Compiler Design
Syntax Analysis

Bottom-Up Parsing

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Qutline

* Reductions

* Handle Pruning

e Shift-Reduce Parsing

e Conflicts During Shift-Reduce Parsing

Introduction

 the construction of a parse tree
> beginning at the leaves (bottom)
> working up towards the root (top)
» general style of bottom-up parsing
> shift-reduce parsing
* large class of grammars for which shift-
reduce parsers can be built are LR grammars
* LR parsers
o difficult to be built by hand
o generators build efficient LR parsers

Example

 bottom-up parse for id*id

id * id Il?'*id ff_”*id T « F
id }|? IlL’ ic':l
id id
o E->E+T|T
o T->T*F|F

« F->id | (E)

a.—

ty

\
F

* —Iﬂ—-—

/

id

Reductions

e bottom-up parsing = reducing a string w
to the starting symbol of the grammar
* reduction step consists in

> specific substring matching the body of a
production is replaced by a non-terminal of
that production

* key decisions
> when to reduce

> what production to apply

Reductions

id * id

o leftmost id is reduced to F using F->id
F*id

° FisreducedtoT

T *id

> T can be reduced to E

° or
° id can be reduced to F
o T*F
o T*F is reduced to T
o T
o Tisreducedto E
e E

roots of subtrees in the example

Reductions

* the reverse step of derivation

° a non-terminal is replaced by the body of one
of its productions

* bottom-up parsing
o to construct derivation in reverse

° using the rightmost derivation

o E=>T=>T*F=>T*id=>F*d=>id*id

Handle Pruning

e |eft to right bottom-up parsing constructs
a rightmost derivation in reverse

* handle = substring that matches the body
of a production

* handle reduction = a step in the reverse
of rightmost derivation

Handles During a Parse id,*id,

RIGHT SENTENTIAL FORM

HANDLE

REDUCING PRODUCTION

idl *idg
F*idg
T*idg

I'xF

id;
F
id»
Yy

F —id
T— F
F —id
E—-T % F

e E->T ,T is not a handle in T*id,
e if we replace T by E

> we get E*id, which can not be derived from E

¢ leftmost substring that matches
production body need not to be a handle

Handles

i
* . \
o if SE>0AwWF>aBwW P
> then A->[3 in the position following a is a
handle of afw
 the handle of right-sentential form y Is

a production A->f3 and a position of y
where 3 may be found
> such that replacing 3 at that position by A

produces the previous right sentential
form in a rightmost derivation of y

Handles

e the string w to the right of the handle
must contain only terminal symbols

» the body B Is the handle
o If the grammar is ambiguous

- “the handle” becomes “a handle”
o else

o every right-sentential form has exactly one
handle

Handles

* rightmost derivation = handle pruning
e w is the sentence of the grammar

* w=Y, where v, Is the n-th right-sentential form
of some unknown rightmost derivation

° S:VO%>Y1r?n>Y2$m>' " fm>vn-1%m>vnzw
e to rebuild this derivation in reverse order

> locate handle 3, in y, by production of A -> 3, to
get right-sentential form "

- handles must be found with specific methods

o repeat the process until the start symbol S is
found

> reverse of reductions = rightmost derivation

Shift-Reduce Parsing

¢ is a form of bottom-up parsing
» the stack holds grammar symbols

e the input buffer holds the rest of the string
to be parsed

e the handle appears on the top of the stack
* we mark by $

> the bottom of the stack
° the right end of the input

e initially
o stack input

> $ w$

Shift-Reduce Parsing

e left-to-right scan of the input string

e shift zero or more input symbols onto the
stack

* reduce a string B of grammar symbols on
the top of the stack to the appropriate
production

* stop when

o error is detected
° both

the stack contains the start symbol
the input is empty

Configurations of a shift-reduce
parser on id,*id,

STACK INPUT ACTION

$ il‘jl * idg $ shift

$id, xidy $ reduce by F — id

$ F +ido$ reduce by T' — F
§T +ids § shift

$T * id; § shift

$T % id, $ reduce by F' — id
$T x F § reduceby T — T« F
$T $ reduceby E— T
$E $ accept

Possible Actions

o shift
> the next symbol onto the top of the stack
* reduce

o the right end of the string when it is on the top of the
stack

° locate the left end of the string

> decide with what non-terminal to replace the string
* accept

> announce successful completion of parsing
¢ error

> discover a syntax error

o call an error recovery routine

Two Possible Cases

* (1) Sim>aAza>aBByz= aByyz
° (2) S =>0BxAz=>0aBxyz=>ayxyz

Case | in Reverse

STACK INPUT
$apy yz$
$a[3B yz$

$a3By z$
$0A z$
$0AZ $
$S $

Case 2 in Reverse

STACK INPUT
$ay xyz$
$aB xyz$

$aBxy z$

$aBxA z$
$aBxAz $
$S $

Conclusion

* in both cases
e after making a reduction

* the parser had to shift zero or more
symbols to get the next handle on the
stack

 the handle will appear always on the top
of the stack !!!

e the handle is never found into the stack
"

Conflicts During Shift-Reduce

Parsing

* shift/reduce conflicts

* reduce/reduce conflicts

e not LR(k) grammars

* k number of symbols of lookahead on the
input

e grammars used in compiling LR()

Example |

e stmt-> if expr then stmt
| if expr then stmt else stmt

| other
Stack Input
...if expr then stmt else...$

e shift/reduce conflict
° to reduce “if expr then stmt” to stmt

o shift else, shift another stmt and reduce “if expr
then stmt else stmt” to stmt

* to favor shifting

Example 2

I. stmt->id (parameter_list)

stmt->expr = expr
barameter_list->parameter_list , parameter
barameter _list->parameter

barameter->id

expr->id (expr_list)
expr->id
expr_list->expr_list , expr

Vo 0 N O U1 AW N

expr_list->expr

Example 2

» procedure calls = names and parentheses
e arrays have the same syntax

 statement p(i,j) appears as id(id,id)

o STACK INPUT

o ...id(id id)...

* to reduce with

o 5 if pis a procedure
o 7 if pis an array

o STACK INPUT
e ...procid(id id)...

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi,
Jeffrey D. Ullman — Compilers, Principles,

Techniques and Tools, Second Edition,
2007

