
28.04.2015

1

Distributed
Programming

Dan Cosma About

2

What’s in a name?

3

Programarea rețelelor de calculatoare

Computer Network Programming

Programarea aplicațiilor distribuite

Distributed Programming

Purpose

4

Introduction to Distributed Software
Systems
 learning to program in a networked environment

 understanding and using the main techniques and
technologies

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

2

Introduction

5

Distributed System

 ”a collection of independent computers that appears
to its users as a single, coherent system” [TS01]

 an arbitrary number of processing elements running
at different locations, interconnected by a
communication system [Wu99]

6

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. “Distributed
Systems:

Principles and Paradigms.” Prentice Hall, 2001.
[Wu99] Jie Wu. “Distributed Systems Design.” CRC Press LLC, 1999.

Distributed Systems

 Multiple processing units
running in nodes situated at
different locations

 Communication is done via an
infrastructure

 The architecture is
heterogenous

7

Communication
Infrastructure

Node Node

Node

Node

Node

Node

Node

Nodes

 System components
running in nodes:

 are independent
programs that have
dual functionality:
- local
- network-aware

 can be written in
various languages /
can run on different
platforms

8

Communication
Infrastructure

Node Node

Node

Node

Node

Node

Node

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

3

Communication Infrastructure

 Handles the data
transmission and event
notification over the
network

 Is available through
libraries, language
constructs or platform-
specific services

9

Communication
Infrastructure

Node Node

Node

Node

Node

Node

Node

Communication Infrastructure

 Is built to hide the
communication details, at
different levels of abstraction

 Is directly related to
technological concerns

10

Communication
Infrastructure

Node Node

Node

Node

Node

Node

Node

Communication Infrastructure

 We call it
Communication Mediator

11

Communication
Mediator

Node Node

Node

Node

Node

Node

Node

(c) 2008-2011, Dan C. Cosma

It’s a SYSTEM

 The components, however loosely coupled,
work together for a common goal, and
represent parts of the same system

12

Communication
Infrastructure

Node Node

Node

Node

Node

Node

Node

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

4

Do We Need Distributed
Software ?

13

 The real world is distributed

Organizations span over multiple
locations

People communicate over the internet
even in their spare time

The world depends on computer networks

14

Do We Need Distributed Software ?

What types of systems are
needed?

 Applications that seamlessly integrate our
workplaces, homes, ourselves so that we

find information easily

work productively

live in sync with the others

 ... without being involved in the details

15

Distributed applications

 Answer real-world concerns

 Connect communities

 Widely used: basically all modern
applications are network-aware, and the
ability to communicate over the network is
essential for their functionality

16

[1] OASIS (Organization for the Advancement of Structured Information Standards) Reference Model

for Service Oriented Architecture 1.0

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

5

Therefore... Therefore...

Learning how to develop distributed
programs is important

Communication

 The main concern in network-aware applications

 To find the common language between the
various components of the application, the
engineer must
- understand their differences
- find common platform-related communication
infrastructures
- describe a communication policy (and protocol)
- adapt the components where necessary
(preferably write them after designing the policy)

19

Communication

 Usually, an application is homogenous, as it is
developed on a single platform/technology

 When components must run on different
environments:
- the constraints imposed by the environments
are vital when finding the carrier for the
“common language”
- compromises must be made
(e.g. mobile clients may impose performance
constraints, and limit the choice to “simple”
technologies such as direct socket connections or
simple HTTP exchanges)

20

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

6

Communication

 The communication policy
- describes the layout of the communication,
around a communication protocol

 Communication protocol
- the set of rules, formats, and conventions that
govern the communication between components
- an essential part in the system design
- ensures long-term compatibility of
components
(long-term, referring both to the system’s run
time and the system’s evolution)

21

Types of Distributed
Applications

A Loose Classification of
Distributed Applications

 Classic communication applications: FTP, Web
browsing, remote shell, remote desktop, etc.

 Web applications

 File and information sharing

 Distributed databases

 Enterprise applications

 Cloud Computing

 Multi-agent distributed systems

23

“Classic” Applications

 Provide single, specific features

 Rely on standardized protocols

 Dedicated clients and servers

 Components (client, server) can be implemented by
distinct vendors

 Widely used, widely ported

24

FTP HTTP SSH VNC
Messaging SMTP

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

7

Web Applications

 Use the HTTP protocol

 The client is always the generic Web browser

 Traditionally, the functionality is almost entirely server-
side

 The browser sends HTTP requests, the server generates
HTML pages as response

 Session management is complex (HTTP is a bit primitive)

 Client-side functionality requires “imaginative”
workarounds (now available as dedicated frameworks)

25

Social networks

 Mainly web applications

 Usually provide dedicated mobile clients
(phones, tablets, other useful gadgets)

 Part of the “Cloud” services

 Exceedingly popular

26

File/information sharing

 Usually peer-to-peer

 Widely distributed over the network

 Robust software architectures (node failure impact is
limited)

 Minimal centralization, usually for locating peers

 Excellent for large data distribution (e.g. Linux)
- greatly reduces the load on traditional file servers

 Well-suited for multimedia streaming
- eliminates the server bottleneck and reduces
communication costs

27

Distributed Databases

 Distributed database = a database that uses storage
located on multiple computers

 It is seen as a single database, but the data can span
over multiple locations

 Uses replication and duplication to maintain
consistency
- replication: changes propagate to all nodes
- duplication: data in a “master” node is copied in all
other nodes

28

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

8

Enterprise Applications

 Enterprise application = software used in
organizations, usually large

 Types:
- built in-house
- custom-made by another party or outsourced
- Software as a Service (SaaS) accessed via the
internet

29

Cloud Computing

 = software services that do not require the user’s
involvement in the deployment, configuration and
hosting

 Based on the utility computing model
= computing services are like public utilities, similar
to the traditional ones (gas, water, electricity, etc.)

 Cloud computing providers expose their services
online

 Users need minimal resources to connect as clients

30

Distributed Agents

 Agent (Michael Woolridge [1]):
= “a computer system that is situated in some
environment and that is capable of
autonomous action in this environment in
order to meet its design requirements”

31

[1] Gerhard Weiss - editor: Multiagent Systems - A Modern
Approach
to Distributed Artificial Intelligence, The MIT Press, 1999.

Agent

32

Agent

Environment

Sensor
input

Action
output

Source: M. Wooldrige: Intelligent Agents, from the book edited by Gerhard Weiss: Multiagent Systems

- A Modern Approach to Distributed Artificial Intelligence, The MIT Press, 1999, page 29.

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

9

Examples of Agents

Control systems, e.g. a temperature
monitor in an air conditioning system

E-mail notification agents

“Spam” filters

Synchronization agents (e.g. between a
phone and a computer)

33

Intelligent Agents

 A software agent which, besides being
autonomous, features
- reactivity
the ability of perceiving and responding to
environment changes
- proactivity
the ability to take the initiative in order to
fulfill their goals
- social ability
the ability to communicate with other software
agents

34

Distributed Agents

 Agents, with various degrees of intelligence,
which
- communicate to other agents other via the
network,
and/or
- are able to migrate from one location to
another (mobile agents)

 Multi-agent distributed systems: complex
distributed systems made of multiple
distributed agents that work for a common goal

35

Distributed Architectures

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

10

Client-server

 The most common
architecture

 Server: provides a set of
services

 Client: uses the services

 The client initiates the
communication

 Usually clients are lighter
than servers

37
(c) 2008, Dan C. Cosma

Client-server

 Advantages

 the core functionality is in one place
(server)

 easy to implement and manage

 easy to control, evolve

 Allows for thin clients

38

• Disadvantages

• hard to scale up

• clients depend on the
server interface

• centralization,
bottleneck, server too
critical

Peer-to-peer

 The components are balanced – they
can play both client and server roles

 The runtime layout of the system is
flexible: peers can join the network,
or can leave it at any time

 Peers communicate to each other as
needed (no fixed channels)

 Decentralization is key

 Multiple communication paths provide
redundancy

39
(c) 2008-2014, Dan C. Cosma

Peer-to-peer

 Advantages

 flexible, scalable

 decentralized

 survives (partial)
component failure

40

• Disadvantages

• complex
architecture

• not easy to manage

• hard to discover the
running peers

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

11

Mixed architectures

 Both client-server and
peer-to-peer
subsystems are present

 Example: BitTorrent

41

May solve the peer-to-peer problems (e.g. discovery,
coordination) with a minimal compromise in
centralization

