
(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Operating Systems

Dan Cosma

1

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Preliminaries

2

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Audience and impact

3

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Who is this course for 

3rd year undergraduate students
and all other people interested in
understanding the main concepts
involved in the modern operating
systems

➥

4

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Objectives and targeted abilities

▻ using operating systems at a professional software
engineering level  
 
▻ understanding the fundamental concepts
fundamentale asociated with operating systems,
with the explicit focus on developing modern
software applications 
 
▻ using in programs, at an advance level, the
services provided by the operating system and the
associated libraries 
 ➥ system programming

5

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

and, in other words, this course may
help building a solid career 
 
 
 
 ➞ ➞ ➞  

6

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a➡

7

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
 Operating Systems course structure

8

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Course  

- 14 weeks, 2 hours each  
 → presenting the fundamental issues, explanations, examples 
- interactivity 
 → discussions, analyses, problems, answers -- please do ask questions! 
- feedback 
 → suggestions, observations, complaints -- all are welcome (honestly!) —
they can lead to a better course  

9

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Laboratory 
- individual lab assignments 
 → capture the essential practical aspects,  
 → introduce fundamental concepts for software development, 
 → help you become professional software engineers 
- interactivity 
 → discussions, analyses, problems, answers -- please do ask questions! 
- feedback 
 → suggestions, observations, complaints -- all are welcome (honestly!) —
they can lead to better communication and better lab support  

10

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Evaluation 
- 3 tests at the lab  
 → small yet complete programs, that require about an hour of work 
 → test the student’s abilities regarding the system programming and/or
advanced OS usage, as they are developed at the time of the test 
 → define the lab grade (weighted mean of the test grades) 
 → count as 35% of the final grade  
 
- exam 
 → a set of questions evaluating the understanding of the studied concepts
and techniques 
 → a practical component, evaluating the abilities/knowledge gained during
the labs 
 → 65% of the final grade  
 
- feedback 
 → suggestions, observations, complaints -- all are welcome — they can lead
to better evaluation methods and the detection of errors or problems 

11

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Feedback 

- e-mail: dan dot cosma at cs dot upt dot ro  
  
- during the lectures or the lab classes 

12

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Resources 

- Course site  
 → integrated in our “LOOSE” software engineering portal  
 → http://loose.upt.ro/~oose/pmwiki.php/OS/OperatingSystems 
- Lab site  
 → all the necessary lab materials 
 → same address as the course 

13

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Bibliography 

1. W.R.Stevens, S.A.Rago, Advanced Programming in the UNIX Environment,
Third Edition; Addison Wesley, 2013"

 
2. W. Stallings, Operating Systems: Internals and Design Principles, 7th edition,
Prentice Hall, 2011 
 
3. Eric S. Raymond: The Art of UNIX Programming, Addison-Wesley, 2003"

 
4. A. Robbins: UNIX in a Nutshell, Fourth Edition; O'Reilly, 2005  5. Ioan Jurca:
Programarea de sistem in UNIX, Editura de Vest, Timisoara. 2005"

 
6. A. S. Tannenbaum: Modern Operating Systems, 2nd Edition, Prentice Hall, 2001 

14

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

1. Introduction

15

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
What is an operating system?

16

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Computers are complex machines...

17

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

http://xkcd.com/722/

... which have to be used efficiently

18

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Computer

Processor

Bus

Memory

I/O

Disk Network Peripherals ...
(the ”classic”
architecture)

19

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Proceso

Bus

Memori

I/O

Disk Network Peripherals ...

Proceso
Processor

MemoriMemory

(a more complex
architecture)

20

Computer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Ma

.

Ma

.

Ma

.

21

(an even more complex
architecture)

Computer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

(... anything else)
22

Computer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 ... we need mechanisms to make them more approachable"

→ in usage"
→ in software development

?
23

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Operating System

A set of programs that:"
- manage the hardware resources"
- create high-level abstractions for resources 
- control the execution of applications"
- provide an interface to the applications"
- provide an interface to the user

depending on the different variants of systems, some of
the above roles may be assigned to applications, and
lay outside the OS (e.g., the user interface)

24

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Operating system goals [2]

• Ease of use  
→ to facilitate the access to resources"

• Efficiency 
→ in how resources are used and managed"

• Ability to evolve  
→ the capacity of adding new functionalities, without affecting the
services provided by the OS

[2] W. Stallings, Operating Systems: Internals and Design Principles, 7th edition, Prentice Hall, 2011

25

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Ease of use. The layered architecture of the software in a computer system

Hardware"
"

"
I/O Memory Storage ...

What if...?

Aplications
direct hardware

access

26

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Direct hardware access"
"

- extremely complex programs 
- code duplication (and more) in different apps (e.g., handling data storage formats
on a disk) 
- too strong dependency on hardware devices 
- lack of portability 
- vulnerability to the system’s evolution in time 
- ...

27

Ease of use. The layered architecture of the software in a computer system

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Aplications

Operating system"
"

"

Hardware"
"

"
I/O Memory Storage

Libraries (of functions)

...

File Process Pipes ...

System services
Library API

28

Ease of use. The layered architecture of the software in a computer system

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Operating system services

• Program execution and control"

• Memory management"

• Acces to I/O devices"

• Simplified and controlled access to data (files etc.)"

• Error detection and handling"

• Software development tools"

• Security, monitoring, synchronization etc.
29

Ease of use. The layered architecture of the software in a computer system

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Using the resources

- efficient management of the processor time  
 → through algorithms that properly schedule the entities/programs that
run in parallel or sequentially in the system 
- efficient management of I/O 
 → caching, managing the resources that abstract devices, etc. 
- efficient memory management 
 → freeing unused memory, swapping, virtual memory management, etc. 
- efficient communication between programs 
 → fast mechanisms for synchronous and asynchronous communication  
- ...

Efficiency

30

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Ability to evolve

The operating system needs to evolve when

- changes in hardware occur 
 → e.g., adding a device (disk, memory stick, printer, ...) 
- new services are needed  
 → e.g., new network protocols, user-centric improvements, new data
storage formats, etc. 
- errors must be corrected  
 → e.g., solving security problems, fixing bugs 
- optimizations are needed  
 → examples: faster disk access algorithms, faster UI response, etc. 

Modern operating systems natively include advanced mechanisms of
update, upgrade, and software package management

31

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
A short history of operating systems

32

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• <1955: Mainframe, no operating system 
➞ used sequentially (once at a time), programs read from punch
cards or magnetic tapes"

• ’50-’60: Mainframe with “batch systems” 
➞ the monitor, an “OS” that 
permanently resides in the  
memory, allowing the  
user to launch “jobs”"

• Ca. 1955: Mainframe with dedicated OS-es 

Monitor program

Compiler, user programs

33

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• 1969-1971: UNIX  
➞ Ken Thompson (Bell Labs) starts to work an a new OS, after Bell Laboratories
withdraws from the Multics project 
➞ Co-author: Dennis Ritchie, who will also create the C language (1971-1973), to
use it to write UNIX (the first UNIX version was written in assembly, and the
application in an interpreted language called “B”) 
➞ First UNIX version: running on PDP 7 (DEC), 1969-1970 (“UNICS” -
“UNiplexed Information and Computing Service”) 
➞ starts to be distributed freely, at the source code level"

• 1971: UNIX on PDP 11  
➞ used for text processing within the Patent Department at Bell Labs"

• 1972: UNIX reports 10 installations 
➞ its free distribution makes it extremely popular in industry and academia  
➞ native multitasking, multiuser"

34

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• ~1971 - the 80’s: The Home Computer “revolution” 
➞ mass production of microprocessors leads to the first personal computers
being introduced  
➞ the ”operating systems”: a BASIC interpreter stored in ROM, capable of
running programs, providing a simple command-based user interface  
➞applications: games, programming languages, interpreters, compilers 
➞ examples: Apple II, ZX Spectrum, Commodore 64, HC-85 (RO), Tim-S
(RO, TM)"

• ~1974: CP/M 
➞ “Control Program/Monitor” -> “Control Program for Microcomputers” 
➞ used in business environments, education, microcomputers 
➞ approx. 5 commands, unifies the services provided to programs (for
portability) 
➞ examples of computers: Altair 8080, Amstrad PCW, CUB-Z (RO)"

• 1977: BSD  
➞ “Berkeley Software Distribution” / ”Berkeley UNIX” 
➞ developed at University of California, Berkeley, derived from the UNIX
sources from Bell Labs 
➞ today, one of the main open source operating systems "

35

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• 1980: MS-DOS 
➞ IBM contracts Microsoft to write an OS for the new personal
computers (PC) developed by the company, after a similar discussion
with the CP/M creator fails; Microsoft retains the right to sell the MS-
DOS system separately from the hardware  
➞ based on QDOS (“Quick and Dirty OS”), a CP/M clone, developed by
Tim Paterson, in 6 weeks, for the company he was employed at 
➞ QDOS bought by Bill Gates (Microsoft) with 50 000 $; the deal with
IBM was kept secret by Microsoft at the buying time  
➞ after a year, Tim Paterson is employed by Microsoft 
➞ mono-tasking, CP/M-inspired command-line interface  
➞ first PC generations lacked the hardware capability of running UNIX 

• 1980-1990: “The UNIX Wars”[3] 
➞ the period when UNIX is exploited commercially 
➞ different UNIX versions successfully compete on the market 
➞ TCP/IP is developed and is adopted by UNIX, first at Berkeley 
➞ selling UNIX eliminates the free circulation of its source code, with a
side effect: the vitality of its development is reduced  
➞ different attempts of porting UNIX on i386 fail"

[3] Eric S. Raymond: The Art of UNIX Programming, Addison-Wesley, 2003

36

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• 1983: Richard Stallman starts the GNU project 
➞ with the goal of creating a free UNIX 
➞ introduces the GNU General Public License  
➞ although the resulting UNIX kernel (Hurd) is unsuccessful, the GNU project
becomes one of the main promoters of the open source movement"

• 1984: Apple Macintosh “System Software” 
➞ ran on Apple Macintosh 128K (the first Apple computer) 
➞ will be later rename to Mac OS 
➞ is the OS that popularized the idea graphical interface"

• 1985: Windows 1.0  
➞ a graphical user interface for MS-DOS 
➞ announced in 1983, closely resembled semăna the Apple Macintosh UI; at
launch it was shown in a modified form"

• 1990: Windows 3.0  
➞ the first significant success of Windows 
➞ partial multitasking (cooperative), virtual memory (i386) 
➞ important versions: Windows 3.1, Windows 3.11 for Workgroups "

37

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• August 1991: The first Linux version  
➞ developed by Linus Torvalds, then student at Helsinki University (Finland) 
➞ implements the UNIX-specific standards 
➞ open source, becomes very popular, quickly develops as a strong, mature OS"

• 1992: BSD is ported to i386"

• 1993: Windows NT 
➞ new system bersion, different from the other Windows systems 
➞ native multitasking, multiuser 
➞ the first complete 32 bits OS; nowadays, also comes in 64 bits versions 
➞ this is the system that will eventually become the modern Windows (XP, 2000,
Vista, 7, 8)"

• 1999: Apple OS X 
➞ based on UNIX 
➞ its kernel (Darwin) will also be used on the mobile versions (iOS)"

• ... 

