Compiler Design
Syntax Analysis
Top-Down Parsing

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Qutline

* Recursive-Descent Parsing

e FIRST and FOLLOW
e LL(1) Grammars
* Non-recursive Predictive Parsing

* Error Recovery in Predicting Parsing

Top Down Parsing

 constructing a parse tree from the input
string
o starting from the root

° creating the nodes in preorder

e finding the left-most derivation for an
Input string

Grammar Example

o E->TE’
e E->+TE|e
e T>FT
o T->*FT|e
o F->(E) | id

Derivation Example for id+id*id

FE E
tﬁ / zﬁ /\ zﬁ /\ Ir:;z; / N\ Im /E\
T E T FE' T d T /
/A /\ /\ VATV RN
F T I’? T Il*" CI'" lF'*" T + T E
id id ¢ id €
Im /E\ ;-a,} /E zi /E\
T ! T ! T E’
F/’IL" +/ \T\ E’ F/'IJ"’ +/ \T\ E' F/’.II“ / \T\ E'
TN T TN T TN
id € F T id ¢ F T id ¢ T’
VA RN
id id « F 71
= E B B
im N\ ! im T/ N\ f Im T/ \E’
AN 1 /NN ST /N T
F T + T E F T + T E' F T + T E'
Ii | F/ N\ ; Ll | F/ \T’ g | F/ \T’ l
R A AN 20 N B2 AN
id « F T id =« F T id x {'

LL(k) Grammars

o LL(k) — class of grammar for which we

can construct predictive parsers looking k
symbols ahead

o LL(I)
e FIRST and FOLLOWY sets

° are used to construct predictive parsing tables
> make explicit the choice of production

o are useful for bottom-up parsing

Recursive Descendant Parsing

Program

* set of procedures

* one procedure for each non-terminal
e the start symbol

o launches the execution

> announces success if the body scans it’s input
string

Recursive Descendant Parsing

void A()
{
choose an A-production,A->X, X, ... X,;
for(i=1 to k)
{
if (X, is a non-terminal)
call procedure Xy();
else if (X, equals the current symbol a)
advance the input to the next symbol;
else /* an error has occurred */

Recursive Descendent Parsing

Pseudocode
e non-deterministic

> the manner in which the A-production is
chosen is not specified
e generally requires backtracking
° repeated scans over the input

° rarely needed to parse programming language
constructs

° not very efficient — tabular methods such as
dynamic programming are preferred

Allowing Backtracking

try each
production in
some order

void A()

{
choose an A-production,A->X, X, ... X,;
for(i=1 to k)
{

if (X, is a non-terminal)
call procedure Xy();

else if (X, equals the current symbol >
. try another
advance the input to the ne, A roductD

else /* an error has occurred */
} Eet the inlD
} pointer

Top-Down Parse Tree

eS->cAd
*A->ab]a
e w=cad

Step |

* S has only one production
* we expand S

PERN
c A d

e first character of input w=cad matches
the leftmost leaf in the tree c

Step 2

* we expand A->a b
e we have a match for second input character a

SN
c /A\ d
a b
* we go to next symbol d
* b does not match d
* we report failure

e we go back to A to try another alternative
* we reset input pointer to position 2

Step 3

e the second alternative for A is A->a

N

C A d

a
e leaf a matches second symbol

¢ leaf d matched the third symbol

» we halt with successful parsing message

FIRST and FOLLOWY Functions

 two functions useful in creating parsers
for both
° top-down
> bottom-up

* helps which production to apply based on
next input symbol

* in panic mode error recovery tokens
produced by FOLLOWYV are used for
synchronization

The FIRST Function
» FIRST(a)

> set of terminals that begin strings derived
from o

° o is any string of grammar symbols
> if a=>€ then € is in FIRST(a)
o A*=>cy

o cis in FIRST(A) /A/S\ax
- c/ l 5

How FIRST function works ?