Centralized Centralized
services
(Server)

Distributed Objects

 Fundamental architectural components: objects

 No a-priori distinction between clients and servers

 Objects define interfaces and provide services

 Objects use each other’s services

 Objects are distributed over the network and
communicate through specific middleware*

* Not all middleware systems are related to
distributed objects, other types of middleware exist

42

Distributed Objects

43

Object Object

Object

Object

Object

Object

ObjectObject
Object

Object Request Broker (the middleware)

Distributed Objects
 Advantages

- open architecture: objects can be added as needed
- scalability
- provides a very good framework for interoperability
- provides the possibility of dynamic reconfiguration (e.g.
object migration)

 Disadvantages
- complex infrastructures
- comunication overhead due to complex protocol stacks
- dependency on (sometimes) proprietary middleware

44

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

12

Service-Oriented
Architectures
 Designed around the concept of providing services

 Service = “an act or a performance offered by one party to another”
(Lovelock et al., 1996)

 Web Service = “a standard representation for some computational or
informational resource that can be used by other programs” [1]

 Applications are built as collections of independent
components that communicate by publishing and/or using
services

 One same component (service) can be used or reused in
multiple applications

45

For references, see Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

[1] Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

Three Tier

 Largely used in
modern enterprise
systems

 Presentation:
interacts with the
user

 Logic (Business): the
main system
functionality (e.g.
algorithms)

 Data: models the
data used by
Business

46
(c) 2008-2014, Dan C.

Cosma

Application Protocols

47

Communications Protocols

 Formal description of the communication
between hardware or software components

 The usual information carrier is the message

 Describe
- the message format (syntax, semantics)
- the message exchange rules
- synchronization, coordination during the
message exchange

48

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

13

Software Communication

 Protocols established between software
components

 Developed in the early stages of the design

 Transported by communication mediators
specific to the application platform

49

Importance

 Protocols represent the common language for
the communicating components

 Essential for providing
- component integration
- transport for system commands
- adequate component coupling
- efficiency in sending key system data
- error handling and recovery

50

Usage scenarios

 Programs communicating over the network:
TCP/IP, RMI, etc.
the technology itself is not relevant here

 Software components in an application: pipes,
IPC, etc.

 Operating systems components

 Kernel-level communication

51

Responsibilities
 Representation

- represent the abstract data and the concepts in
communication

 Authentication
- provide mechanisms for ensuring the communication
parties are genuine

 Authorization
- mechanisms to make sure the parties are allowed to
communicate

 Coordination
- commands, rules of communication, acknowledgment
of receipt, etc.

 Error handling
52

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

14

Protocol Layering

 Breaking a complex protocol into several
simpler ones

 Layers represent functionalities: each solve a
particular problem

 Layers communicate to each other

53

Example of Layering

 TCP/IP stack:
- Application: communication specific to
applications
- Transport: end-to-end communication,
including error control, flow control and
application-level addressing (ports)
- Internet: route packets over the network
- Link: send packets between hosts, over the
local network

54

Application Protocol

 Application-specific communication protocol

 Connects software components or applications

 Two approaches:
- proprietary - built in-house for custom,
specific applications
- standardized - public specifications for others
to use

55

Public application protocols

 Thoroughly specified in public documents (e.g. RFC’s)

 Vendors or organizations can build components by only
knowing the protocol: interoperability

 Examples:
- FTP - File Transfer Protocol
- SSH - Secure Shell protocol
- SMTP - Simple Mail Transfer Protocol
- HTTP - Hypertext Transfer Protocol
- BitTorrent protocol
- ...

56

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

15

Need a Protocol?

57

For details, see RFC

3117

1. Find and existing one that fits (at least
partially) your goals

2. Define a data exchange model over an
existing protocol (e.g. over HTTP or SMTP)

3. Design a protocol from scratch

Option 1.

58

Find and existing one that fits (at least partially) your
goals

- Not so easy to find
- Even if found, is this really a better way?

Example: need to push or pull files, synchronously or
asynchronously:

~ should we use FTP?
~ do we like all its aspects?

(authentication, negotiation, command ports, etc.)

We have to evaluate the costs of modifying the
protocol:

is it really cheaper than developing it from
scratch? For details, see RFC 3117

Option 2.

59

Define a data exchange model over an existing
protocol (e.g. over HTTP or SMTP)

Advantages:
- inherit all the infrastructure for transporting the

data
(e.g. HTTP servers, proxies, authentication mechanisms, etc.)

- reuse the already existing tools (monitoring,

development)

Disadvantages:
- protocols have limitations
(e.g. HTTP isn’t flexible enough to support server-side asynchronous

behavior)

- little room for extensibility
For details, see RFC 3117

Option 3.

60

Design a protocol from scratch

Now, that’s an interesting idea! ;)

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

16

Designing a Protocol

61

1. Choose the patterns of communication and
data transmission
2. Establish the design goals
3. Choose the message format “philosophy”
4. Design the message structure: format, fields,
types of messages, etc.
5. Design the communication rules (sequences)

Steps 4 and 5 go together

Patterns of communication

 Client - server
one party initiates the
communication, the other responds

 Peer-to-peer
any party may initiate the
communication

62
See Robin Sharp, Principles of protocol design,

Springer, 2008

Patterns of communication

 Hierarchical communication
many parties, organized in a
hierarchy, and communicate
only via the branches of the
tree

63

Peer

Peer

PeerPeer

Peer

PeerPeer

Peer

See Robin Sharp, Principles of protocol design,

Springer, 2008

Patterns of transmissions

 One-to-one
only two parties involved in communication at a time

 Multicast
one or more parties may transmit data to multiple
parties at a time

 Broadcast
one or more parties may transmit data to all parties at
the same time

64

Each or all of these patterns may be used at
different stages in the communication

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

17

Design Goals

 Define the framework for communication
- Should the communication be fast?
- Do we need reliable exchanges? (E.g. confirmations and such)
- How important is the authentication of parties?
- Is the transferred data confidential? What degree of
authorization is needed?
- How many types of parties are involved? Can they all
communicate to each other?
- Are there bandwidth or connection availability limitations?
- Do we need to maintain communication channels? Are
connectionless models more suitable, instead?
- Do we need complex error handling?
- ...

65

Design Goals

 A communication protocol should be:
- simple
~ don’t make easy tasks hard to do
~ don’t provide two ways for doing the same thing

- scalable
~ estimate the number of clients per server (or peers

communicating)
~ design the protocol so that it balances the responsibilities

(e.g. shifts the communication balance to the clients, to free
the servers which are already full of responsibilities)
- efficient
~ minimize the command overhead
~ minimize the data traffic

- extensible
~ make room for further extensions
~ don’t overdo it, though

66

Message formats

 Two approaches:

- Text-oriented protocols
- Protocols using binary messages

67

Text-Oriented

 All messages are readable character strings

 Advantages
- human readable, easy to understand and monitor
- flexible, easy to extend (if properly designed)
- easy to test, even with ‘‘standard’’ clients
(telnet?)

 Disadvantages
- human readable, easy to read by unauthorized
persons (without encryption)
- may become complex, harder to parse in code
- may make the messages unjustifiably large

68

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

18

Binary messages

 Messages are blocks of structured binary data

 Advantages
- Better ways of structuring the data
- Suitable for large or complex data transfers
- Messages are as small as possible

 Disadvantages
- Hard to read, debug or test
- Need to consider the data representation
conventions on hosts and network (e.g. the
“endianness”: little-endian vs. big-endian)

69

Designing the Message

 A very important aspect in protocol design

 Influences all the characteristics of the
communication: scalability, efficiency,
simplicity, extensibility

 The design involves two aspects:
a) types of messages
b) message structure

70

Types of Messages

 One message type for each distinct aspect of the
communication

 Three categories of messages:
- commands
- data transfer
- control

Each category may include several message types

71

Command Messages

 Define the stages of the dialogue between the parties

 Address various communication aspects:
- communication initiation or ending
- describe the communication stage (e.g.
authentication, status request, data transfer)
- status changes (e.g. requests for switching to the data
transfer mode)
- resource changes (e.g. requests for new
communication channels)
- ...