38

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Types, variants, versions of operating systems

39

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

40

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Windows / Linux / ...

OS X

UNIX / Linux / Windows Server

iOS

Android

Android
Linux

Android

Android

iOS

Linux

41

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Purpose

Types of operating systems

- server operating systems 
 → UNIX (e.g. Solaris), Linux, BSD, Windows Server, OS X Server 
- desktop operating systems 
 → Windows, Linux, BSD, OS X, Chrome OS 
- mobile operating systems 
 → Android, iOS, Windows 8, Symbian, Bada, BlackBerry OS, Palm OS  
- embedded operating systems 
 → OpenWRT (Linux), Windows CE, LynxOS 
- network operating systems 
 → Novell NetWare, JunOS (Juniper), Cisco IOS 

42

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Kernel origin
- UNIX / Linux 
 → Solaris, HP-UX, BSD, OpenBSD, FreeBSD, Linux (toate variantele),
Android, OS X, OS X Server, iOS, webOS, Chrome OS, Tizen, openWRT,
Firefox OS etc. 
- Windows NT 
 → Windows NT, 2000, XP, Vista, 7, 8 (including the Server versions), Windows
Phone 8  
- Windows 
 → Windows 95, Windows 98, Windows Millennium 
- other proprietary kernels 
 → Symbian, Palm OS, ... 

43

Types of operating systems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Licensing model

- proprietary operating systems 
 → the various UNIX variants (e.g. Solaris), Windows, OS X, BlackBerry OS 
- open source operating systems 
 → Linux, BSD  
- open source with proprietary components 
 → Android, Tizen (Samsung, Intel, Linux Foundation), webOS (Palm⇾HP⇾LG) 
- proprietary operating systems using open source
components 
 → OS X, iOS (open source “Darwin” kernel, derived from BSD) 

44

Types of operating systems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Licensing models

Software license

A legal instrument (contract) describing
and imposing the terms related to the way
a software product can be used, modified,
and/or distributed 

➥

45

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Free/Open source  
➥ allows that the code source, concept and design to be freely used,
modified and published or shared (some terms apply) 
- “copyleft” open source  
 → ex: GNU General Public License (GPL) 
 → unlimited freedom for usage, study, change and redistribution,  
 as long as the redistribution does not introduce additional restrictions
to GPL (e.g., it doesn’t make the code proprietary) 
- permissive open source  
 → ex: BSD License  
 → unlimited freedom for usage and study, freedom of change. ,
change. The redistribution terms are more relaxed, do not impose
keeping the completely open character of the software."

• Proprietary / closed source  
➥ a limited number of copies can be used according to an EULA (End-
User Licence Agreement 
➥ the company retains source code ownership; seldom permits
redistribution

46

Licensing models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Operating system versions

• Windows 
→ 32 bit: Windows NT, 95, 98, Millenium, XP 
→ 32/64 bit: Windows XP, Vista, 7, 8 "

• Linux distributions 
→ are operating systems packaged as complete solutions; they include
a Linux kernel and a vast suite of applications 
→ the majority are free / open source, some are commercial, others
provide payed technical support 
→ include complex software package management, are easily
extensible and upgradable  
→ examples: Slackware, openSUSE, Debian, Fedora, Ubuntu,
Mandriva, Mint Linux, CentOS, RedHat, Arch Linux, ... "

• Apple Mac OS X 
→ certified as UNIX, with an open source kernel (Darwin) derived from
BSD  
→ 10.4: "Tiger", 10.5: "Leopard", 10.6: "Snow Leopard", 10.7: "Lion",
10.8: "Mountain Lion", 10.9: “Mavericks”, 10.10: “Yosemite”

47

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Operating System Architectures - an Introduction

48

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

OS components

• Kernel  
→ provides the main functionality of the OS 
→ its size is very dependent on the actual OS architecture and type"

• Functional subsystems 
→ other OS components, having various purposes 
→ may include system commands and utilities, APIs, specialized libraries,
system services implemented outside the kernel etc. 

The various architectures define different functional
relations between the kernel and the other OS
components

49

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Example: Mac OS X architecture

(c) Wikimedia Commons, http://commons.wikimedia.org/wiki/File:MacOSXArchitecture.svg

50

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Example: Linux architecture

source and (c): http://www.ibm.com/developerworks/library/l-linux-kernel/

51

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Memory spaces

Modern operating system define two virtual
memory spaces

• Kernel space  
→ the memory space used by the kernel and the majority of drivers"

• User space  
→ used by user applications, utilities, commands, some OS-specific
services or drivers 

This separation enables accurate privilege-based
control, protection and security

52

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Monolithic  
→ all services run in the same memory space as the
main kernel thread  
→ may involve dynamically loadable modules (Linux) 
→ advantages: direct access to hardware, fast
communication inside the kernel, easier to implement 
→ disadvantages: strong dependencies between the
kernel components, difficult maintenance  
→ example: Linux

source: Wikipedia

Types of kernels

53

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Microkernel  
→ a set of “server” components, built around a
minimal kernel  
→ the kernel only provides the most basic services:
inter-process communication (IPC), memory
management, process management 
→ the “servers” implements all the other system-
specific services and are placed in different memory
spaces than the kernel  
→ advantages: flexibility, easy maintenance,
minimal dependencies 
→ disadvantages: lower performance (because of
the intense inter-server communication) larger
memory needs, harder to debug  
→ example: QNX"

• Hybrid kernels 
→ similar with microkernel, but include more
services implemented directly by the kernel, to
improve performance  
→ Examples: OS X (Darwin), Windows NT

source: Wikipedia

Types of kernels

source: Wikipedia

54

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Virtual Machines

55

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Operating System

Hardware

• The traditional architecture 

• Disadvantages 
→ only one OS at a time  
→ aplications must be ported to several OS-es"

• Solution: virtualization 

56

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Virtual Machine (VM) 
a software that simulates a complete hardware
system (computer), providing a virtual environment
for the programs to run in"

"

"

"

• Characteristics: 
→ the virtual machine can run native software, for which a separate
hardware would have been needed  
→ one computer can run several virtua machines at the same time,
each having its own distinct architecture  
→ the programs installed inside the virtual machine run as if on real
hardware, and are completely isolated from the host system and
from the other virtual machines

Virtual machine

Native software

57

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

JVM

Types of virtual machines

• System VM 
→ simulates a complete hardware, usually an
existing, real, computer system"

• Process VM  
→ provides a virtual execution environment for
running programes written in a specific programming
languages 
→ the VM is developed only for running the byte code
of these applications, it doesn’t simulate a real system 
→ provides portability to the programs written in that
specific language  
→ example: Java Virtual Machine (JVM)"

 
Java

Program bytecode

Virtual
Machine

Operating
system

Applications

58

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

The general architecture

Hardware

Hypervisor (monitors the VMs)

Virtual
machine

Guest OS

Host OS

Virtual
machine

Guest OS

Virtual
machine

Guest OS

59

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Virtualization techniques

• Type 1 Hypervisor
(native)*  
→ directly accesses the hardware"

"

• Type 2 Hypervisor*  
→runs over a conventional OS"

 

*After Gerald J. Popek and Robert P. Goldberg: "Formal Requirements for Virtualizable Third Generation Architectures", 1974

Hardware

Hypervisor

OS OS Mașină OS

Hardware
Host OS

Hypervisor
VM VM VM
OS OS OS

A. Native virtualization  
→ virtualizes the particular hardware it runs on

60

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Virtualization techniques

B. Arc hitectural emulation  
→ virtualizes a foreign hardware architecture  
→ the virtual architecture doesn’t necesserily have a correspondent in real-life
hardware"

C. Operating system-level virtualization  
→ a technology that virtualizes servers within the OS 
→ the OS kernel provides several distinct user spaces which are available to the user
as distinct servers 
→ the distinct spaces are separated from each other and do not interact 
→ not all OS-specific services are provided to the virtual servers 
→ cannot host other OS-es than the real (host) one

61

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a2. Advanced OS usage

62

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Operating Systems “Design Philosophy”

63

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Design-time goals

• Target 
➞ general use, specific use (desktop, server, mobile, embedded), tipul de
utilizator (avansat, novice, consumer)"

• Interaction  
➞ processing (jobs, multiuser), user interface type (command-line,
graphical), main user interaction paradigm (direct commands, touch gestures
voice, windows and buttons,…) etc."

• Philosophy 
➞ basic principles that shape the system, applicable to the entire system,
regardless of the other goals

64

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Modularity and interconnectivity 
➞ writing software components that are easy to connect to each other: the
output of any program can be the input for another program"

• Clarity and simplicity 
➞ simple and clear applications are preferred to unnecessarily complex
programs"

• Well-defined and focused purpose  
➞ a program must do one single thing, and do it well

The UNIX Philosophy

Elaborate and diverse behaviors can and should be achieved by
freely combining simple, focused and interconnectable components,
thus avoiding unnecessary complexity

65

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Why UNIX ?