+ A->0|p
» FIRST(a) and FIRST(B) are disjoint sets

* input symbol a can be in one of the two
sets

o ifais in FIRST() we can choose the
production A->f3

The FOLLOW Function
« FOLLOW(A)

> the set of terminals a that can appear
immediately to the right of A in some
sentential form

o the set of terminals a such that
%k
S=>aAaf for some a and f3

How to compute FIRST ?

o if X is terminal then FIRST (X)={X}

o if X is non-terminal X->Y Y,...Y isa
production for some k>=|
> place a in FIRST(X) if for some i

a is in FIRST(Y) and
g is in FIRST(Y,)...FIRST(Y.)

o if e is in all FIRST(Y) j=1,....k
then add € to FIRST(X)
e if X-> € is a production
> then add € to FIRST(X)

How to compute FIRST ?

* input string X, X,...X_
* add to FIRST(X,X,...X))

> all non-g symbols of FIRST(X,)

> all non-g symbols of FIRST(X,) if € is in
FIRST(X))

> all non-€ symbols of FIRST(X;) if € is in
FIRST(X,) and in FIRST(X,)

o
[N]

o g,if e isin all FIRST(X) i=1,..,n

How to compute FOLLOWV ?

* place $ in FOLLOWV(S)
° S is the start symbol

> $ is the right enc
o if there is a proc

-marker
uction A->aB[3

- everything in F
FOLLOW(B)

RST(B) except €is In

o If there Is a production A->aB or

A->aB[3 where first(8) contains ¢
> everything in FOLLOW(A) Is In

FOLLOW(B)

E->TF
Example E->+TFE'|e
T->FT
* FIRST(F)={(,id} T->*FT’|e
o FIRST(T)=FIRST(F)={(,id} F->(E) | id

« FIRST(E)=FIRST(T)=FIRST(F)={(,id)

» FIRST(E")={+,£}
« FIRST(T")={* €}

E->T

Example E'->+TFE'|e
T->FT°
* FOLLOW(E)={),$} T->*FT|e
° E is the start symbol so it must F->(E) | id
include $
> the body (E) tells that the) symbol must be
included

 FOLLOW(E)={),$}
o E->TE’ so what follows after E will follow

after E’
- FOLLOW(F’)=FOLLOWV(E)

Example

o FOLLOW(T)={+,),$}
o E->TE’ so FOLLOWV(T) includes
FIRST(E’)={+} (except €)
o E->TE’ and E’ includes €, so

E->TE
E->+TE'|e
T->FT
T->*FT’|e
F->(E) | id

FOLLOW(E)={),$} is included in FOLLOW(T)

o FOLLOW(T")={+,),$}

o T->FT’" so FOLLOWV(T) is included in

FOLLOW(T’)

E->TFE

Example E'->+TFE'|e
>ET
o FOLLOW(F)={+*),$} T->*FT|¢

° T'->*FT" so FOLLOW(F) includes F->(E) | id

FIRST(T’)={*} (except €)

o T->FT” and T’->¢ so FOLLOW(F) includes
FOLLOW(T)={+,),$}

LL(1) Grammars

* predictive parsers
> recursive descendant with no backtracking
e can be constructed for LL(Il) grammar
class
> first L stands for scanning the input from left
to right
> second L for producing leftmost derivation

o the | is for using one input symbol of
lookahead at each step to make parsing
actions decisions

Transition Diagrams for Predictive

Parsers

o useful for visualizing predictive parsers
o E->TFE

o B’->+TFE’|e |
E
O R
|
o 0.9 €

T

Building a Transition Diagram

» eliminate left recursion
o left factor the grammar

e for each non-terminal
o create an initial and a final state
o for each production A->X,X,... X,

create a path from initial state to final state with edges
labeled X|,X,,...,X,

if A->¢ the path is an edge labeled ¢

* label of edges can be tokens or non-
terminals

e e£-transitions are the default choice

LL(1) Grammar Definition

* rich enough to cover most programming
constructs

e a grammar G is LL(I) iff A->a|f3
> for no terminal a do both a and (3 derive
strings beginning with a
> at most one of a and 3 can derive the
empty string
o if B=>¢

a does not derive any string beginning with a
terminal in FOLLOW(A)