72

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

19

Data transfer

 Messages that carry data over the network

 They are usually sent as a responses to specific
commands

 Data is usually fragmented in multiple messages

 Besides the actual data, may describe:
- the type of the binary data format
- clues for the layout of the structured data (when
the structure is flexible/dynamic)
- data size, offset or sequence information
- type of the data block: last / intermediary

73

Control Messages

 Control the dialogue between the parties

 Address various communication aspects:
- coordination (e.g. receipt confirmation, retry
requests)
- cancellation or interruption
- availability checks
- ...

74

Message Structure
 Header: contains structured

fields describing the actual
data in the message:
- message type
- command
- body size
- recipient information
- sequence information
- retransmission count
- etc.

 Body: the actual data to be
transmitted:
- the command parameters
- the data payload

75

Body

Header

Message Structure

 The header structure must be
well-known by the receiving
party

 The header may contain clues
helping the recipient to
understand the rest of the
message and the details
regarding the data in the body
(e.g. size, data format or
encryption, etc.)

 Headers usually have a fixed
size, while the body size may
be variable (within limits)

76

Body

Header
cmd

no-of-params

parameter-size

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

20

Communication Rules

 Along with the messages, this is the other essential
part of the protocol

 Describe the sequences of commands, data and
control messages, at each and all the stages in the
communication, for all parties in the system

 Should be clearly and thoroughly specified, through
detailed descriptions of each communication
scenario (for each possible case of peer interaction)

77

Communication Rules

78

Sequence diagrams
are more than
useful...

CONNECT param1 param 2

RESPONSE param1

REQ param1 param2 param3

DATA data-body

ACK data

END param1 param 2

OK

An imaginary diagram for a non-existent

protocol

Client Server

Communication Rules

79

...but state diagrams
are almost mandatory

"success"(S), "failure" (F), and "error" (E).

1,3 +---+
----------->| E |

| +---+
|

+---+ cmd +---+ 2 +---+
| B |---------->| W |---------->| S |

+---+ +---+ +---+
|

| 4,5 +---+

----------->| F |
+---+

the DATA command:

+---+ DATA +---+ 1,2 +---+

| B |---------->| W |-------------------->| E |
+---+ +---+ ------------>+---+

3| |4,5 |
| | |

-------------- ----- |
| | | +---+

| ---------- -------->| S |

| | | | +---+
| | ------------

| | | |
V 1,3| |2 |

+---+ data +---+ --------------->+---+
| |---------->| W | | F |

+---+ +---+-------------------->+---+

State diagrams from the SMTP specification (1982)
[source: RFC 821]

Documenting the Design

 The protocol specification must be available for all
interested parties, as a specific document

 The specification must be
- clear, easy to understand
- comprehensive (complete)
- non-ambiguous
- maintainable (for versioning and such)

By only having the specification, parties must be able to
thoroughly implement the software components involved
in communication

80

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

21

Specification Content
 Introduction

- purpose of the protocol, domain, environment, prerequisites

 The communication model
- parties involved, relations, roles, general description of the
dialogue flow between components, etc.

 Communication steps or procedures
- description of each stage, procedure or aspect of
communication

 Message description
- syntax and semantics for all types of messages (commands,
headers, codes, etc.)

 Sequence of commands and replies
- the detailed description of the communication rules,
including state diagrams, sequence diagrams, and
comprehensive explanations for the procedures

81

Example: SMTP

 “Simple Mail Transfer Protocol”

 One of the oldest protocols still in widespread use
(~1980)

 Designed for transporting outgoing e-mail

 Uses TCP port 25 (traditionally)
Port 587 is also used for user agent connections (“e-mail
clients”).

82

RFC 821
Contents

83

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. THE SMTP MODEL .. 2

3. THE SMTP PROCEDURE .. 4

3.1. Mail ... 4
3.2. Forwarding ... 7

3.3. Verifying and Expanding 8

3.4. Sending and Mailing 11
3.5. Opening and Closing 13

3.6. Relaying .. 14
3.7. Domains ... 17

3.8. Changing Roles .. 18

4. THE SMTP SPECIFICATIONS 19

4.1. SMTP Commands ... 19
4.1.1. Command Semantics 19

4.1.2. Command Syntax .. 27
4.2. SMTP Replies .. 34

4.2.1. Reply Codes by Function Group 35
4.2.2. Reply Codes in Numeric Order 36

4.3. Sequencing of Commands and Replies 37

4.4. State Diagrams .. 39
4.5. Details ... 41

4.5.1. Minimum Implementation 41
4.5.2. Transparency .. 41

4.5.3. Sizes ... 42

APPENDIX A: TCP ... 44
APPENDIX B: NCP ... 45

APPENDIX C: NITS .. 46
APPENDIX D: X.25 .. 47

APPENDIX E: Theory of Reply Codes 48
APPENDIX F: Scenarios ... 51

GLOSSARY ... 64

REFERENCES ... 67

The SMTP Model

84

+----------+ +----------+
+------+ | | | |

| User |<-->| | SMTP | |
+------+ | Sender- |Commands/Replies| Receiver-|

+------+ | SMTP |<-------------->| SMTP | +------+
| File |<-->| | and Mail | |<-->| File |

|System| | | | | |System|
+------+ +----------+ +----------+ +------+

Sender-SMTP Receiver-SMTP

Model for SMTP Use

Sender-SMTP establishes a
two-way communication
with a Receiver-SMTP.

Receiver-SMTP may be the
ultimate destination or an
intermediary.

Sender sends a MAIL
command. If Receiver can
accept mail, responds OK.

Sender and Receiver
negotiate recipients (RCPT).

Sender sends the e-mail
(DATA) terminated with a
specific sequence. Receiver
confirms. [source: RFC

821]

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

22

Main SMTP commands

85

MAIL <SP> FROM:<reverse-path> <CRLF>

Starts the transaction. <reverse-path> is the source mailbox.

RCPT <SP> TO:<forward-path> <CRLF>

Specifies a recipient. Multiple RCPT commands are accepted. The receiver can
accept it as a local destination, can reject it, or can forward it to another server.

DATA <CRLF>

Sends the mail content (text). Ends with <CRLF>.<CRLF> (a dot on a new line)

[source: RFC 821]

HELO <SP> <domain> <CRLF>

Sender opens a connection. <domain> is the hostname of the sender.

QUIT <CRLF>

Sender closes the connection.

Example SMTP Conversation

86

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BBN-UNIX.ARPA
S: MAIL FROM:<Smith@Alpha.ARPA>
R: 250 OK
S: RCPT TO:<Jones@Beta.ARPA>
R: 250 OK
S: RCPT TO:<Green@Beta.ARPA>
R: 550 No such user here
S: RCPT TO:<Brown@Beta.ARPA>
R: 250 OK
S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: FROM: Mr. Smith <Smith@Alpha.ARPA>
S: TO: you (it could be an e-mail address here, a list, whatever)
S: SUBJECT: A very important message
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK
S: QUIT
R: 221 BBN-UNIX.ARPA Service closing transmission channel

[source: RFC 821,

adapted]

Example of Forwarding

87

Example of Forwarding

Either

S: RCPT TO:<Postel@USC-ISI.ARPA>
R: 251 User not local; will forward to <Postel@USC-ISIF.ARPA>

Or

S: RCPT TO:<Paul@USC-ISIB.ARPA>
R: 551 User not local; please try <Mockapetris@USC-ISIF.ARPA>

[source: RFC

821]

Distributed Technologies –
an overview

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

23

A selection of technologies

 Protocol stacks (TCP/IP)
- data channels carrying information

 Remote procedure/method calls (RPC, RMI)
- high-level language-specific constructs

 Message-oriented infrastructures (JMS)
- third-party services transporting structured
messages

 Application servers (JSP server, EJB container)
- sophisticated environments managing the
applications

89

Protocol Stacks

 Describe facilities included in the modern operating
systems

 Support network communication at the application
level

 Dependent on a layered model describing the various
types of concerns addressed

 Each layer defines a communication protocol

90

The TCP/IP protocol stack

 Network access layer: transmission of the
data as datagrams to a remote host

 Internet layer: defines the network as
interconnected subnetworks, deals with
routing. Defines the IP address

 Transport layer: communication
channels, error control, sequence of data
arrival, etc.