?
66

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
UNIX commands

67

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

The UNIX command-line interface
Expressive  
→ enables the user to directly and accurately define her needs 
→ uses simple, focused concepts, with well-defined goals and function"

Powerful  
→ a great variety of commands are available  
→ command behavior can be tuned extensively (arguments, configuration
files, environment variables) 
→ maximum flexibility by freely combining existing commands to achieve
new functionality"

Adaptable  
→ configurable, can be used by persons with various levels of experience:
while it doesn’t complicate the interaction, it does not impose artificial
limitations"

Independent  
→ does not depend on special hardware features: e.g., the same powerful
functionality can be accessed both locally, and from remote locations 
  68

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

The command interpreter (the shell)

= An interactive program presented to the user 
→ provides a command-line interface  
→ allows command executions, command interaction, control  
→ there are several interpreters in UNIX, selectable by the users 
→ users can start as many shells they want (in separate windows, in
separate text-mode consoles, etc.) 
→ provides programming-like facilities (scripting) 
→ examples: sh, csh, tcsh, bash  
 
Terminology:  
 - shell (în a larger sense) - any user interface  
 - shell - the command interpreter 
 - shell script - a program written using the syntax and semantics
recognized by the shell, using commands to do various tasks 
 

69

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Types of commands

• Internal commands 
➞ interpreted directly by the shell  
➞ examples: cd, break, fg, bg, source, eval, exec, exit"

• External commands 
➞ independent executables, existent as separate programs on the disk; this
includes the OS-specific commands, and the “OS-specific” installed
applications 
➞ examples of external UNIX commands: ls, man, cat, cut, ps, top

70

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Commands, parameters, input, output

Cmd param1 param2 ...Input

Output

Error
output

• Parameters

1

20

➞ given by the users in the command line  
➞ words separated by spaces

• Input  
➞ default input: the keyboard  
➞ can be redirected from files, or can be generated by other programs 
➞ standard descriptor: 0 (“stdin”)

• Output
➞ default: the current shell window, the screen  
➞ can be redirected to files, or sent to other commands 
➞ standard descriptors: 1 (“stdout”) and 2 (“stderr”)

Returned
value

71

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

ls -al . | grep ".gmail-"

$ ls -al .
drwx------ 28 root root 4096 Oct 4 15:35 .
drwxr-xr-x 25 root root 4096 Jul 10 13:35 ..
-rw------- 1 root root 8902 Oct 9 16:29 .bash_history
-rw-r--r-- 1 root root 570 Jan 31 2010 .bashrc
drwxr-xr-x 2 root root 4096 Jul 5 18:55 Desktop
drwxr-xr-x 2 root root 4096 Jul 5 18:55 Downloads

$ grep "abc"
abc 123  
abc 123
asdf 234
123 abc 5678
123 abc 5678

72

• Parameters

• Input  

• Output

Commands, parameters, input, output

Cmd param1 param2 ...Input

Output

Error
output

1

20

Returned
value

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Returned value  
➞ At termination, any program returns an integer value to the operating system 
➞ C: exit(value); or return value; in main()"

• Convention: 
➞ 0: the program ended correctly 
➞ ≠0: the program ended with error (and the value is the error code)"

• In the UNIX command line: 
$ test 1 -eq 2  
$ echo $?  
1  
 

73

Commands, parameters, input, output

Cmd param1 param2 ...Input

Output

Error
output

1

20

Returned
value (c)

 D
an

 C
. C

osm
a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Input and output redirection
• Redirection  

➞ cmd < file1  
➞ cmd > file2  
➞ cmd >> file2  
➞ cmd 2> file3"

cmd file2FișierFișierfile1

file3

1

2

74

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Chaining commands

• UNIX commands are interconnectable  
➞ input and output: usually text 
➞ the output of a program can become the input to another program"

• Chaining commands 
➞ the “pipe” operator is used: | 
➞ cmd1 | cmd2 | cmd3 ... 
➞ the commands start in parallel"

cmd 1 cmd 2 cmd 3 ...
|| || ||

ls -al . | grep ".gmail-"

75

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

• Sequential execution  
➞ cmd1;cmd2;cmd3 ▻Returned value: the value returned by the last command  
➞ cmd1 || cmd2 || cmd3 ▻Returned value: logical OR  
➞ cmd1 && cmd2 && cmd3 ▻Returned value: logical AND"

"

"

"

• Parallel execution  
➞ cmd1 & cmd2 & cmd3 &

cmd 1 cmd 2 cmd 3 ...

cmd 1

cmd 2
cmd 3

t

t
76

Chaining commands

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Examples of UNIX commands

man [options] [section] command
pwd
cd directory  
ls [-adgilrst] file ...
mv file1 file2
cp file1 file2
sort
du
df
who
ps  

77

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

Examples of redirection and chaining

sort < fis1 > fis2
"
ls -l | grep student | wc -l > fis3
"
ls -a | grep ".qmail-" | grep -v ".qmail-ac:" | grep ":" | less
"
tar czf - /etc/ /var/named/ /service /var/lib/qmail /var/qmail
| ssh subspace.cs.upt.ro "dd of=/disk2/bf2-bak-20130710.tar.gz"
"
/opt/bin/mediaclient --cat /dev/dvb/adapter0/dvr0  
| /Applications/VLC.app/Contents/MacOS/VLC file:///dev/stdin 
 
JARS=`find ${ANT_LIB} -name '*jar' | while read JAR_FILE; do
 echo -n ":$JAR_FILE"; done`  

78

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
UNIX shell scripts

79

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

- shell script - a program written using the syntax and semantics 

recognized by the command interpreter, using OS-specific

commands to do various tasks

80

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

81

- shell script - a program written using the syntax and semantics 

recognized by the command interpreter, using OS-specific

commands to do various tasks

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

bash

82

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

bash
➞ “Bourne-again Shell” (wordplay derived from the name Bourne Shell) 
➞ the free and modern replacement of one of the traditional UNIX shells
(Bourne Shell -- sh) 
➞ diverse facilities of command processing and programming: control
structures, wildcarding, pipe, command substitution, iteration, condition
evaluations, command history, autocompletion in the command line, etc. 
➞ the syntax is a superset of the sh-specific syntax, extended and improved  
➞ present in basically all current UNIX versions/distributions

83

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

bash
➞ “Bourne-again Shell” (wordplay derived from the name Bourne Shell) 
➞ the free and modern replacement of one of the traditional UNIX shells
(Bourne Shell -- sh) 
➞ diverse facilities of command processing and programming: control
structures, wildcarding, pipe, command substitution, iteration, condition
evaluations, command history, autocompletion in the command line, etc. 
➞ the syntax is a superset of the sh-specific syntax, extended and improved  
➞ present in basically all current UNIX versions/distributions

84

other shells: csh, ksh, tcsh, ...

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

bash ➟ Environment variables

85

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

➟ Environment variables

86

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

➞ variables usable in the command line and scripts 
➞ their type is always string

• Assignment 
 VARIABLE=value

• Getting the value  
 $VARIABLE  
 
 
$ VAR1=abcd  
$ echo $VAR1  
abcd

➟ Environment variables

87

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

• Concatenation  
 
 
$ VAR1=abcd  
$ VAR2=x  
$ echo $VAR1$VAR2  
abcdx  
$ echo 123$VAR1  
123abcd  
$ echo ${VAR1}123  
abcd123  
$ VAR3=y${VAR1}123; echo $VAR3  
yabcd123

88

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

• Quotation 
 
 
$ VAR1=”ab cd”  
$ VAR2=x  
$ echo $VAR1  
ab cd  
$ echo ”123 $VAR2”  
123 x  
$ echo ’123 $VAR2’  
123 $VAR2  
 
$ echo \$VAR1  
$VAR1  
$ echo \$$VAR1  
$ab cd  

89

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Predefined environment variables

PWD - current (working) directory 
HOME - current user’s home directory 
PATH - command search path  
 example: /bin:/usr/bin:usr/local/bin  
PS1 - first prompt (printed by the shell before the command line) 
PS2 - secondary prompt 
UID - the ID of the current user 
HOSTNAME - the name of the computer 
... 

mycomputer:~ janedoe$ echo $PS1  
\h:\W \u\$  
mycomputer:~ janedoe$ echo $PS2  
>  
mycomputer:~ janedoe$ echo #HOME  
/home/janedoe  

90

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Special variables

*, @ - the command line parameters 
- the number of command line parameters 
? - the status of the last run command  
0 - the name ot the current script or the current shell  
1, 2, ... - the nth parameter in the command line  
... 

$ sh myscript.sh 1a 2 b 3  
4  
1a 2 b 3  
$ sh myscript.sh 1a ”2 b” 3  
3  
1a 2 b 3  

myscript.sh:  
 echo $#  
 echo $@  

91

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Path name expansion

➞ after it separates the words in the command line, bash searches
each word for the occurrence of the following characters: *, ? and [.  
➞ if found, interprets the respective words as patterns which it
expands as file names, as follows: 
 
* - any string, including the null string  
? - exactly one character 
[...] - any of the characters between the square brackets

$ ls *txt  
a.txt abctxt txt  
$ ls abc?1  
abcx1 abcd1 abc11  
$ ls ab[12]x  
ab1x ab2x  

92

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Brace expansion

➞ resembles path expansion, but the resulting names do not necessary
need to represent existing file names 
➞ syntax: 
 prefix{expression}postfix 
 ⇾ the expression can be made of words separated by commas, or of
interval specifiers (..) 
 

$ echo a{x,y)  
ax ay  
$ echo a{x..z}  
ax ay az  
$ mkdir a{1,2,3}x  
$ (will create the directories: a1x, a2x, a3x)

93

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Tilde expansion (“~”)

➞ ~name is interpreted as the home directory of the user name  
➞ ~ is interpreted as the home directory of the current user 
  

$ echo ~  
/home/janedoe  
$ echo ~gregory  
/home/gregory  

94

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➞ in a syntactic construct in the form `string ` or $(string) , the shell
considers string a command  
➞ the command is executed, and its output will be used for replacing the
entire syntactic construct 
➞ note: the delimiters are backquotes: `, not quotes  

➟ Command substitution

$ echo `pwd`  
/home/janedoe/a1x  
$ A=`ls -a`  
$ echo $A  
. .. abc myscript.sh xyz  

95

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Input and output redirection
➞ the general construct for output redirection (e.g., given after a command): 
 [n]>word  
 [n]>>word  
➞ redirects the file descriptor n to file word; if n is not specified, the
descriptor is redirected to the standard output 
➞ if >> is used, the output of the command will be appended at the end of the
file (the file is not overwritten)"

 
➞ the general construct for redirecting the input: 
 [n]<word  
➞ redirects the file descriptor n to read from the file word; if n is missing, the
redirection is done for the standard input

$ cat x 1>>fisier  

96

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ “Here Documents”

<<word
 here-document

delimiter

➞ the interpretor will take word as a delimiter 
➞ the text in the here-document lines is sent to the command input 
➞ the delimiter marks the end of the input 
➞ if word contains single/double quote characters (“ or ‘) , they are ignored,
but inside the here-document no variable expansion or command substitution
is done  

cat <<SFARSIT
 abc
 123
 x
 SFARSIT
abc
123
x

97

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Other bash features

➞ aliasuri (comenzile interne alias, noalias) 
➞ functions 
➞ array variables 
➞ command autocompletion (the TAB key) 
➞ command history (the .bash_history file) 
➞ default scripts started at login, logout and when bash starts (.bash_profile,
.bash_logout, .bashrc) 
... 

