
Compiler Design

Syntax Analysis

Bottom-Up Parsing
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Reductions

 Handle Pruning

 Shift-Reduce Parsing

 Conflicts During Shift-Reduce Parsing

Introduction

 the construction of a parse tree

◦ beginning at the leaves (bottom)

◦ working up towards the root (top)

 general style of bottom-up parsing

◦ shift-reduce parsing

 large class of grammars for which shift-
reduce parsers can be built are LR grammars

 LR parsers

◦ difficult to be built by hand

◦ generators build efficient LR parsers

Example

 bottom-up parse for id*id

 E->E+T|T

 T->T*F|F

 F->id | (E)

Reductions

 bottom-up parsing = reducing a string w

to the starting symbol of the grammar

 reduction step consists in

◦ specific substring matching the body of a

production is replaced by a non-terminal of

that production

 key decisions

◦ when to reduce

◦ what production to apply

Reductions

 id * id

◦ leftmost id is reduced to F using F->id

 F * id

◦ F is reduced to T

 T * id

◦ T can be reduced to E

◦ or

◦ id can be reduced to F

 T * F

◦ T*F is reduced to T

 T

◦ T is reduced to E

 E

 roots of subtrees in the example

Reductions

 the reverse step of derivation

◦ a non-terminal is replaced by the body of one

of its productions

 bottom-up parsing

◦ to construct derivation in reverse

◦ using the rightmost derivation

 E=>T=>T*F=>T*id=>F*id=>id*id

Handle Pruning

 left to right bottom-up parsing constructs

a rightmost derivation in reverse

 handle = substring that matches the body

of a production

 handle reduction = a step in the reverse

of rightmost derivation

Handles During a Parse id1*id2

 E->T , T is not a handle in T*id2

 if we replace T by E

◦ we get E*id2 which can not be derived from E

 leftmost substring that matches

production body need not to be a handle

Handles

 if S=>αAw=>αβw
◦ then A->β in the position following α is a

handle of αβw

 the handle of right-sentential form γ is
a production A->β and a position of γ
where β may be found
◦ such that replacing β at that position by A

produces the previous right sentential
form in a rightmost derivation of γ

*
rmrm

Handles

 the string w to the right of the handle

must contain only terminal symbols

 the body β is the handle

 if the grammar is ambiguous

◦ “the handle” becomes “a handle”

 else

◦ every right-sentential form has exactly one

handle

Handles

 rightmost derivation = handle pruning

 w is the sentence of the grammar

 w=γn where γn is the n-th right-sentential form
of some unknown rightmost derivation

 S=γ0=>γ1=>γ2=>… =>γn-1=>γn=w

 to rebuild this derivation in reverse order
◦ locate handle βn in γn by production of An-> βn to

get right-sentential form γn-1

◦ handles must be found with specific methods

◦ repeat the process until the start symbol S is
found

◦ reverse of reductions = rightmost derivation

rm rm rm rm rm

Shift-Reduce Parsing

 is a form of bottom-up parsing

 the stack holds grammar symbols

 the input buffer holds the rest of the string
to be parsed

 the handle appears on the top of the stack

 we mark by $
◦ the bottom of the stack

◦ the right end of the input

 initially
◦ stack input

◦ $ w$

Shift-Reduce Parsing

 left-to-right scan of the input string

 shift zero or more input symbols onto the
stack

 reduce a string β of grammar symbols on
the top of the stack to the appropriate
production

 stop when
◦ error is detected

◦ both
 the stack contains the start symbol

 the input is empty

Configurations of a shift-reduce

parser on id1*id2

Possible Actions

 shift
◦ the next symbol onto the top of the stack

 reduce
◦ the right end of the string when it is on the top of the

stack

◦ locate the left end of the string

◦ decide with what non-terminal to replace the string

 accept
◦ announce successful completion of parsing

 error
◦ discover a syntax error

◦ call an error recovery routine

Two Possible Cases

 (1) S=>αAz=>αβByz=>αβγyz

 (2) S=>αBxAz=>αBxyz=>αγxyz
*

*

rm rm rm

rm rm rm

Case 1 in Reverse

STACK INPUT

$αβγ yz$

$αβB yz$

$αβBy z$

$αA z$

$αAz $

$S $

Case 2 in Reverse

STACK INPUT

$αγ xyz$

$αB xyz$

$αBxy z$

$αBxA z$

$αBxAz $

$S $

Conclusion

 in both cases

 after making a reduction

 the parser had to shift zero or more

symbols to get the next handle on the

stack

 the handle will appear always on the top

of the stack !!!

 the handle is never found into the stack

!!!

Conflicts During Shift-Reduce

Parsing
 shift/reduce conflicts

 reduce/reduce conflicts

 not LR(k) grammars

 k number of symbols of lookahead on the

input

 grammars used in compiling LR(1)

Example 1

 stmt-> if expr then stmt

| if expr then stmt else stmt

| other

Stack Input

…if expr then stmt else…$

 shift/reduce conflict

◦ to reduce “if expr then stmt” to stmt

◦ shift else, shift another stmt and reduce “if expr
then stmt else stmt” to stmt

 to favor shifting

Example 2

1. stmt->id (parameter_list)

2. stmt->expr := expr

3. parameter_list->parameter_list , parameter

4. parameter_list->parameter

5. parameter->id

6. expr->id (expr_list)

7. expr->id

8. expr_list->expr_list , expr

9. expr_list->expr

Example 2

 procedure calls = names and parentheses

 arrays have the same syntax

 statement p(i,j) appears as id(id,id)

 STACK INPUT

 …id(id ,id)…

 to reduce with

◦ 5 if p is a procedure

◦ 7 if p is an array

 STACK INPUT

 …procid(id ,id)…

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