 Application layer: protocols used by the
application -- e.g. FTP, HTTP, SSH, etc.

 (usually) The main primitive for
programs: the socket

91

Communication through primitives such as ”sockets”
(c) 2008-2014, Dan C. Cosma

Remote invocation

 A communication method where pieces of software talk to
each other over the network by means of higher-level
constructs, such as function or method calls

 Software infrastructures abstract the actual data
transmission, so that the developer writes the distributed
code in a manner very similar to writing local applications

 Data is sent as function or method parameters, results are
retrieved as returned values

 Examples:
- Remote Procedure Call (UNIX)
- Remote Method Invocation (Java)
- Remote Invocation (CORBA)

92

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

24

Remote Method Invocation
(Java)

 Uses specific language
constructs

 Hides the
communication by
providing natural ways
of remote
communication

93

Communication:

- objects publish methods available remotely
- specific connection / registration API calls

(c) 2008-2014, Dan C. Cosma

Messaging systems

94

(c) 2008-2014, Dan C. Cosma

94

Application Servers

 Provide an environment for running
the application

 Applications run inside the
application server (hence it is
sometimes called container)

 Applications are provided complex
features (transactions, persistency,
distribution, etc.)

 Constraints: applications are strictly
limited to specific rules

95

Application
Server

Application

Application

Client

(c) 2008-2012, Dan C. Cosma

Java
Remote Method Invocation

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

25

A technology native to the standard Java platform

Provides support for network communication

Uses language-specific mechanisms

97

Java Remote Method Invocation (RMI)

Objects can be made accessible
through the network

>> a subset of their methods are published for other to use

>> the published methods represent the
remote services the respective class provides

Object
Network Object

98

Main concept

The published functionality is gathered in specific interfaces
called remote interfaces

Remote interfaces must implement java.rmi.Remote

A remote interface declares methods that will be accessible
through the network

A class may implement as many remote interfaces as necessary

99

Remote Interfaces

When communicating over the network, specific errors may occur

>> All methods in a remote interface must throw
java.rmi.RemoteException

Object
Network Object

100

RemoteException

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

26

To publish methods over the network, a class must:

- Implement a remote interface
- Explicitly export the remote functionality:

>> extend java.rmi.UnicastRemoteObject
or
>> call UnicastRemoteObject.exportObject()

101

Classes with Remote Methods

An object that uses a remote object receives a so-called
remote reference to the latter

Parameters or results that must be transported over the network
must be Serializable objects

Object
Network Object

Parameter (Serializable)

Remote
reference

102

Remote References and
Serializable Objects

103

The RMI Architecture

Client-server application

- The server provides the current date and time
- Clients may request the date, the time, or both

104

An RMI Example

https://sites.google.com/site/aplicatiidistribuite/

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

27

Packages:
sprc.rmiex.server

– the server
sprc.rmiex.client

– the client
sprc.rmiex.server.pub

– classes used both by the client and the server

Directories:
src/client
src/server

105

An RMI Example

106

The Remote Interface

107

The Parameter Class

108

The Server Class

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

28

The Server Class

(c) 2009-2011 Dan C. Cosma

109

The Server Class

(c) 2009-2011 Dan C. Cosma

110

111

The Client The Client

112

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

29

is equivalent with:

113

Looking Up for the Server

in src/client:

in src/server:

If JDK < 1.5, in the bin directory:

114

Compiling the Programs

A java.policy file must be created in the bin directory:

Running the server (from the bin directory):

Running the client (from the bin directory):

115

Compiling the Programs

Design Patterns and RMI

116

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

30

Object-Oriented
Programming

 RMI provides a means of developing distributed
applications by directly using language-specific
constructs

 Remotely accessible objects can be created and their
references passed between objects in the application

 Therefore: the usual OO design patterns can be easily
applied

 Common patterns:
- Factory
- Observer

117

Factory

118

Factory
Server

Server

Server

Server

Registered to the
RMI Registry

creates

creates

creates

Client
”getServer”

Remote reference,
provided by the
Factory through ”getServer”

remote object

remote object

remote object

remote object

NOT
registered to
RMI Registry

NOT
registered to
RMI Registry

NOT
registered to
RMI Registry

119

Observer

source: Design Patterns

remote object

remote object

Application-level TCP/IP
communication

120

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

31

The TCP/IP protocol stack

121

•Applications use the
transport-level protocols
to communicate

•Two useful protocols:
- TCP
- UDP

Communication is done through primitives known as ”sockets”
(c) 2008-2014, Dan C. Cosma

Connection-oriented and
connectionless

Two ways of communicating over the network:

 A semi-permanent communication channel is established
at the beginning of the communication. Subsequent
sending does not need to specify destination addresses:

connection-oriented communication

 No established link is created; at each send, the parties
must specify the destination address:

connectionless communication

122

TCP – Transmission Control
Protocol

 Connection-oriented
- a bi-directional connection is created

 Reliable
- message acknowledgement
- retransmission
- timeout

 Ordered
- messages are received in the same
sequence as transmitted

123

UDP – User Datagram Protocol

 Connectionless
- transmission does not verify the
readiness of the receiver

 Unreliable
- messages can be lost
- no retransmission, no timeout control

 Unordered
- messages are not necessarily received in
the same sequence as transmitted

124

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

32

TCP/IP Addressing
125

Address

126

A construct used for locating and/or identifying
an hardware or software entity in a network

Address spaces

 The totality of addresses generated using a certain
specified pattern

 Linear address space
= no hierarchical information is contained within
the address
Example: MAC addresses

 Hierachical address space
= addresses contain information that place the
locations in hierarchies
Example: postal addresses

127

Addressing at the Network Level (IP)

IP Address

 IPv4
- 32 bits
- usually represented in the “dotted decimal”
form: 193.226.12.13

 IPv6
- 128 bits

128

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

33

Address classes

 The IPv4 address space was partitioned in several classes, of
which the most important are:

 Class A:
- first 8 bits represent the network address, 24 bits: host address
- first bit is 0
 128 networks, each with 224 hosts

 Class B:
- first 16 bits represent the network address, 16 bits: host
address
- first two bits are 10
 16384 (214) networks, each with 65536 (216) hosts

 Class C:
- first 24 bits represent the network address, 8 bits: host address
- first two bits are 110
 2 097 152 (221) networks, each with 256 (28) hosts

129

Reserved spaces

 0.0.0.0–0.255.255.255 — reserved

 10.0.0.0–10.255.255.255 — private addresses, according
to RFC 19184

 127.0.0.0–127.255.255.255 — loopback addresses,
internal to the TCP/IP stack;

 172.16.0.0–172.31.255.255 — private addresses,
according to RFC 1918

 192.168.0.0–192.168.255.255 — private addresses,
according to RFC 1918

130

Address classes – too rigid

 The address classes proved to be impractical,
especially in what regards classes A and B

 Reason: too many host addresses to be managed in a
same single network

 Some organizations may receive a too large address
space, they will never fully use

 Solution: sub-netting
= Dividing the network, and consequently its network
address, in several sub-networks

131

Network Mask

 Each network address is associated a (sub-)network
mask

 Network mask:
- the first n bits depict the network address, and are
set to 1; all the rest are 0
Therefore the network masks for the address classes
are:
- Class A: 255.0.0.0
- Class B: 255.255.0.0
- Class C: 255.255.255.0

132

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

34

Network mask

 Using the network mask:
To find out whether an address belongs to a
certain network, apply a bitwise AND operation
between the address and the network mask. All
addresses that give equal results belong to the
same network

 Example -- a class C network:
193.226.12.13 & 255.255.255.0 = 193.226.12.0
193.226.12.235 & 255.255.255.0 = 193.226.12.0

11000001111000100000110000001101 &
11111111111111111111110000000000
11000001111000100000110000000000

133

the same
network
address

the same
network
address

Describing networks
addresses

 The addresses belonging to a network can be easily
described as a pair containing
- the network address
- the network mask

Examples:

193.226.12.13 / 255.255.255.0, or 193.226.12.13/24*
- an IP address

172.16.0.0 / 255.240.0.0, or 172.16.0.0/12
– a network address

*CIDR (“Classless Inter-Domain Routing”) notation, the number after the slash counts
the non-zero bits at the beginning of the network mask

134

Sub-netting

How sub-netting is done:

“Borrow” adjacent bits from the (most significant part of
the) host address, and use it for the sub-network address

 Borrowing 1 bit will create 2 sub-networks

 Borrowing 2 bits will create 4 sub-networks

 …

135

Sub-netting example

 A class C network, with the network address
192.168.1.0 (netmask: 255.255.255.0)

 A new netmask: 255.255.255.192
192 = 11000000  we “borrowed” 2 bits

Therefore, we have created 4 sub-networks within
the above class C network:

- 192.168.1.0,
- 192.168.1.64,
- 192.168.1.128,
- 192.168.1.192

136

0 = 00000000
64 = 01000000
128 = 10000000
192 = 11000000

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

35

Where are IP addresses used?