98

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Conditions
➞ the internal commands test and [ 
➞ used for composing logical expressions 
➞ the conditional command returned can be 0 (true) or 1 (false), so
that is easily integrated with the conditional specifiers (such as if) 

• examples of parameters for test and [: 
 -e file - true if file exists 
 -d file - true if file exists and is a directory 
 -f file - true if file exists and is regular 
 string1 == string2 - true if string1 is identical with string2  
 string1 != string2 - true if string1 differs from string2  
 string1 < string2 - true if string1 is before string2, alphabetically 
 string1 > string2 - true if string1 is after string2, alphabetically 
 arg1 operator arg2 - true if arg1 and arg 2 are in the relation specified by the
operator 
 ⇾ where operator: -eq (equal), -ne (not equal), -lt (lower than), -gt (greater
than), -ge (greater or equal), -le (lower or equal)

$ [1 -eq 2]  
$ echo $?  
1  

99

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Control structures
for name [in word] ; do list ; done  

 
for ((expr1 ; expr2 ; expr3)) ; do list ; done 
 ➞ expri - arithmetic expressions 
 ➞ first expr1 is evaluated; then expr2 is evaluated at each iteration
until reaches zero; if expr2≠0 list is executed, and expr3 is
evaluated 

 
case word in [[(] pattern [| pattern] ...)
list ;;] ... esac  

 
if list; then list; [elif list; then list;] ...
[else list;] fi  

"
while list; do list; done
"
"
until list; do list; done  

100

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

for ((i=1; i<=4; i++))
do
 echo $i
done

➟ Examples
$ sh script  
1
2
3
4

for i
do
 echo $i
done

$ sh script a b c  
a
b
c

i=0
while [-f .dotask]
do
 ((i++))
 echo Starting task: $i
 /usr/local/bin/myprogram --start
done

$ sh script  
Starting task: 1
Starting task: 2
Starting task: 3
Starting task: 4
Starting task: 5  
...

101

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

➟ Examples
$ sh service.sh status  
Service is running  
$ sh service.sh reboot  
Usage: service.sh {start|
stop|restart}

case "$1" in
start)

 /usr/local/myservice -d
 ;;
stop)

 /usr/local/myservice -x
;;

status)
 if /usr/local/myservice --isrunning 2>/dev/null

then
 echo Service is running

else
 echo Service not started

fi
 ;;
restart)

 stop
 start
 ;;
*)

 echo $"Usage: $0 {start|stop|restart}"
 exit 1
esac 102

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

#!/bin/sh
"
fact()
{
 if [$1 -gt 1]
 then
 i=`expr $1 - 1`
 j=`fact $i`
 k=`expr $1 * $j`
 echo $k
 else
 echo 1
 fi
}
"
read -p "Numar:" x
fact $x

The name of the shell
that will execute this
script

Recursive
function

First function
parameter

103

➟ Functions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

for i in episode-S02E*avi
do
 nr=`ls "$i" | cut -c 13-14`
 fn=${i%\.*}
 mv episode-subtitle-en-2x${nr}*srt "$fn".srt
 echo $nr $fn
done

➟ Example

104

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Regular expressions in UNIX

105

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

106

Regular expression

An expression made of a sequence of characters describing a
pattern used when searching text.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

107

UNIX

Many UNIX commands accept regular expressions, in two
formats: 
 
➞ POSIX basic (BRE) 
➞ POSIX extended (ERE)"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

108

POSIX regular expressions
. - matches a single character	

Example: a.x smatches abx, aax, acx, etc."
 
[] - matches a single character of those specified between the
brackets	

Examples: [abc] matches a, b or c"
 [a..x] - any character between a and x"
"
[^] - matches a single character except for those specified
between the brackets  
Examples: [^abc] matches any character except a, b or c"
 [^a..x] - any character, except those between a and x	

 
^ - matches the start position (usually in a line)  
Example: ^a means “the a character at the beginning of the line”#
"
$ - matches the end position (usually in a line)  
Example: a$ means “the a character at the end of the line”#
"
"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

109

() - defines o subexpression  
The value that matches the pattern between brackets can be later referenced using \n
(where n is a number). In the “basic” syntax (BRE), the parentheses must be quoted: \(\) .	

"
\n - reference to a subexpression	

Refers the n-th subexpression designated by parentheses, where n ∈ [1, 9]."
 
*	

Describes an expression (string) made of zero ore more occurrences of the character that
precedes the *  
Examples:  
 ab*x matches ax, abx, abbbbx, etc.  
 [abc]* matches the null string, a, aa, aaaa, b, bbb, ab, ba, abcc, abc, aabbcc, aabbcca,
etc. 
 
{m,n}  
Describes an expression made of a minimum of m and a maximum of n occurrences of the
preceding character. In the “basic” mode (BRE), the braces must be quoted: \{ and \} . 
 

POSIX regular expressions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

110

 
+	

Only available in the extended mode (ERE). Describes an expression made of one or
many occurrences of the preceding character.  
 
?	

Only available in the extended mode (ERE). Describes an expression made of zero or
one occurrence of the preceding character  
 
 
Note: in the extended mode references to subexpressions (\n) are not available, and a
quotation using \ will simply mean the next character as it is (\(means the character()

POSIX regular expressions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

111

Exemple
[cm]asa casa masa  
 
^c?are care are (strictly at the beginning)  
 
.are sare mare tare xare fare ...  
 
[ab]*re re are aabre abbre aaarea aabbbre baare ...  
 
a+re are aare aaare ... (but not “re”)#
"
episode\ [123]x.* episode 1x01 - The Super Hero  
 episode 1x02 - The Hero Cries#
 episode 3x22 - Hero No More#
 ...  

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

112

Commands that recognize regular expressions
grep, sed, awk

Usually, to enter the extended mode (ERE), commands need a specific option
(e.g., -E)

grep -E pattern#
egrep pattern

ls -l | grep -E ^Fisierul\ meu.*txt$  
 
Fisierul meu cu scrisori.txt  
Fisierul meu preferat.txt#
Fisierul meu cu txt  
...

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

3. File systems

113

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Programming with files

114

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

115

 if((fd1=open(argv[1], O_RDONLY))<0)
 {
 printf("Error opening input file\n");
 exit(2);
 }
 if((fd2=open(argv[2], O_WRONLY | O_CREAT |
O_EXCL, S_IRWXU)) < 0)
 {
 printf("Error creating destination file
\n");
 exit(3);
 }

 while((n = read(fd1, &c, sizeof(char))) > 0)
 {
 if(write(fd2, &c, n) < 0)
 {
 printf("Error writing to file\n");
 exit(4);
 }
 }
"
 if(n < 0)
 {
 printf("Error reading from file\n");
 exit(5);
 }

 close(fd1);
 close(fd2);

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

116

Applications

Operating"
 system"

"

Hardware"
"

"
I/O Memor Storage

Library

...

Files Processes Pipes ...

System services
Library API

System calls

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

117

Lecția de engleză

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

118

Lecția de engleză. Și de română

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

119

Lecția de engleză. Și de română

Library - noun,  
: a place in which literary, musical, artistic, or 
reference materials (as books, manuscripts, 
recordings, or films) are kept for use but not for sale  
: a collection resembling or suggesting a library

The Free Merriam-Webster dictionary, www.m-w.com

Dicționarul explicativ al limbii române, ediția 1998

Librărie - substantiv, 
: Magazin în care se vând cărți.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

120

Lecția de engleză. Și de română

Library - noun,  
: a place in which literary, musical, artistic, or 
reference materials (as books, manuscripts, 
recordings, or films) are kept for use but not for sale  
: a collection resembling or suggesting a library

The Free Merriam-Webster dictionary, www.m-w.com

Bibliotecă - substantiv, 
: Instituție care colecționează cărți, periodice etc. spre a le
pune în mod organizat la dispoziția cititorilor 
: Colecție de cărți, periodice, foi volante, imprimate etc.

Dicționarul explicativ al limbii române, ediția 1998

Librărie - substantiv, 
: Magazin în care se vând cărți.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

121

Lecția de engleză. Și de română

Library - noun,  
: a place in which literary, musical, artistic, or 
reference materials (as books, manuscripts, 
recordings, or films) are kept for use but not for sale  
: a collection resembling or suggesting a library

The Free Merriam-Webster dictionary, www.m-w.com

Bibliotecă - substantiv, 
: Instituție care colecționează cărți, periodice etc. spre a le
pune în mod organizat la dispoziția cititorilor 
: Colecție de cărți, periodice, foi volante, imprimate etc.

Dicționarul explicativ al limbii române, ediția 1998

Librărie - substantiv, 
: Magazin în care se vând cărți.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

122

Lecția de engleză. Și de română

Bookstore - noun,  
: a place of business where books are  
the main item offered for sale —called also bookshop

The Free Merriam-Webster dictionary, www.m-w.com

Dicționarul explicativ al limbii române, ediția 1998

Librărie - substantiv, 
: Magazin în care se vând cărți.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

123

Library ≠ Librărie !
"
Library = Bibliotecă 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

124

Library ≠ Librărie !
"
Library = Bibliotecă 

“False Friend”

Concluzie: nu vă ajutați singuri să
deveniți ridicoli... ;)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

125

Applications

Operating"
 system"

"

Hardware"
"

"
I/O Memor Storage

Library

...

Files Processes Pipes ...

System services
Library API

System calls

man 3 function
UNIX:

man 2 function
UNIX:

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

126

System calls for working with files

int open(const char *pathname, int oflag, [, mode_t mode]);
• pathname - file name	

• oflag - opening flags. It is a set of bits. fcntl.h defines constants than can be combined with '|' . Examples:	

◦ O_RDONLY - open for reading only	

◦ O_WRONLY - open for writing	

◦ O_RDWR - open for reading and writing	

◦ O_APPEND - open for appending at the end of the file	

◦ O_CREAT - create the file if it does not exist; with this option, open must also receive the parameter mode.	

◦ O_EXCL - "exclusive" file creation: if O_CREAT is used and the file already exists, open will return error	

◦ O_TRUNC - if file exists, it is truncated	

• mode - only when creating a file - the access rights for the file. Constants:	

◦ S_IRUSR - read for the owner (user)	

◦ S_IWUSR - write for the owner (user)	

◦ S_IXUSR - execute for the owner (user)	

◦ S_IRGRP - read for the group that owns the file	

◦ S_IWGRP - write for the group	

◦ S_IXGRP - execute for the group	

◦ S_IROTH - read for others	

◦ S_IWOTH - write for others	

◦ S_IXOTH - execute for others  

Returns a file descriptor
int creat (const char *pathname, mode_t mode); 
int close (int filedes);  

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

127

Standard file descriptors:"
"
STDIN_FILENO
STDOUT_FILENO
STDERR_FILENO

System calls for working with files

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

128

Managing open files in UNIX
➞ file descriptors: numbers between 1..n, n depends on the system 
➞ an initialized descriptor references an open file; once closed, the descriptor is
reused  
➞ each process owns a table containing the open descriptors

3
4
5
6
7

5
6
7
8

Description of open file 1  
- current position in file  
- access modes set for file  
- ...

Description of open file 2 
- current position in file  
- access modes set for file  
- ...

