦ it’s bottom is marked by $

 parsing table

 output stream

Model of a Table Driven Predictive

Parser
 X is the symbol on top of the stack

 a is the current input symbol

 if X is non-terminal

◦ the parser chooses a production by consulting
the entry M[X,a]

◦ semantic actions can be added to build a node
in the parse tree

 if X is a terminal

◦ a match is checked between X and input
symbol a

Model of a Table Driven Predictive

Parser
 parser configurations

◦ stack content

◦ remaining input

Table Driven Predictive Parsing

 Input

◦ a string w

◦ parsing table M for a grammar G

 Output

◦ if w is in L(G) then

 a leftmost derivation of w

 otherwise error indication

 Method

◦ initially the parser has

 w$ in the input buffer

 start symbol S of G on the stack top, above $

Predictive Parsing Algorithm

set ip to point the first symbol a of w

set X to the top stack symbol

while(X!=$)

{

if (X is a) then pop the stack and advance ip

elseif (X is a terminal) error();

elseif (M[X,a] is an error entry) error();

elseif (M[X,a]=X->Y1,Y2,…,Yk)

{

output the production X->Y1,Y2,…,Yk

pop the stack

push Yk,Yk-1,…,Y1 onto the stack with Y1 on top

}

set X to the top stack symbol

}

Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

id + * () $

E E->TE’ E->TE’

E’ E’->+TE’ E’->ε E’->ε

T T->FT’ T->FT’

T’ T’->ε T’->*FT’ T’->ε T’->ε

F F->id F->(E)

Moves Made by a Predictive Parser

on id+id*id

Error Recovery in Predictive Parsing

 error recovery refers to the stack of the
table driven predictive parser

 is makes explicit the terminals and non-
terminals the parser hopes to match

 the techniques can be used with recursive-
descendant parsing

 an error is detected when:
◦ stack top terminal does not match the next input

symbol

◦ M[A,a] is error (empty)
 A is the non-terminal on the top of the stack

 a is the next input symbol

Panic Mode

 skipping input symbols until a set of

synchronizing symbols appear

 effectiveness depend on the chosen set

 the sets should be chosen so the parser

recovers quickly from errors that are

likely to occur in practice

Some Heuristics

 all symbols in FOLLOW(A) will be added to

the synchronizing set for A non-terminal

 skip tokens until an element of FOLLOW(A)

is seen

 pop A from the stack

 the parsing is likely to continue

Some Heuristics

 only FOLLOW(A) set is not enough

 because semicolons terminate statements in C

 keywords that begin statements may not appear in
the FOLLOW set for expression non-terminal

 a missing semicolon after an assignment may result in
the keyword beginning next statement to be skipped

 expressions appear within statements

 we need to add
◦ to the synchronizing symbols of lower level constructs

◦ the synchronizing symbols of higher level constructs

 we can add symbols that begin statements to the
synchronizing sets for the non-terminals generating
expressions

Some Heuristics

 all symbols from FIRST(A) will be added to
the synchronizing set for A non-terminal
◦ it is possible to resume parsing according to A

◦ if a symbol from FIRST(A) appears

 if a non-terminal can generate the empty
string
◦ then the production deriving in ε can be used by

default

◦ we may postpone some error detection

◦ cannot cause an error to be missed

◦ reduces the number of non-terminals to be
considered during error recovery

Some Heuristics

 if a terminal on the top can not be

matched

◦ pop the terminal

◦ issue a message

◦ continue parsing

◦ the synchronization set of a token consists in

all other tokens

Phrase Level Recovery

 filling in the blank cells pointers to error
routines

◦ change, insert, delete symbols

◦ pop from the stack

 stack alteration is questionable

◦ modifying the stack might not enable
derivation at all

◦ risk of infinite loop

◦ to check the stack size after modifying it

 it should decrease

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