An IP address is associated, at the network level, with a
network interface

 A computer may have several IP addresses

 Addresses may be associated with physical
interfaces, as well as with logical ones

Local host address:
- 127.0.0.1, reserved, as part of the loopback class of

addresses (127.0.0.0/8)

137

Ports

 A port is a number depicting, at the transport layer, a
communication endpoint in a computer

 Uniquely identifies, within a computer, a process or
application that is able to communicate through the
network

 Used in conjunction with the IP address The TCP/IP
ports are 16-bit numbers

 Different transport protocols may use the same port
number without interfering with each other (e.g., TCP
and UDP can simultaneously use a given port k)

138

Ports
 Ports 0-1023 are typically privileged (only super-user processes

can register them)

 Ports 1024-65535 can be freely used by applications

 Only one process on a same OS can use a given port at a time

 Some ports are “well known”, usually (but not mandatorily)
assigned to common application-level protocols. Examples:
- 80 – HTTP
- 22 – SSH
- 20, 21 – FTP
- 23 – Telnet
- 25 – SMTP
- 110 – POP3
- 53 – DNS
- 143 – IMAP

139

IP and Port

Uniquely identify a communication endpoint
(associated with a software component) over
the network

140

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

36

Names, not numbers!

 To simplify usage, IP addresses can be translated to and from
names belonging to a hierarchical namespace

 The translation is done using the DNS (Domain Name Service)
protocol

 A DNS server registers the correspondence between names at a
certain level in the hierarchy, and the corresponding addresses.
DNS servers can be queried when needed

 DNS servers form a distributed system, and are organized in a
hierarchical structure:
- root-level servers: provide the addresses for the authoritative
top-level domain (TLD) server
- servers for the TLD: resolve the names within the assigned
TLD: .com, .net, ,ro, …
- subdomains are resolved in the same way, by a hierarchy of
servers

141

Communicating through TCP/IP
at the application level

142

Network Socket

143

= A primitive depicting a communication endpoint over a network

Defined by:
- the transport protocol used (TCP, UDP)
- the socket address (IP and port)

Network socket types:
• Stream sockets (use the TCP protocol)
• Datagram sockets (use the UDP protocol)
• Raw IP sockets (bypass the transport layer and expose the IP packet

headers to the application)

Note: non-network sockets do exist, but they are outside the scope of
this course

Sockets and Programming

144

Programs can create and use sockets via a socket API
- available on virtually all modern software platforms
- accessible from most programming languages
- A client-server model is commonly used

Internet sockets are usually based on the Berkeley
(BSD) Sockets standard

The BSD Sockets API (written in C) defines:
- Network sockets
- UNIX Domain sockets (outside the scope of this presentation)

Other languages provide BSD sockets, usually by wrapping the
C-language BSD Sockets API

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

37

BSD Sockets

145

C headers:
<sys/socket.h>

Core functionality
<netinet/in.h>

internet, address and protocol families
<sys/un.h>

Local address family, not used on networks
<arpa/inet.h>

Functions for manipulating IP addresses
<netdb.h>

Functions name resolution (e.g. DNS)

BSD Sockets – main functions

146

int socket(int domain, int type, int protocol);
Client and server side. Creates a socket. Arguments:
- domain: AF_INET (IPv4), AF_INET6 (IPv6), AF_UNIX (non-network)
- type: SOCK_STREAM (TCP), SOCK_DGRAM (UDP), etc.
- protocol: IPPROTO_TCP, IP_PROTO_UDP

Returns: a new file descriptor representing the socket, or -1 on error

int bind(int sockfd, const struct sockaddr *my_addr, socklen_t addrlen);
Client and server side. Binds a socket to an address (IP and port).
Mandatory for server-side sockets. Clients usually don’t call this function
except for the rare cases when a specific port is needed at the client
end (e.g. because of a firewall restriction on outgoing ports)

int listen(int sockfd, int backlog);
Server side. Prepares a socket for incoming connections. Necessary only
for stream (TCP) sockets.

BSD Sockets – main functions

147

int accept(int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);
Server side. Waits for an incoming connection. Returns a new socket
when the connection is established. Only required for stream sockets
(TCP).
The new socket:
- will be bound to the same port
- represents the communication endpoint with the client that initiated
the connection

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t
addrlen);
Client side. Connects to a server specified by IP address and port. If the
client-side socket wasn’t already bound to a port, an ephemeral port
will be created and bound for this endpoint.
Used mainly for connection-oriented protocols (TCP)
For connectionless protocols, connect only sets the default destination
address (to use with send(), as opposed to sendto())

Helper functions

148

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const void *addr, int len, int type);

Server and client side. Support functions for translating to/from host
names using DNS or other resolving methods (such as local /etc/hosts
files)

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

38

Sending data

149

ssize_t write(int fd, const void *buf, size_t count);
ssize_t send(int sockfd, const void *buf, size_t len, int flags);

Sends data through a connected socket. If the protocol is
connectionless, the default destination is used, as set with connect().

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

Send data to a specific address. If the socket is connection-oriented
(TCP), the given destination address is ignored.

Receiving data

150

ssize_t read(int fd, void *buf, size_t count);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

Receives data from a connection-oriented socket.

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

Receives data, usually from a socket. If not null, the source address is
filled-in with the address of the sender.

Types of servers

151

 Iterative servers
- Can serve only one client at a time

 Concurrent servers
- Can serve multiple clients at a time
- Use concurrency-specific primitives (e.g., processes,
threads)

Example of iterative server

152

int sockfd, newsockfd;

if ((sockfd=socket(...)) < 0) {

printf ("error ..."); exit(1);

}

if (bind(sockfd,...) < 0) {

printf ("error ..."); exit(1);

}

if (listen(sockfd,5) < 0) {

printf ("error ..."); exit(1);

}

for (;;)

{

newsockfd = accept(sockfd, ...);

if (newsockfd < 0) {

printf ("error ..."); exit(1);

}

process(newsockfd);
/*handle the client*/

close (newsockfd);

}

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

39

Example of concurrent server

153

int sockfd, newsockfd;

if ((sockfd=socket(...)) < 0){
printf ("error ...");
exit(1);

}

if (bind(sockfd,...) < 0){
printf ("error ...");
exit(1);

}

if (listen(sockfd,5) < 0){
printf ("error ...");
exit(1);}

}

for (;;)
{
newsockfd=accept(sockfd, ...);

if (newsockfd < 0) {
printf ("error ...");
exit(1);

}

if (fork()==0) {
close(sockfd);
process(newsockfd);
/*handle the client*/

exit(0);
}

close (newsockfd);
}

More programming
examples…

154

…in the lab support documentation

Deploying a classic
distributed system
A case study

155 156

Installing a customized e-mail
delivery system

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

40

Purposes

A system fitted for small to medium-sized groups

 Receive external e-mail messages through SMTP

 Send local messages to the outside (SMTP)

 Filter messages that may constitute spam

 Provide standard inboxes

 Provide e-mail aliases and lists

 User-side message download (IMAP)

157

An architecture

158

Server 1:
- SMTP
- spam filter

Server 2:
- SMTP
- IMAP

Inboxes

Software

Many OS-es can be chosen

There are several choices for the mail
servers and the filtering software

Choose from the variants best suited for
the host OS/distribution

159

An architecture

160

Server 1:
- SMTP
- spam filter

Server 2:
- SMTP
- IMAP

Inboxes

postfix
spamassassin

qmail
courier IMAP

Directories (Maildir) on Server 2

Server OS: Linux
Distribution: Debian

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

41

Maildir

161

Image: Wikipedia,
attribution: GVdSteen
at nl.wikipedia

A note about privacy: just browse
your own Maildir directory

Server 1 – process view

162

postfix
SMTP

Filter
script

spam-
assassin

Internet
postfix

sendmail
Server

2

spam

Postfix  filter script

/etc/postfix/master.cf:

[...]