3
4
5

Description of open file 3 
- current position in file  
- access modes set for file  
- ...

i-node

i-node

(distinct file on the disk)

Per process, descriptor tables
Global in system,  
open files table

i-node copy in memory "
(details about i-nodes will follow)

Process 1

Process 2

Process 3

dup()

fork()

(distinct file on the disk)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

129

➞ a call to open() creates  
 - a new descriptor 
 - a new open file description

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

130

ssize_t read(int fd, void *buff, size_t nbytes)

→reads exactly nbytes bytes from the current position  
→stores the bytes in the memory area referenced by buff  
→returns the number of bytes actually read (0 at the end of file) or -1 if error

nbytesdata  
from the

disk

buff

What happens if the buffer is not correctly allocated?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

131

ssize_t write(int fd, void *buff, size_t nbytes)

→writes on the disk exactly the first nbytes bytes in buffer 
→gets them from the memory area indicated by buff"

nbytes

data to be
written on
the disk

buff

What happens if the buffer is not correctly allocated?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

132

off_t lseek(int fd, off_t offset, int pos)
Sets the offset of the file descriptor at offset, as follows:"
• if pos = SEEK_SET, the positioning is calculated relatively to the start of

the file"
• if pos = SEEK_CUR, the positioning is relative to the current position"
• if pos = SEEK_END, the positioning is relative to the end of the file"

int mkdir(const char *pathname, mode_t mode)
"
int rmdir(const char *pathname)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

133

Library functions for working with files
FILE *fopen(const char *filename, const char *mode);
"
int fclose(FILE *stream);
 
int fprintf(FILE *stream, const char *format, ...);  

int fscanf(FILE *stream, const char *format, ...);  
 
size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);  
reads from the file indicated by stream a number of nmemb elements, each having
the size size, and puts them in the memory area indicated by ptr. 
 
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE
*stream);  
writes to the file indicated by stream a number of nmemb elements, each having
the size size, read from the memory area indicated by ptr. 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

134

Standard file descriptors:"
"
stdin
stdout
stderr

Library functions for working with files

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

135

Finding out file properties (system calls)

int stat(const char *file_name, struct stat *buf);
 
int fstat(int filedes, struct stat *buf);
 
int lstat(const char *file_name, struct stat *buf); 
 
 struct stat
 {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 umode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
 };  

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

136

DIR *opendir(const char *name);
struct dirent *readdir(DIR *dir);
void rewinddir(DIR *dir);
int closedir(DIR *dir);  
 
 /*Linux*/  
 struct dirent {
 ino_t d_ino; /* inode number */
 off_t d_off; /* offset to the next dirent */
 unsigned short d_reclen; /* length of this record */
 unsigned char d_type; /* type of file; not supported
 by all file system types */
 char d_name[256]; /* filename */
 };

Library functions for working with directories

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

137

• int link(const char *oldpath, const char *newpath); - creeaza
legaturi fixe spre fisiere

• int symlink(const char *oldpath, const char *newpath); -
creeaza legaturi simbolice spre fisiere sau directoare

• int unlink(const char *pathname); - sterge o intrare in
director (legatura, fisier sau director)

• int rename(const char *oldpath, const char *newpath); -
redenumire / mutare de fisiere

• int rmdir(const char *pathname); - stergere de directoare
• int chdir(const char *path); - schimbarea directorului curent
• char *getcwd(char *buf, size_t size); - determinarea
directorului curent

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

138

An example

➞ program that copies a file having the name specified as the first
argument in the command line to another file, also specified in the
command line  
➞ error messages are printed when necessary

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

139

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>  
#include <stdlib.h>
"
void usage(char *name)
{
 printf("Usage: %s <source> <destination>\n", name);
}
"
int main(int argc, char *argv[])
{
 int fd1, fd2;
 int n;
 char c;

 /*** Check command line args */
 if(argc!=3)
 {
 usage(argv[0]);
 exit(1);
 }
"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

140

 /*** Open files */
 if((fd1=open(argv[1], O_RDONLY))<0)
 {
 printf("Error opening input file\n");
 exit(2);
 }
 if((fd2=open(argv[2], O_WRONLY | O_CREAT | O_EXCL, S_IRWXU)) < 0)
 {
 printf("Error creating destination file\n");
 exit(3);
 }

 while((n = read(fd1, &c, sizeof(char))) > 0)
 {
 if(write(fd2, &c, n) < 0)
 {
 printf("Error writing to file\n");
 exit(4);
 }
 }
"
 if(n < 0)
 {
 printf("Error reading from file\n");
 exit(5);
 }

 close(fd1);
 close(fd2);

 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

141

 /*** Open files */
 if((fd1=open(argv[1], O_RDONLY))<0)
 {
 printf("Error opening input file\n");
 exit(2);
 }
 if((fd2=open(argv[2], O_WRONLY | O_CREAT | O_EXCL, S_IRWXU)) < 0)
 {
 printf("Error creating destination file\n");
 exit(3);
 }

 while((n = read(fd1, &c, sizeof(char))) > 0)
 {
 if(write(fd2, &c, n) < 0)
 {
 printf("Error writing to file\n");
 exit(4);
 }
 }
"
 if(n < 0)
 {
 printf("Error reading from file\n");
 exit(5);
 }

 close(fd1);
 close(fd2);

 return 0;
}

? (c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

142

A small change in the program...

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

143

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>  
#include <stdlib.h>
"
#define BUFSIZE 4096
"
void usage(char *name)
{
 printf("Usage: %s <source> <destination>\n", name);
}
"
int main(int argc, char *argv[])
{
 int fd1, fd2;
 int n;
 char buf[BUFSIZE];

 /*** Check command line args */
 if(argc!=3)
 {
 usage(argv[0]);
 exit(1);
 }
"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

144

 /*** Open files */
 if((fd1=open(argv[1], O_RDONLY))<0)
 {
 printf("Error opening input file\n");
 exit(2);
 }
 if((fd2=open(argv[2], O_WRONLY | O_CREAT | O_EXCL, S_IRWXU)) < 0)
 {
 printf("Error creating destination file\n");
 exit(3);
 }

 while((n = read(fd1, buf, BUFSIZE)) > 0)
 {
 if(write(fd2, buf, n) < 0)
 {
 printf("Error writing to file\n");
 exit(4);
 }
 }
"
 if(n < 0)
 {
 printf("Error reading from file\n");
 exit(5);
 }

 close(fd1);
 close(fd2);

 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

145

File size Buffer size (bytes) Copy time

74 MB 1 6 minutes 30 seconds

74 MB 100 3 seconds

74 MB 4096 1 second

date; ./copyfile2 beethoven-symph-5-1.wav b.wav; date

Notă: Moreover, even simply calling a function takes time. Do not abuse.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

146

About some small C questions. And common sense…
char buf[BUFSIZE];
"
char *buf;

read(fd1, buf, BUFSIZE);
"
"
read(fd1, buf, sizeof(buf));
 
read(fd1, buf, strlen(buf));  
"
"
"
int v;  
...  
read(fd1, &v, sizeof(int));  

?
...
"
/*read file from disk*/  
read(fd1, buff, file_size);  
"
...   !

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
File systems

147

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

148

Storing data on a disk

➞ At a logical level, a disk is made of a set of sectors 
➞ Sector size is fixed and depends on the disk type. Example: “regular” hard disk:
512 bytes, newer hard disk: 4096 bytes 
➞ A disk can be partitioned

Partition 1 Partition 2 Partition 3structural  
info area

Free"
space

Example of partitioned disk

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

149

Partitioning schemes

• Differ with the type of disk, computer, OS, etc."

• Most popular partitioning schemes:"

• MBR (Master Boot Record) 
→ the classic scheme, used on most current PCs"

• GPT (GUID Partition Table) 
→ the partitioning scheme for PCs, more flexible

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

150

MBR

Boot sector 
→ a region on a disk, usually at the start of he disk, containing, among others, an
executable code that can be started by the computer’s firmware at the initialization
time  
→ the executable code will load a specific program on the disk, usually a program
that starts the OS installed on that disk

Master Boot Record  
→ a special type of boot sector, specific to IBM-PC-compatible computers (even
current PCs) 
→ contains, among the loader program, informations about the disk partitions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

151

MBR

Partitioning scheme  
→ The information about partitions is located in a partition table in the MBR  
→ The partition table consists of 4 entries, therefore a maximum of 4 partitions can
be defined. These partitions are called primary partitions 
→ A partition can be designated as extended, in which case it will contain other
partitions 

Primary partition Primary
partitionMBR Free

space

Example of a MBR partitioned disk

Extended partition

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

152

GPT

Description  
→ Part of the UEFI standard (United
Extensible Firmware Interface), aimed at
replacing PC BIOS 
→ Uses GUIDs (Globally unique identifier)
for disk and partition type identification, in
order to avoid duplicates 
→ Allows creating an arbitrary number of
partitions (only dependent don the space
reserved for the partition table)

sursa: Wikipedia

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

153

File system

The logical way of organizing data on a physical or virtual support, for storage and
data access

→ Several file systems can be installed on a same computer, for instance on distinct
disks or partitions 
→ Operating systems usually are accompanied by specific file systems 
→ Some operating systems recognize several file system types, even if they were
not developed for the respective OS 
→ A file system describes both the data structures involved in data storage, and the
way the data is accessed (e.g., as a tree of files and directories)are) 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

154

Examples of file systems

FAT16 (File Allocation Table, 16 bit)  
→ Specific to MS-DOS, Windows. File names have maximum 8+3 characters.
Maximum volume (partition) size: 2 GB / 4GB (Win NT) 
 
FAT32 
→ Windows. Longer file names. Maximum volume size: 8 GB. Maximum file size: 4
GB. 
 
NTFS 
→ Windows NT and successors. Maximum file size: 16 TB (<=Win7), 256 TB
(Win8). Journalling file systems. 
 
HFS Plus  
→ Specific to OS X. Maximum volume size: 8 EB*. Maximum file size: 8 EB*.
Journalling file system.

* 1 exabyte = 1018 bytes = 109 gigabytes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

155

Ext2 - Second Extended File System  
→ Specific to Linux. Maximum volume size: 2-32 TB. Maximum file size: 16 Gb - 2 TB  
 
Ext3 - Third Extended File System  
→ Specific to Linux. Maximum volume size: 2-32 TB. Maximum file size: 16 Gb - 2
TB. Journalling file system. 
 
Ext4 - Fourth Extended File System  
→ Specific to Linux. Maximum volume size: 1 EB*. Maximum file size: 16 TB.
Journalling file system. 