LL(1) Grammar Definition

» FIRST(a) and FIRST([3) are disjoint sets

o If€isIn FIRST(B) then FIRST(a) and
FOLLOW(A) are disjoint sets

evice versalif eisin FIRST(a)

Example

e control flow constructs having
distinguishable keywords generally
satisfies the LL(1) constraints

o stmt-> if (expr) stmt else stmt
while(expr) stmt

{stmt_list}

 keywords like: if, while, { tells which

alternative to take in order to succeed in
finding a statement

The Construction of a Predictive
Parsing Table

e to collect information from FIRST and
FOLLOW

* to store them into a predictive parsing table
M[A,a] — two dimensional array

° A — non-terminal
o a — terminal or the $ end marker
e main idea

> A->a Is chosen if the next input symbol a is in
FIRST(a)

> if a=>¢ or a=>¢ production A->a is chosen

when the current input symbol or $ is in
FOLLOW(A)

The Construction Algorithm

 |Input
> Grammar G
e Output

° Parsing table M
e Method

> for each production A->a
for each terminal a in FIRST(A) add A->a to M[A,a]

if € is in FIRST(a) then for each terminal b in FOLLOW(A)
add A->a to M[A,b]

if € is in FIRST(a) and $ is in FOLLOW(A) the add A->a to
M[A$]

o after filling the table if there is no production in

M[A,a] then set M[A,a] to error, represented by an
empty entry in the table

Example

e E->TF

E->+TE|e

e T>FT
e T->FT'|e
. F->(E) | id

id

E->TFE

E->TFE

E’

E->+TFE

E'->¢

E’->¢

T->FT°

T->FT°

T’

T->¢

T'->*FT’

T->¢

T->¢

F->id

F->(E)

Example

e E->TFE
o FIRST(TE)=FIRST(T)={(,id}
° added to MI[E,(] and M[E,id]
o E->+TF
o FIRST(+TE)={+}
> added to M[F’,+]
o E’'->¢
- FOLLOW(E)={),$}
> added to M[FE’,)] and M[E’,$]

Example 2

o S->iEtSS’ | a
e S$->eS | &
e E->b
a b e i $
S S->a S->iEtSS’
S’ S->¢ S’->¢
S’->eS

Non-recursive Predictive Parsing

e to maintain a stack explicitly
» rather than implicitly by recursive calls

 the parser simulates the leftmost
derivation
e if w is the input matched so far

> then the stack holds a sequence of grammar
*
symbols a such that S=>wa

Model of a Table Driven Predictive
Parser

Stack

Input

a

/

Predictive
Parsing
Program

n [N ||

|

Parsing
Table

— Qutput

Model of a Table Driven Predictive

Parser
e input buffer

° string to be parsed

> end marker $

* stack containing grammar symbols

° it’s bottom is marked by $
e parsing table
° output stream

Model of a Table Driven Predictive

Parser
e X is the symbol on top of the stack
* a is the current input symbol

e if X is non-terminal

> the parser chooses a production by consulting
the entry M[X,a]

o semantic actions can be added to build a node
in the parse tree

o if X is a terminal

> a match is checked between X and input
symbol a

Model of a Table Driven Predictive

Parser
e parser configurations

o stack content

° remaining input

Table Driven Predictive Parsing

* |Input
° a string w
o parsing table M for a grammar G
e Output
° if wis in L(G) then
a leftmost derivation of w
otherwise error indication

e Method

° initially the parser has
w$ in the input buffer
start symbol S of G on the stack top, above $