Original postfix-sendmail connection
spamassassin unix - n n - - pipe
user=spamd argv=/usr/bin/spamc -f –e
/usr/sbin/sendmail -oi -f ${sender} ${recipient}

modified to directly remove some spam
spamassassin unix - n n - - pipe

user=spamd argv=/usr/local/bin/spamfilter.sh -oi –f
${sender} ${recipient}

163

The filter script
/usr/local/bin/spamfilter.sh:
#!/bin/bash
pipes mail to spamassassin and removes mails with high score
source: linuxquestions.org, and many other places on the internet
SENDMAIL="/usr/sbin/sendmail"
EGREP=/bin/egrep
TMPFILE=/tmp/spamfilter.$$
SIDELINE_DIR=/var/spamfilter
Number of *'s in X-Spam-level header needed to remove message:
SPAMLIMIT=10
Clean up when done or when aborting.
trap "rm -f $TMPFILE" 0 1 2 3 15
Pipe message to spamc and store in $TMPFILE
cat | /usr/bin/spamc | sed 's/^\.$/../' > $TMPFILE
Are there more than $SPAMLIMIT stars in X-Spam-Level header?
if $EGREP -q "^X-Spam-Level: *{$SPAMLIMIT,}" < $TMPFILE
then
mv $TMPFILE $SIDELINE_DIR/`date +%Y-%m-%d_%R`-$$

else
$SENDMAIL "$@" < $TMPFILE
fi
#Postfix returns the exit status of the Postfix sendmail command.
exit $?

164

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

42

Server 2 – process view

165

qmail
courier-
imapd

Maildir

Server
1

e-mail
client

Internet

qmail

 Modular design

166

Modules Function

qmail-smtpd
accepts/rejects messages via
SMTP

qmail-inject injects messages locally

qmail-rspawn/qmail-remote handles remote deliveries

qmail-lspawn/qmail-local handles local deliveries

qmail-send processes the queue

qmail-clean cleans the queue

Source: http://www.lifewithqmail.org

qmail

Main directories

/var/qmail/control
- configuration files

/var/qmail/queue
- mail queues

/var/qmail/alias
- aliases (alternate mailbox names, lists, etc.)

167

/var/qmail/control

Configuration files

 badmailfrom – source (”From”) adresses to be rejected (blacklisted)

 defaultdelivery – the default destination for incoming e-mails

 defaultdomain – default domain for this server

 me – the hostname of this server

168

./Maildir/./Maildir/

cs.upt.rocs.upt.ro

bigfoot.cs.upt.robigfoot.cs.upt.ro

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

43

/var/qmail/control

Configuration files

 locals – domains this server delivers locally

 defaulthost – the default host managed by this server

 rcpthosts – domains this server is allowed to manage (accept mail for)

 ...
169

bigfoot.cs.upt.robigfoot.cs.upt.ro

mail.cs.utt.ro
cs.utt.ro
aspc.cs.utt.ro
bigfoot.cs.upt.ro
mail.cs.upt.ro
cs.upt.ro
aspc.cs.upt.ro

mail.cs.utt.ro
cs.utt.ro
aspc.cs.utt.ro
bigfoot.cs.upt.ro
mail.cs.upt.ro
cs.upt.ro
aspc.cs.upt.ro

mail.cs.utt.ro
cs.utt.ro
aspc.cs.utt.ro
bigfoot.cs.upt.ro
mail.cs.upt.ro
cs.upt.ro

mail.cs.utt.ro
cs.utt.ro
aspc.cs.utt.ro
bigfoot.cs.upt.ro
mail.cs.upt.ro
cs.upt.ro

/var/qmail/queue

A directory structure containing the qmail message queues.

Examples:

 bounce – store the delivery errors

 mess – messages being sent

 info – envelope sender addresses

 remote – local envelope recipient addresses for messages being sent

 local - local envelope recipient addresses for messages being sent

 lock – lock files

170

/var/qmail/alias
A directory structure containing various aliases in the ”.qmail” format,
implementing alternate e-mail names, e-mail lists, and even complex
commands.

Examples:

 .qmail-dan:cosma

 .qmail-staff

 .qmail-filtered:address

171

dancdanc

dan.cosma
petru.mihancea
marius.minea
[...]

dan.cosma
petru.mihancea
marius.minea
[...]

|/var/qmail/alias/access_filter|/var/qmail/alias/access_filter

User .qmail files
On qmail systems, users can create a .qmail file in their home
directories, containing ”.qmail” format specifications for forwarding,
filtering, etc.

Example:

 /home/myuser/.qmail

172

./Maildir/
mygmailaddress@gmail.com
./Maildir/
mygmailaddress@gmail.com

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

44

Retrieving e-mail

 E-mail clients can be configured to get the e-
mails through various protocols

POP3 – Post Office Protocol: receives complete e-
mails and usually deletes them from the server

 IMAP – Internet Message Access Protocol: clients
usually leave the messages on the server; IMAP
servers provide structured mail storage (folders)

 Courier IMAP is able to use Maildir folders for
storage

173

courier-
imapd

e-mail
client

Java Server Pages

174

175

JSP – a technology for developing Web
Applications in Java

The “traditional” Web

176

Server
- usually listens on
Port 80
- has web pages

request

response (the
Web page)

http://asite.org/index.html

A webpage retrieved
from
the server

Web
Browser

Web
Server

Client

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

45

Web Applications

• Use the HTTP protocol

• The client is always the generic Web browser

• Traditionally, the functionality is almost entirely
server-side

• The browser sends HTTP requests, the server
generates HTML pages as response

• Session management is complex (HTTP is a bit primitive)

• Client-side functionality requires “imaginative”
workarounds (now available as dedicated frameworks)

177

The anatomy of a Web
Application

Server
may listen on Port
80,
although it rarely is
a classic Web server

Web
Application
Core
may use databases

request goes to the
application core

application core
generates a response
as an HTML page

request

response (the
generated page)

“Server-
side”

http://myrequest.org/ind
ex.jsp
Lots of text and images representing a
generated webpage Lots of text and images
representing a generated webpage Lots of
text and images representing a generated
webpage Lots of text and images
representing a generated webpage Lots of
text and images representing a generated
webpage Lots of text and images
representing a generated webpage Lots of
text and images representing a generated
webpage Lots of text and images
representing a generated webpage Lots of
text and images representing a generated
webpage

Web
Browser

Some local functionality,
e.g., JavaScript, Flash,
applets, received as
part of the downloaded
web page

178

JSP

•Java Server Pages

•Technology that builds on Java
Servlets

•The container provides support
for Web applications

•Easy and quick development of
dynamic Web sites

179

A JSP Application

180

HTTP Server
(optional)

JSP Engine
reads and
translates the JSP
page

JSP request redirected
to the JSP server

request

response (the
generated page)

JSP
Application
Server

JSP
Application
Server

http://myrequest.org/ind
ex.jsp

Servlet Engine
- runs and controls the
servlet, provides the environment:
request, session, etc.
- extracts the servlet-generated
page

Java
servlet
code

Web Browser
JSP Pages
and Java
classes
(the
application)

use

s
generates

Servlet
bytecode

uses javac and

compiles the servlet

transforms

into
response:
HTML
page

uses

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

46

An Example

• Managing a simple login page in JSP

• Excerpt from a slightly more complex
example application [1]

181

[1] Dan C. Cosma, Programarea aplicatiilor distribuite, Editura de Vest,

Timisoara, 2009,
ISBN 978-973-36-0501-0

The Main “JSP”

182

<h3>Login</h3>
<form name="login" action="loginAction.jsp" method="post">
<table>

<tr> <td>User Name:</td></tr>
<tr> <td><input type="text"

name="userName"/></td> </tr>
<tr><td>password:</td> </tr>

<tr><td>
<input type="password"

name="password"/>
</td></tr>
<tr><td align="right">

<input type="submit"
name="add" value="Login"/>

</td></tr>
</table>
</form>
(c) 2009, Dan Cosma

The “Action” JSP

183

<%@ page language="java"
import="java.lang.*,java.util.*" %>
<%
String userName = request.getParameter("userName");
String password = request.getParameter("password");
if(userName == null)

{ %>
<p> Please login first.
<%
}

else
{ %>
Congratulations <%=userName%>! You are logged in with the password: <%=password%>.