* 1 exabyte = 1018 bytes = 109 gigabytes

Examples of file systems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

156

File system support

Windows 
→ FAT, NTFS, exFAT 
 
Linux  
→ Tens of file systems. Examples: ext2, ext3, ext4, XFS, FAT, NTFS, HFS+, JFFS,
JFFS2 (Journaling Flash File System) 
 
OS X  
→ HFS+, UFS, FAT, NTFS (read only) 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

157

→ Several file systems can be installed on a same computer,
for instance on distinct disks or partitions 

fdisk /dev/sda
"
The number of cylinders for this disk is set to 30401.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)
"
Command (m for help): p
"
Disk /dev/sda: 250.0 GB, 250059350016 bytes
255 heads, 63 sectors/track, 30401 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0xd42ad42a
"
 Device Boot Start End Blocks Id System
/dev/sda1 * 1 4476 35953438+ 7 HPFS/NTFS
/dev/sda2 29095 30400 10490445 7 HPFS/NTFS
/dev/sda3 4477 29094 197744085 5 Extended
/dev/sda5 4477 6428 15679408+ 83 Linux
/dev/sda6 6429 6695 2144646 82 Linux swap / Solaris
/dev/sda7 6696 29094 179919936 83 Linux

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

158

The hierarchical organization of a file system

• Tree / trees of directories and files 
➞ UNIX: a single tree (a single root directory: /) 
➞ DOS/Windows: several trees (a root dir for each disk/partition: A:\, B:\, C:\,
D:\, ... “\” means the root directory of the current disk)"

• File reference  
➞ absolute path names:  
 UNIX: /usr/bin/ls, /home/jane/myscript, /jome/jane/my\ files/file1  
 Windows: C:\Windows\wordpad.exe, “D:\games\My Super Game” 
➞ path names relative to the current directory:  
 UNIX: myscript, “my files/file1”, .ssh/known_hosts 
 Windows: wordpad.exe, “My Super Game\startgame.exe”#

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

159

Common (almost “standard”) directories in UNIX
/ - the root directory
/bin - essential commands that are needed even when only the root file system is
monted "
/dev - devices
/etc - system configuration files
/home - user home directories
/lib - essential libraries and kernel modules
/opt - directories for additional applications
/sbin - system executables (exclusively for administration uses)
/tmp - temporary files and directories
/usr - the root of an important subtree with system-wide purposes"
/usr/X11 - the X11 windowing system
/usr/X11R6 - the X11R6 windowing system
/usr/bin - utilities, commands that can be called by users
/usr/lib - programming libraries
/usr/local - local applications
/usr/local/bin - local binaries
/usr/share - architecture-independent data
/var - variable data files: e-mail, logs, caches, etc.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

160

Common directories in Windows (NT, ..., 8):

C:\, D:\ - root dirs
C:\Windows - OS files "
C:\Windows\System - 16 bits system and library files
C:\Windows\System32 - 32 or 64 bits system and library files
C:\Windows\SysWOW64 - 32 bits system and library files for running 32 bits
applications when the system is 64 bits (WOW = Windows on Windows)
C:\Documents and Settings - user home directories (NT, 2000, XP)
C:\Users - user home directories (Vista, 7, 8)
C:\Temp, C:\Windows\Temp - temporary files and directories

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

161

Mounting a file system (UNIX)

• Several file systems can coexist on the same
computer 
➞ on distinct disks, partitions, storage devices, in memory, etc."

• There is a single root directory  

➠ A file system can be mounted in any existing directory 
➠ The first mounted system is the root file system. It is
automatically mounted at boot time, in the / directory 
➠The root file system must contain all the necessary files and
directories for running the OS

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

162

Partition 1 
/mnt/windows

Partition 2 
/home

Partition 3 
swap

Partition 4 
/

Example of mounting and unmounting

$ mount -t ntfs /dev/sda1 /mnt/windows

Disk sda

The /etc/fstab config file

/dev/sda3 swap swap defaults 0 0
/dev/sda4 / ext3 acl,user_xattr 1 1
/dev/sda2 /home ext3 acl,user_xattr 1 2 
/dev/sda1 /mnt/windows ntfs user,noauto 0 0

➞ specifies file systems having predefined mount points 
➞ if not otherwise specified, they will be automatically mounted at boot time

device mount point

$ umount /dev/sda1

$ umount /mnt/windows
or

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

163

Users and access rights

• Users 
➞ UNIX accepts multiple users on the same system 
➞ each user has a name and a user identifier (uid) 
➞ each user has a home directory, which she owns 
➞ basic user configuration files: /etc/passwd and /etc/shadow"

• Groups 
➞ users are organized in groups 
➞ a user can belong to more than one group  
➞ each group has a name and a group identifier (gid) 
➞ group configuration file: /etc/group"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

164

• Access rights are set for each file, for three categories
of users 
➞ file owner: user, u -- the owner of the file; usually, the user that has created
the file (but it can also be a different user) 
➞ the group that owns the file: group, g -- each file can be owned by a group;
by default, it is the owner’s group, but it can be changed  
➞ all other users: others, o!

• There are three types of rights for files: 
➞ read, r -- the content of the file can be read  
➞ write, w -- the content of the file can be modified  
➞ execute, x -- the file can be executed; for directories, shows that the directory
can be entered"

• Combining the above, 9 access rights can be
specified, using 9 file mode bits:

r w x r w x r w x
user group others

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

165

Examples. The chmod, chown, and chgrp commands
$ ls -l
total 4
-rw-r--r-- 1 danc users 0 2013-10-23 23:54 file1
-rw-r--r-- 1 danc users 5 2013-10-23 23:54 file2.txt
$ chmod a+x file1 ; ls -l
total 4
-rwxr-xr-x 1 danc users 0 2013-10-23 23:54 file1
-rw-r--r-- 1 danc users 5 2013-10-23 23:54 file2.txt 
$ chmod g-rw file1 ; ls -l  
total 4
-rwx--xr-x 1 danc users 0 2013-10-23 23:54 file1
-rw-r--r-- 1 danc users 5 2013-10-23 23:54 file2.txt 
$ chmod 766 file2.txt ; ls -l  
total 4
-rwx--xr-x 1 danc users 0 2013-10-23 23:54 file1
-rwxrw-rw- 1 danc users 5 2013-10-23 23:54 file2.txt 
$ chown jane.users file1 ; ls -l  
total 4
-rwx--xr-x 1 jane users 0 2013-10-23 23:54 file1
-rwxrw-rw- 1 danc users 5 2013-10-23 23:54 file2.txt 
$ chgrp staff file2.txt ; ls -l  
total 4  
-rwx--xr-x 1 jane users 0 2013-10-23 23:54 file1
-rwxrw-rw- 1 danc staff 5 2013-10-23 23:54 file2.txt 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

166

The structure of a UNIX file system

Boot
block Superblock Index nodes Content (files and directories)

➠ A UNIX partition can contain:

• The boot block - programs that load the UNIX operating system."
• Superblock - general information about the file system: the start of the next areas on the

disk, the start of the free blocks."
• Index nodes area - contains an entry for each file (in a larger sense) in the partition"
• The last area stores the actual data (files and directories).

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

167

➠ Files and directories are stored in a tree-like structure"

➠ A directory is a special file - a table where each entry describes
a file in the respective directory:

File name The index node no.
File name The index node no.
File name The index node no.
File name The index node no.
File name The index node no.
File name The index node no.
File name The index node no.

i-node
i-node
i-node
i-node
i-node
i-node
i-node

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

168

➠ The index node (i-node) 
 → stores information about a physical file

• user ID: uid (user-id.). The |D of the file’s owner"
• group ID"
• access rights. Three types of rights (r-read, w-write, x-execute)

grouped in three categories:"
◦ user - owner rights"
◦ group - the rights for the users belonging to the owner group"
◦ others - all other users"

• last access time"
• last modification time"
• last i-node modification time"
• file type. Types of files: regular (-), directories (d), peripherals (c),

etc."
• file size (in bytes)"
• link count. The number of hard links that point to this file. EUsed

when removing the file."

• the list of data blocks for the file

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

169

• the list of data blocks for the file

1
2
3
4
5
6
7
8
9

10
single indirection

double indirection
triple indirection

block

block

block

block

block

block

single indirect block

double indirect"
block

single indirect"
block

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

170

➠ The index node (i-node) 
 → stores information about a physical file

• user ID: uid (user-id.). The |D of the file’s owner"
• group ID"
• access rights. Three types of rights (r-read, w-write, x-execute)

grouped in three categories:"
◦ user - owner rights"
◦ group - the rights for the users belonging to the owner group"
◦ others - all other users"

• last access time"
• last modification time"
• last i-node modification time"
• file type. Types of files: regular (-), directories (d), peripherals (c),

etc."
• file size (in bytes)"
• link count. The number of hard links that point to this file. EUsed

when removing the file."

• the list of data blocks for the file

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

171

File types in UNIX

• File 
➞ the file is used in UNIX as a general, unifying concept thet represents
various logical and physical resources"

• Types of files 
➞ regular file  
➞ directory 
➞ symbolic link 
➞ FIFO (named pipe) 
➞ socket 
➞ character device  
➞ block device  
➞ ... (depending on the UNIX variant several other file types may exist)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

172

Devices (peripherals)

➟Represented by files in the /dev directory "

 ➞ /dev/sda, /dev/sdb ..."

 ➞ /dev/sda1, /dev/sda2, /dev/disk/by-id/scsi-SATA_ST3250820AS_9QE499JB-part5"

 ➞ /dev/cdrom"

 ➞ /dev/dvdrw

dd if=/dev/sdb2 of=backup-partition2.img bs=1024
"
 
strings /dev/sda3 > strings_on_attacked_rootpartition.txt 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

173

Virtual devices

➞ /dev/random /dev/urandom"

➞ /dev/null"

➞ /dev/zero"

➞ /dev/full

sh myscript >/dev/null 2>/dev/null
"
 
dd if=/dev/zero of=foobar count=1024 bs=1024 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

174

Links

➟ The UNIX file system allows creating links to files 
 ≈ alternative names for the same file  
 
➟ Two types of links: 
 ➞ Hard links 
 ➞ Symbolic links

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

175

Hard links
➟ several directory entries referring the same i-node  
➟ references are possible only within the same file system
(partition) 
➟ cannot point to directories 
 ➞ to avoid circular dependencies; exception: newer HFS+ versions (OS X), donly
used by the automatic backup system 
➟ the i-node stores a link count  
 ➞ used when creating and removing the file; file is deleted only when link count = 1

a.txt i-node number
abc.sh i-node number

script.sh i-node number

i-node
i-node

i-node

i-node

fisier1 i-node number
abc.sh i-node number

mailsystem.log i-node number

Directory1

Directory2

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

176

$ touch abc
$ ls -l
total 0
-rw-r--r-- 1 danc staff 0 23 Oct 17:24 abc
$ ln abc abc1
$ ls -l
total 0
-rw-r--r-- 2 danc staff 0 23 Oct 17:24 abc
-rw-r--r-- 2 danc staff 0 23 Oct 17:24 abc1
$ ln abc xyz
$ ls -l
total 0
-rw-r--r-- 3 danc staff 0 23 Oct 17:24 abc
-rw-r--r-- 3 danc staff 0 23 Oct 17:24 abc1
-rw-r--r-- 3 danc staff 0 23 Oct 17:24 xyz 
$ rm abc
$ ls -l
total 0
-rw-r--r-- 2 danc staff 0 23 Oct 17:24 abc1
-rw-r--r-- 2 danc staff 0 23 Oct 17:24 xyz 

Hard links

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

177

Symbolic links

➟ a special type of file, referring an existing file  
➟ can point to files in other file systems (partitions) 
➟ can point to directories 
➟ the symbolic link file has its own i-node and occupies
space on the disk 
➟ if the referred file is removed, the symlink will still exist but
it will point to an invalid location