Predictive Parsing Algorithm

set ip to point the first symbol a of w
set X to the top stack symbol
while(X!=$)
{
if (X is a) then pop the stack and advance ip
elseif (X is a terminal) error();
elseif (M[X,a] is an error entry) error();
elseif (M[X,a]=X->Y,Y,,...,Y})
{
output the production X->Y ,Y,,...,Y,
pop the stack
pushY,Y, ,...,Y, onto the stack with Y, on top

}

set X to the top stack symbol

Example

e E->TF

E->+TE|e

e T>FT
e T->FT'|e
. F->(E) | id

id

E->TFE

E->TFE

E’

E->+TFE

E'->¢

E’->¢

T->FT°

T->FT°

T’

T->¢

T'->*FT’

T->¢

T->¢

F->id

F->(E)

Moves Made by a Predictive Parser
on id+id*id

MATCHED STACK INPUT ACTION

E$ id +id *id$
TE'$ id+id=*id$ output E - TE'
FT'E'$ id+idxid$ output T — FT'
idT'E'$ id+idxid$ output F — id

id T'E'S +id #id$ match id

id E'$ +id *id$ output 7" — ¢

id + TE'S +id *id$ output E' - + TFE'
id + TE'S id x id$ match +

id + FT'E'$ id xid$ output T — FT'
id + idT'E'$ id xid$ output F — id

id + id T'E'$ *id$ match id

id +id * FT'E'$ xid$ output T — x FT'
id + id * FT'E'$ id$ match x

id + id * id T'E'$ id$ output F — id

id +id * id T'E'$ $ match id

id +id * id E'$ output 7”7 — €

$
id +id *x id $ $ output E' — €

Error Recovery in Predictive Parsing

* error recovery refers to the stack of the
table driven predictive parser

* is makes explicit the terminals and non-
terminals the parser hopes to match

 the techniques can be used with recursive-
descendant parsing

e an error is detected when:

o stack top terminal does not match the next input
symbol
> M[A,a] is error (empty)
A is the non-terminal on the top of the stack
a is the next input symbol

Panic Mode

e skipping input symbols until a set of
synchronizing symbols appear

» effectiveness depend on the chosen set

* the sets should be chosen so the parser
recovers quickly from errors that are
likely to occur in practice

Some Heuristics

¢ all symbols in FOLLOW(A) will be added to
the synchronizing set for A non-terminal

* skip tokens until an element of FOLLOW(A)
IS seen

* pop A from the stack

* the parsing is likely to continue

Some Heuristics

e only FOLLOW(A) set is not enough
e because semicolons terminate statements in C

* keywords that begin statements may not appear in
the FOLLOWV set for expression non-terminal

* a missing semicolon after an assignment may result in
the keyword beginning next statement to be skipped

e expressions appear within statements

* we need to add
° to the synchronizing symbols of lower level constructs
o the synchronizing symbols of higher level constructs

e we can add symbols that begin statements to the
synchronizing sets for the non-terminals generating
expressions

Some Heuristics

e all symbols from FIRST(A) will be added to
the synchronizing set for A non-terminal

° it is possible to resume parsing according to A
o if a symbol from FIRST(A) appears

¢ if a non-terminal can generate the empty
string

> then the production deriving in € can be used by
default

° we may postpone some error detection
°© cannot cause an error to be missed

o reduces the number of non-terminals to be
considered during error recovery

Some Heuristics

* if a terminal on the top can not be
matched
> pop the terminal
° Issue a message
° continue parsing

> the synchronization set of a token consists in
all other tokens

Phrase Level Recovery

* filling in the blank cells pointers to error
routines
° change, insert, delete symbols
> pop from the stack

» stack alteration is questionable

> modifying the stack might not enable
derivation at all

° risk of infinite loop

> to check the stack size after modifying it
it should decrease

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi,
Jeffrey D. Ullman — Compilers, Principles,

Techniques and Tools, Second Edition,
2007