<%
} %>

<p> <hr> <p>
<form name="goMain" action="index.jsp" method="post">

<input type="submit" name="go" value="Return to main menu"/>
<!-- Forwarding the username -->
<input type="hidden" name="userName"

value="<%=request.getParameter("userName")%>"/>
</form>
(c) 2009, Dan Cosma

Comments

• JSP pages mix Java with HTML
This may lead to unmaintainable code (hard to read and understand)

• JSP pages should be small, and contain as little
Java as possible

• Use separate classes for the main Java
functionality
As the JSP will in fact transform into a Java class (the servlet), you can
call other classes from within the JSP

• Use a layered model to separate
functionalities/concerns
In fact, design the program using all the “general” design best
practices you are already familiar with

184

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

47

Deployment

• JSPs along with the helper classes are packaged
in a standard format (E.g. a .war archive with a well-known
structure)

• The package is deployed to the container
This operation is dependent on the chosen JSP application server
variant

• The deployment should follow the rules specified
by the application server

• The deployment process should be automated
You should also avoid deploying the application using IDE-specific
plugins. The customer doesn’t have to install Eclipse to make your
program work.
Moreover, you don’t want to depend too much on a plugin that does
“magical” things behind the scene. They will certainly fail you at a
point.

185

Message-Oriented Infrastructures
(Message-Oriented Middleware)
Java Message Service

186

Messaging system

187

 A peer-to-peer facility enabling clients to send and
receive messages to each other

 The messages are sent to an agent that
intermediates the communication

 A messaging system enables loosely coupled
communication between the components (senders
and receivers)

Note: messaging systems are NOT e-mail or chat applications!
They deal with the communication between software
components

Messages

188

 The applications communicate by passing
messages to each other

 A message is a structured data entity that
basically consists of
- a header
- properties (optional, JMS)
- body

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

48

Messaging domains

189

 Describe the messaging exchange model

Point-to-point

Publish-subscribe

Point-to-point

190

 The destination of the messages is clearly
specified

 Gravitates around the concept of message
queues

 Senders send messages to a specific queue, thus
specifying the intended receiver

 Receivers monitor their respective queues and
consume the messages

Point-to-point

191

 A message is consumed
only by one receiver

 The sender does not wait
for the receiver

 The receiver
acknowledges the
successful processing of
the message

Queue ReceiverSender

Consumes

Acknowledges

Messages can be consumed both synchronously and
asynchronously

Publish-subscribe

192

 The message is sent to a shared
resource by a publisher client (the
equivalent of a sender)

 Multiple receivers, called
subscribers may consume the
message

 Subscribers specify the messages
they are interested in, by describing
message filters

 The message consumption can be
done both synchronously and
asynchronously

Topic

Subscriber

Subscriber

Subscriber

Publisher

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

49

Java Message Service (JMS)

193

 A specification that enables the implementation of
message services in the Java environment

 Unifies the messaging functionality under a single,
consistent specification

 JMS in not a service in itself, it is only adhered to by
particular implementations

 The implementations (the actual services) are called
JMS providers

One architecture, two messaging
domains

194

 A JMS provider provides
two types of resources
(“destinations”)

message queues

topics

JMS API Programming Model

195
source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Administered objects

196

 Connection Factories and Destinations

 Are managed administratively, rather than
programatically

 The administrative details vary from vendor to
vendor (providers)

 The access to the resources is done through
portable interfaces
-> clients are easily adapted to different
providers

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

50

Connection Factories

197

 Create a connection with a JMS provider

 Two types defined in J2EE:
- QueueConnectionFactory
- TopicConnectionFactory

Creating and connecting to
the factories

198

Context ctx = new InitialContext(); //get the JNDI context; searches
//the classpath for a vendor-specific jndi.properties file

QueueConnectionFactory queueConnectionFactory =
(QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");

TopicConnectionFactory topicConnectionFactory =
(TopicConnectionFactory) ctx.lookup("TopicConnectionFactory");

$ j2eeadmin -addJmsFactory jndi_name queue
$ j2eeadmin -addJmsFactory jndi_name topic

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

JMS Destinations

199

 A Destination specifies the target/source of
the messages: queues or topics

 Destinations are created through
administration:
j2eeadmin -addJmsDestination queue_name queue
j2eeadmin -addJmsDestination topic_name topic

 Clients can connect using the standard API:
Queue myQueue = (Queue) ctx.lookup("MyQueue");
Topic myTopic = (Topic) ctx.lookup("MyTopic");

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Connections

200

 Represent the connection with the JMS provider

 Two types: QueueConnection, TopicConnection

QueueConnection queueConnection =
queueConnectionFactory.createQueueConnection();

...
queueConnection.close();

TopicConnection topicConnection =
topicConnectionFactory.createTopicConnection();

...topicConnection.close();

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

51

Sessions

201

 A session represents a single-threaded context
that produces or consumes messages

 Provides support for transactions

 Serializes the execution of message listeners

 Two types: QueueSession, TopicSession
TopicSession topicSession = topicConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);//non-transacted, automatic

//message acknowledgement

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Message Producers

202

 Produce messages that are sent to a
Destination

 Two types: QueueSender, TopicPublisher

QueueSender queueSender = queueSession.createSender(myQueue);
TopicPublisher topicPublisher = topicSession.createPublisher(myTopic);

...
queueSender.send(message);
...
topicPublisher.publish(message);
...

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Message Consumers

203

 An object capable of receiving messages

 Two types: QueueReceiver, TopicSubscriber

 The message consumption can be done:
- synchronously
- asynchronously

 Topic subscribers can be made durable (can
receive messages that occurred when they were
inactive)

Synchronous
message consumption

204

 Messages are not delivered until the connection
is started

QueueReceiver queueReceiver =
queueSession.createReceiver(myQueue);

TopicSubscriber topicSubscriber =
topicSession.createSubscriber(myTopic);

queueConnection.start();Message m =
queueReceiver.receive();topicConnection.start();Message m =
topicSubscriber.receive(1000); // time out after a second

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

52

Asynchronous
message consumption

205

 To receive messages asynchronously, the
application can define message listeners

 A listener implements the MessageListener
interface:
public interface MessageListener {

public void onMessage(Message message);
}

 The listener is associated with a consumer

TopicListener topicListener = new
TopicListener();topicSubscriber.setMessageListener(topicListener);

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Message Selectors

206

 Can be used for filtering the messages that arrive
to a consumer

 The filtering is done by the JMS provider, not by
the application

 The selectors are specified as statements in a
subset of SQL92 conditional expression syntax

 Selectors can be passed as arguments to the
createReceiver, createSubscriber, and
createDurableSubscriber methods

Messages

207

 A message consists of: header, properties, body

 There are 5 types of messages defined by the API:
- TextMessage: the body is a text (e.g. XML)
- MapMessage: a set of name/value pairs
- BytesMessage: a stream of bytes
- StreamMessage: a stream of primitive Java
values, filled and read sequentially
- ObjectMessage: a Serializable object

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial

Cloud Computing

208

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

53

Cloud Computing

• = software services that do not require the
user’s involvement in the deployment,
configuration and hosting

• Based on the utility computing model
= computing services are like public utilities, similar to the
traditional ones (gas, water, electricity, etc.)