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

178

$ echo ”text” > abc
$ cat abc
text
$ ln -s abc link1
$ cat link1
text
$ ls -l
total 8
-rw-r--r-- 1 danc staff 0 23 Oct 17:34 abc
lrwxr-xr-x 1 danc staff 3 23 Oct 17:34 link1 -> abc
$ ln -s abc link2
$ ls -l
total 16
-rw-r--r-- 1 danc staff 0 23 Oct 17:34 abc
lrwxr-xr-x 1 danc staff 3 23 Oct 17:34 link1 -> abc
lrwxr-xr-x 1 danc staff 3 23 Oct 17:34 link2 -> abc
$ rm abc
$ ls -l
total 16
lrwxr-xr-x 1 danc staff 3 23 Oct 17:34 link1 -> abc
lrwxr-xr-x 1 danc staff 3 23 Oct 17:34 link2 -> abc 

Symbolic links

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Again, a bit of programming…

179

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

180

A program

➟ recursively scans a directory given as a command-line
argument 
 
➟ prints 
 → for symbolic links: name and the referred path  
 → other files: name  
 - if file is executable, appends * to its name  
 → indents the printing according to the current tree
depth

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

181

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <string.h>
#include <errno.h>
#include <dirent.h>
#include <unistd.h>
#include <sys/stat.h>
#include <limits.h>
"
void parcurge(char *nume_dir, int nivel)
{
 DIR *dir;
 struct dirent *in;
 char *nume;
 struct stat info;
 char cale[PATH_MAX], cale_link[PATH_MAX + 1], spatii[PATH_MAX];
 int n;

 memset(spatii, ' ', 2*nivel);
 spatii[2*nivel]='\0';
"
 if(!(dir = opendir(nume_dir)))
 {
 printf("%s: ", nume_dir); fflush(stdout);
 perror("opendir");
 exit(1);
 }

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

182

"
 printf("%sDIR %s:\n", spatii, nume_dir);

 while((in = readdir(dir))>0)
 {
 nume = in->d_name;
 if(strcmp(nume, ".") == 0 || strcmp(nume, "..")==0)
 continue;

 sprintf(cale, "%s/%s", nume_dir, nume);
 snprintf(cale, sizeof(cale), "%s/%s", nume_dir, nume);

 if(lstat(cale, &info)<0)
 {
 printf("%s: ", cale); fflush(stdout);
 perror("error at lstat");
 exit(1);
 }
"
 if(S_ISDIR(info.st_mode))
 parcurge(cale, nivel + 1);
 else
 if(S_ISLNK(info.st_mode))
 {
 n = readlink(cale, cale_link, sizeof(cale_link));
 cale_link[n]='\0';
 printf("%s %s -> %s\n", spatii, cale, cale_link);
 }
 else

why is this wrong?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

183

 {
 printf("%s %s", spatii, cale);
 if(info.st_mode & S_IXUSR || info.st_mode & S_IXGRP ||
info.st_mode & S_IXOTH)
 printf("*");
 printf("\n");
 }

 }
 closedir(dir);
}
"
int main(int argc, char *argv[])
{
 if(argc != 2)
 {
 printf("Usage: %s directory\n", argv[0]);
 exit(1);
 }

 parcurge(argv[1], 0);

 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

184

$./rd /etc
DIR /etc:
 /etc/AFP.conf
 /etc/afpovertcp.cfg
 /etc/aliases -> postfix/aliases
 /etc/aliases.db
 DIR /etc/apache2:
 DIR /etc/apache2/extra:
 /etc/apache2/extra/httpd-autoindex.conf
 /etc/apache2/extra/httpd-dav.conf
 /etc/apache2/extra/httpd-default.conf
 /etc/apache2/extra/httpd-info.conf
 /etc/apache2/extra/httpd-languages.conf
 /etc/apache2/extra/httpd-manual.conf
 /etc/apache2/extra/httpd-mpm.conf
 /etc/apache2/extra/httpd-multilang-errordoc.conf
 /etc/apache2/extra/httpd-ssl.conf
 /etc/apache2/extra/httpd-userdir.conf
 /etc/apache2/extra/httpd-vhosts.conf
 /etc/apache2/httpd.conf
 /etc/apache2/httpd.conf~previous
 /etc/apache2/magic

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

185

How would you address the following tasks?
→ find the file size  
→ only print files to which hard links were created  
→ find out the owner user rights 
→ find out the owner ID  
→ modify the access rights 
→ remove the file  
→ find out info about a file pointed to by a symbolic link

How do you find out… 
 - what header files to include (#include)?  
 - what does a system call return?  
 - what are the C macros for finding out the file type?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

4. Processes

186

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Main concepts

187

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

188

Multitasking

= the ability of doing several tasks at the same time

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

189

Multitasking

= the ability of doing several tasks at the same time

the ability of an operating system to run simultaneously
several programs or parts of programs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 capacitatea unui sistem de operare de a rula simultan mai

multe programe sau părți de programe executabile pe
platforma deservită

190

Multitasking

the ability of an operating system to run simultaneously
several programs or parts of programs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

191

capacitatea unui sistem de operare de a rula simultan mai
multe programe sau părți de programe executabile pe
platforma deservită

the ability of an operating system to run simultaneously
several programs or parts of programs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

192

the ability of an operating system to run simultaneously
several programs or parts of programs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

193

the ability of an operating system to run simultaneously
several programs or parts of programs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

194

Processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

195

Process = the basic concept used by the OS for
modeling concurrent software entities 
 
Process = a program or a part of a program running
under the supervision of the operating system

Processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

196

Processes

Processes are identified by numbers (process identifier - PID) 
 
At any time, only one process is assigned a given ID, but IDs
are reused after the processes end

24
3214 795 2329

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

197

Processes

At any given time, in an OS can run mai multe
procese  
 • system processes 
 • user processes

several processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

198

One processor ?  
N processors ?several processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

199

How?!One processor ?  
N processors ?several processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

200

Process Scheduling

How?!One processor ?  
N processors ?several processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

201

time

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

202

time
t1

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

203

time
t2

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

204

time
t3

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

205

time
t4

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

206

time
t5

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

207

time
t6

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

208

time
t7

Process Scheduling

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

209

...

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

210

→ process scheduling algorithms 
 - implemented within the OS kernel which consequently becomes  
 a process dispatcher 
 - can use various strategies: "round-robin", priority-based, etc. 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

211

The process execution is coordinated by the
operating system, which is responsible for
managing the entire process life cycle

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

212

Process states

During its life, a process can be in one of the following
main states:

• Ready to run (Ready, Runnable) 
→ the process can be run, but it is not its time yet"

• In execution (Running) 
→ the process runs"

• Blocked (Blocked / Waiting) 
→ the process is blocked waiting resources or events (example:
input from keyboard, from a file, etc.)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

213

Ready Running

Blocked

După: W. Stallings, Operating Systems: Internals and Design Principles, 7th edition, Prentice Hall, 2011

dispatch

time-out

need to wait for 
resource / event

resource is available / 
event occurs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

214

Ready Running

Blocked

După: W. Stallings, Operating Systems: Internals and Design Principles, 7th edition, Prentice Hall, 2011

dispatch

time-out

need to wait for 
resource / event

resource is available / 
event occurs

Created Exit
admit release

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

215

Ready Running

Blocked

După: W. Stallings, Operating Systems: Internals and Design Principles, 7th edition, Prentice Hall, 2011

dispatch

time-out

need to wait for 
resource / event

resource is available / 
event occurs

Created Exit
admit release

Swapped
out

swapped  
to disk

resumed

swapped  
to disk

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

216

Process states (another perspective)

PROCESS STATE CODES
Here are the different values that the s, stat and state
output specifiers(header "STAT" or "S") will display to
describe the state of a process.
D Uninterruptible sleep (usually IO)
R Running or runnable (on run queue)
S Interruptible sleep (waiting for an event to complete)
T Stopped, either by a job control signal or because it
is being traced.
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)
Z Defunct ("zombie") process, terminated but not reaped
by its parent.

- extras from the ps man page in Linux -

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

217

The ps command (Process Status)
→prints the process list and process information

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 39348 4460 ? Ss Nov06 0:02 /sbin/init
root 2 0.0 0.0 0 0 ? S Nov06 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Nov06 0:00 [ksoftirqd/0]
root 6 0.0 0.0 0 0 ? S Nov06 0:00 [migration/0]
root 7 0.0 0.0 0 0 ? SN Nov06 0:00 [rcuc0]
root 45 0.0 0.0 0 0 ? S Nov06 0:00 [scsi_eh_4]
root 1433 0.0 0.0 21052 612 ? Ss Nov06 0:00 /sbin/rpcbind
root 1435 0.0 0.0 62216 2192 ? Ss Nov06 0:02 /usr/sbin/nmbd -D -s /etc/samba/smb.conf
danc 2185 0.0 0.0 23256 704 ? Ss Nov06 0:00 /usr/bin/gpg-agent --sh --daemon --write-env-file /home/d
danc 2186 0.0 0.0 18568 528 ? Ss Nov06 0:00 /usr/bin/ssh-agent /etc/X11/xinit/xinitrc
danc 2198 0.0 0.0 20092 876 ? S Nov06 0:00 dbus-launch --sh-syntax --exit-with-session
danc 2199 0.0 0.0 22944 1820 ? Ss Nov06 0:00 /bin/dbus-daemon --fork --print-pid 5 --print-address 7 -
root 2318 0.0 0.1 164652 4440 ? Sl Nov06 0:00 /usr/lib/upower/upowerd
danc 2353 0.0 0.2 134304 7048 ? S Nov06 0:00 /usr/lib/xfce4/panel/wrapper /usr/lib64/xfce4/panel/plugi
danc 2361 0.1 0.3 112224 8904 ? S Nov06 0:07 /usr/lib/xfce4/panel-plugins/xfce4-orageclock-plugin 1 2
danc 2363 0.0 0.1 146904 3012 ? Sl Nov06 0:00 /usr/lib/gvfs/gvfs-afc-volume-monitor
danc 2367 0.0 0.0 58124 2624 ? S Nov06 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor
danc 2380 0.0 0.1 48512 4092 ? S Nov06 0:00 /usr/lib/GConf/2/gconfd-2
danc 2387 0.0 0.1 58796 3880 ? S Nov06 0:00 /usr/lib/gvfs/gvfsd-trash --spawner :1.10 /org/gtk/gvfs/e
danc 2392 0.0 0.0 42512 2520 ? S Nov06 0:00 /usr/lib/gvfs/gvfsd-burn --spawner :1.10 /org/gtk/gvfs/ex
danc 2396 0.5 1.3 524352 37188 ? Sl Nov06 0:35 /usr/bin/python -OO /usr/bin/gmixer -d
root 3092 0.0 0.1 90004 3800 ? Ss Nov06 0:00 sshd: danc [priv]
danc 3100 0.0 0.0 90004 2092 ? S Nov06 0:00 sshd: danc@pts/0
danc 3101 0.0 0.1 20772 3508 pts/0 Ss Nov06 0:00 -bash
root 3186 0.0 0.0 0 0 ? S Nov06 0:00 [flush-8:16]
danc 5611 1.2 0.0 35708 1936 ? SN 00:01 0:06 grav -root
danc 6242 0.0 0.0 13252 1148 pts/0 R+ 00:09 0:00 ps aux

this is only a part of the ps output

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Data structures for processes

218

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

219

In order to manage processes, the OS maintains
dedicated data structures.#

Switching from one process to another (context
switching, process switching) implies significant costs
in time and resources

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

220

Data structures (examples)

List of ready processes

processes in this list are given
processor time, in turn

List of blocked processes
stores information about blocked
processes. There are several
such lists, for the various
resources or events that caused
the blocking  
 
When a process is unblocked, it is
moved to the ready process list

...