• Cloud computing providers expose their
services online

• Users need minimal resources to connect as
clients

209

Cloud Computing

• The services are usually available via
- Web applications
- Web Services
- APIs

• Examples of services:
- storage
- e-mail, communication, social networking
- office tools
- virtual servers

• Services are completely controlled by the
vendor, and clients pay per usage
~ resembles the mainframe-based model

210

The Cloud Computing Stack

Application

Platform

Infrastructure

“Fabric” of servers“Fabric” of servers

ClientsClients

Infrastructure as a Service (IaaS)
- the computer infrastructure, e.g., virtual servers,
storage space
- examples: Amazon Elastic Compute Cloud (EC2),
Amazon Elastic Block Store, Amazon Machine Image

Platform as a Service (PaaS)
- the computing platform provided as a service, facilitates
application deployment, complete development of services
- examples: Microsoft Azure Services Platform,
Amazon Web Services, Google App Engine

Software as a Service (SaaS)
- the application, provided as a service
- examples: Google Apps, Office Web Apps, Apple
MobileMe

the hardware and software infrastructure built to deliver the cloud
services: processing units, specialized cloud operating systems, etc.

compute network storage

components services

user interface machine interface

sources: Wikipedia,

samj.net

the hardware or software that completely relies on cloud services and
is essentially useless without them

211

Cloud Computing

• Advantages:

• users can easily expand or modify the resources, as
their needs change

• reduced costs for user (debatable)

• reduced maintenance costs for providers:
the services are in one place, easy to support or improve

• location independence
all services are reachable wherever you are

• multi-tenancy allows for efficient resource sharing
among users
multi-tenancy: a principle in software architecture where a single
instance of the software runs on a server, serving multiple client
organizations (tenants)

source:

Wikipedia
212

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

54

Cloud Computing

• Issues:

• Privacy concerns
all data and business logic is stored on the vendor’s data centers

• Security concerns
although the security can be addressed in a centralized and
efficient way by the vendor, the users essentially lose control on
their sensitive data

• Reliability depends on the vendor
however, major vendors use multiple redundancy to address this
issue

• Availability concerns
some providers did cease to exist due to various reasons

213

Service-oriented systems

214

Service-Oriented
Architectures

• Designed around the concept of
providing services

• Service = “an act or a performance
offered by one party to another”
(Lovelock et al., 1996)

• Web Service = “a standard
representation for some
computational or informational
resource that can be used by other
programs” [1]

215

For references, see Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006
[1] Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

Service

•Services can be provided for
various users or organizations

•An application can use various
services, from distinct providers

•The act of providing the service
is independent of the
application that uses the service
(Turner et al., 2003)

216

For references, see Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

55

Service Interface

• To provide a service, an organization must
define and publish a service interface

• Service interface = a definition that
specifies
- the information provided by the service
- the methods for accessing the data
- the parameters needed when using the service

• The interface must be expressed so that
- the purpose of the service is clear
- the service usage is unambiguous
- the results and side effects are clearly
described

21
7

Service-Oriented Interaction

218

Registry

Requestor Provider

Finds the
service

Binds with and
uses
the service

Publishes the
service

Service
Service

Service

Maintains
list

of services

Adapted from Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

Standards

• Service orientation can provide
interoperability, but only if built around
standards

• Web Services standards:
- SOAP (Simple Object Access Protocol)
>> defines how structured objects are exchanged (including their

structure)
>> relies on other application protocols such as HTTP

- WSDL (Web Services Description Language)
>> XML-based, defines how web service interfaces are represented

- UDDI (Universal Description, Discovery and
Integration)
>> platform-independent XML-based registry for Web Services

219

Service-Oriented
Architectures

• Differences from Distributed Objects
- services can be offered by any provider, even
third-party
- service specification is public, any authorized
user can use the service without negotiating with
the provider
- services can be created or discovered dynamically
- applications can choose dynamically one of
several similar services
- the application can change/choose what types of
services it uses at different stages in its runtime
evolution or when the environment changes

220

Adapted from Ian Sommerville, Software Engineering, 8th edition, Addison-

Wesley, 2006

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

56

221

Web
Services

Web Services

• Definition (W3C):

”A Web service is a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by
its description using SOAP-messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards.”

222

Source: http://www.w3.org/TR/2004/NOTE-ws-gloss-

20040211/

What Is a Web Service?

• A component of a distributed
application:
- self contained and self described
- accessible through the network
- communicating using standardized
protocols
- discoverable by other parties
through various methods
- data exchange format is usually XML

223

Web Services

• Types of Web services:
- arbitrary Web services, in which the
service may expose an arbitrary set of
operations
- REST-compliant Web services, in which
the primary purpose of the service is to
manipulate XML representations of Web
resources using a uniform set of
"stateless" operations

224

Source: http://www.w3.org/TR/ws-

arch/#relwwwrest

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

57

Technologies

•SOAP - the communication
protocol

•WSDL - the service description

•UDDI - the service discovery

•XML, JSON - data format

225

SOAP

• The current development of SOAP defines two
acronym expansions:
- Simple Object Access Protocol - a message
represents a remote method invocation (using
the SOAP RPC representation)
- Service-Oriented Architecture Protocol - the
message represents the information passed
to/from a service in a loosely-coupled,
message-based, service architecture

226

SOAP

• Defines the communication protocol
and XML data formats for exchanging
messages

• The structure of a SOAP message:
- Envelope - identifies the XML as a
SOAP message
- Header - application-specific
- Body - invocation or response
information
- Fault - errors, status information

227

WSDL

• Web Services Description Language
- XML-based
- Describes the Web service as a collection of
operations (methods) exposed publicly

• The WSDL 2.0 document elements:
- Service - the container

- Endpoint - service location (e.g. an URL)

- Binding - specifies the interface and the SOAP binding style
(Document/RPC)

- Interface - defines the service, its operations and messages

- Operation - the exposed methods

- Types - the type of the data

228

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

58

“Classic” Web Services

• Operations are specified freely, as
application-specific constructs (e.g.
“getCustomerData”)

• Services may be located through UDDI
nodes

• Services are described through WSDL

• SOAP is used as RPC or as message-
orientation support

229

REST

•Representational State Transfer

•An architectural style suited for
the Web

•Introduced by Roy Fielding in
2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest
_arch_style.htm

230

REST

• The REST philosophy:
- Design a Web service focusing on system resources
- A resource is identified by an URI (Uniform Resource

Identifier)

- A representation of a resource is a document
capturing the state of the resource
- Clients and servers exchange resource
representations
- Client requests to the servers are made when a
transition to a new state is required
- REST services are stateless

231

REST

• Defines a set of architectural
principles for Web services:
- Use HTTP methods as they were
designed
- The service is stateless
- Resources are organized in a
directory-like structure of URIs
- Transfer XML, JSON (JavaScript
Object Notation), or both

232

Source:

https://www.ibm.com/developerworks/webservices/library/ws-
restful/

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

28.04.2015

59

Use HTTP Methods

• REST applications directly map their
operations on the standard HTTP methods:
- To create a resource on the server: POST
- To retrieve a resource: GET
- To change the state of a resource: PUT
- To delete a resource: DELETE

• Example: instead of GET /adduser?name=Robert
HTTP/1.1

use
POST /users HTTP/1.1
Host: myserver
Content-Type: application/xml
<?xml version="1.0"?>
<user> <name>Robert</name> </user>

233

Source:

https://www.ibm.com/developerworks/webservices/library/ws-
restful/

REST is Stateless

• The service does not store state
information

• When making a request, the client
presents the server with all the
necessary state information so that
the request can be fulfilled

• Improves scalability, simplifies the
design

234

Source:

https://www.ibm.com/developerworks/webservices/library/ws-
restful/

REST: URIs as Directories

• Resources should be represented
analogous to a directory structure

• The URIs should be as simple and
intuitive as possible, should be
lowercase-only

• Examples:
http://www.myservice.org/discussion/topics/computers
http://www.myservice.org/discussion/topics/science/th
reads
http://www.myservice.org/discussion/{year}/{day}/{mo
nth}/{topic}

235

Source:

https://www.ibm.com/developerworks/webservices/library/ws-
restful/

REST: Data Transfer

• The representations of the resources
represent the resource state and
attributes (a “snapshot” in time for
that specific resource)

• Clients receive the representations
upon request

• They can use XML, JSON or other
structured formats

236

Source:

https://www.ibm.com/developerworks/webservices/library/ws-
restful/

(c) Dan Cosm
a (c) Dan Cosm

a (c) Dan Cosm
a