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

221

Each process is allocated separate memory areas and
control/management

When a process changes state, the information about the
process is saved; process memory areas can also be saved
on disk if necessary

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

222

Stack

Data

Code

PC
Processor registers

SP

Process identification PID, parent PID

Open files table

Process state

- real UID (file owner),  
- effective UID (a process can
temporary run with the privileges
of another user (other than the
owner)

Other information

User identification

Priority, current directory,  
control terminal, signals
received, current location (in
memory or on disk), etc.

Ready, blocked etc.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

223

Stack

Data

C

PC SP

Process identification

Open files table

Process state

Other information

User identification

Stack

Data

C

PC SP

Process identification

Open files table

Process state

Other information

User identification

Stack

Data

C

PC SP

Process identification

Open files table

Process state

Other information

User identification

Stack

Data

C

PC SP

Process identification

Open files table

Process state

Other information

User identification

Stack

Data

C

PC SP

Process identification

Open files table

Process state

Other information

User identification

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Creating processes

224

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

225

Creating processes

Any process can create a new process 
→ the created process is called child process 
→ the creator process is called parent process 

When the system starts, an initial process is
automatically created: the init process 
→ init has PID = 1  
→ it is the root of the entire process tree 

➥This is the only way of generating new processes 
→ thus, each process will have a parent process 
→ a tree describing the parent-child relationships is therefore created
throughout the system

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

226

The fork() system function

→creates a child process

#include <unistd.h>
"
pid_t fork(void);

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

227

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

228

Stack

Data

Code

parent process

fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

229

➠
fork()

Stack

Data

Code

parent process

fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

230

➠
fork()

Stack

Data

Code

parent process

fork()

Stack

Data

Code

child process

fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

231

The child process is an (almost) identical copy of
the parent process, including what regards the
content of its memory

➠
fork()

Stack

Data

Code

parent process

fork()

Stack

Data

Code

child process

fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

232

➠
fork()

Stack

Data

Code

parent process

fork()

Stack

Data

Code

child process

fork()

After creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

233

After creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

234

After process creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

235

Two identical yet independent processes exist 
→ they have separate memory areas, stacks, registers, etc."

The child process inherits from its parent 
→ all data (global variables), having the values available in parent immediately
before fork()  
→ current program counter, call stack, local variables 
→ open files table: all files open in parent before fork() will be accessible and
usable by the child process

After process creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

236

What is the difference ?

Two identical yet independent processes exist 
→ they have separate memory areas, stacks, registers, etc."

The child process inherits from its parent 
→ all data (global variables), having the values available in parent immediately
before fork()  
→ current program counter, call stack, local variables 
→ open files table: all files open in parent before fork() will be accessible and
usable by the child process

After process creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

After process creation, both processes will continue to run,  
in parallel, starting with the instruction that follows fork()

237

fork() returns different values in parent and child: 
→ in the child process, returns 0  
→ in parent returns the PID of the newly created child
process 
 
On error, fork() returns -1 and does not create a new process

What is the difference ?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

238

Stack

Data

Code

parent process

➠

Stivă

Data

Code

child process

fork()

fork() fork()

child PID 0

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

239

...
if((pid=fork()) < 0)
 {
 perror("Eroare");
 exit(1);
 }
if(pid==0)
 {
 /* codul fiului */
 ...
 exit(0);
 }
/* codul parintelui */
...
"

Therefore, a program can do as follows:

⇒ the parent code and the child code will behave differently

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

240

...

fork();

printf("a");

...

What is the effect of the following code?
?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

241

...

int i;

for(i=0; i<=10; i++)

 fork();

...

?

!

What is the effect of the following code?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

242

The exec...() calls

→ useful for implementing completely distinct
processes (not process copies) 
→ usually called immediately after fork(), in the child
process 
 
→ exec…() loads a program from the disk, and uses it
to overwrite the current process, wiping out its memory
areas (code, data, …) 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

243

→ the loaded will start with its first instruction (e.g., with its main() function) 
→ most of the process attributes are preserved  
 - process identifier (PID) 
 - the parent-child relationship (Parent PID - PPID),  
 - pending signals, time remaining to alarm 
 - open files and file redirections (except for files opened by specifying the
FD_CLOEXEC flag) 
 - real UID, control terminal, current directory, root directory,  
 priority etc. 
→ if successful, exec does not return (cannot return, as it was overwritten) 
→ on error, the function returns (and the return value is -1) 
→ fork() and exec...() combined provide flexibility in process creating 

Notes
The exec...() calls

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

244

The exec…() functions

 #include <unistd.h>
"
 extern char **environ;
"
 int execl(const char *path, const char *arg, ...);
 int execlp(const char *file, const char *arg, ...);
 int execle(const char *path, const char *arg,
 ..., char * const envp[]);
 int execv(const char *path, char *const argv[]);
 int execvp(const char *file, char *const argv[]);
 int execvpe(const char *file, char *const argv[],
 char *const envp[]);

of the above, only execve() is a system, call, the rest are library functions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

245

exec[l][p][v][e]
program arguments are  
given as a NULL-terminated
list

program arguments are  
given as a NULL-
terminated vector

the program is looked for  
in the paths specified  
by $PATH

the environment of the 
program is given as a parameter to
exec

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

246

Example: print the environment variables
#include <stdio.h>
extern char **environ;
"
int main(int argc, char *argv[])
{
 char **p;
 p = environ;
 while(*p)
 {
 printf("%s\n", *p);
 p++;
 }
 printf("\n\n----------------\n\n");

 /**
 * the same code can be written as follows:
 */
 for(p=environ; *p; p++)
 printf("%s\n", *p);
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

247

int main(int argc, char *argv[])  
{  
 pid_t pid;

 if((pid=fork())<0)  
 {  
 printf("Eroare la fork\n");  
 exit(1);  
 }  
 if(pid==0) /* child process */  
 {  
 execlp("ls","ls","-l",NULL); /* process will run
 the ls command */  
 printf("Eroare la exec\n");  
 /* If execlp returned, the program  
 could not be launched */  
 }  
 else /* parent process */  
 {  
 printf("Proces parinte\n");  
 exit(0);

 }  
}

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

248

Getting the process return value

• Return value  
➞ At termination, any program process returns an integer value to the operating
system 
➞ C: exit(valoare); or return valoare; in main()"

• Convention: 
➞ 0: process ended correctly 
➞ ≠0: process ended with error (and the value is the error code)

Return  
value

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

249

• A parent process must read the values returned by its
child processes 
➞ the termination status of the child process is thus verified  
➞ processes for which the parent hasn’t read the value (yet) are stored by the system
even after termination, as “zombie processes" 
➞ processes whose parent ends without reading the return value are adopted by the
init process."

• Reading the return value  
➞ any process can call the wait() and waitpid() functions to read the status returned by
one of its child processes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

250

 #include <sys/types.h>
 #include <sys/wait.h>
"
 pid_t wait(int *status);
"
 pid_t waitpid(pid_t pid, int *status, int options);

• wait() 
➞ blocks until one (any) of the child process ends 
➞ fills the status with information about the ended child process, including the
return value  
➞ to read the information stored in status specific macros are available: 
WIFEXITED(status)  
 returns true if the child ended normally, i.e.,  
 by calling exit() or by returning a value in main()  
WEXITSTATUS(status)  
 the status returned by the child process terminat

• waitpid() 
➞ like wait() but wais for a specific child process, identified by its PID 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

251

The exit() library function
 #include <stdlib.h>
"
 void exit(int status);

➞ ends the current process and returns the value given as argument 
➞ before termination all open files are closed, including the streams specific to
the stdio library (FILE *) 
➞ at termination, calls the functions previously installed by calls to atexit() or
on_exit()

The _exit() system call
#include <unistd.h>
"
void _exit(int status);

➞ ends the current process and returns the value given as an argument 
➞ closes all open files, without closing the streams specific to the stdio library
(FILE *) This means no streams are flushed, data can be lost. 
➞ no functions like atexit() or on_exit() are called

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

252

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
void process(char chr, int n){
 int i;
 for(i=0; i<=n-1; i++)
 printf("%c", chr);
}
int main(){
 pid_t pid; int status;
"
 if((pid=fork())<0){
 printf("Error creating child process\n"); exit(1);
 }
 if(pid==0) /* procesul fiu */ {
 process('c', 2000);  
 exit(0);
 }
 /* procesul părinte*/
 process('p', 3000);
 wait(&status);
 if(WIFEXITED(status))  
 printf("\nChild ended with code %d\n", WEXITSTATUS(status));  
 else  
 printf("\nChild ended abnormally\n");  
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

253

Question

Program that starts two commands: 
 a) in parallel  
 b) sequential

?
(c)

 D
an

 C
. C

osm
a

(c)
 D

an
 C

. C
osm

a

(c)

254

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> "
int main(int argc, char *argv[])
{
 pid_t pid1, pid2, wpid;
 char *arg1[]={ "echo", "a", "b", "c", NULL };
 char *arg2[]={ "ls", "-l", ".", NULL };
 int i, status;

 if((pid1=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid1==0) /* procesul fiu 1 */
 {
 execvp("echo", arg1);
 printf("Eroare la exec\n");
 exit(2);
 }

 /* procesul parinte */
 if((pid2=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid2==0) /* procesul fiu 2 */
 {
 execvp("ls", arg2);
 printf("Eroare la exec\n");
 exit(2);
 }

 /* din nou procesul parinte */
 for (i=1; i<=2; i++)
 {
 wpid = wait(&status);
 if(WIFEXITED(status))
 printf("\nChild %d ended with code %d\n", wpid, WEXITSTATUS(status));
 else
 printf("\nChild %d ended abnormally\n", wpid);
 }
}

a)

Important !

Important !

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

255

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> "
int main(int argc, char *argv[])
{
 pid_t pid1, pid2, wpid;
 char *arg1[]={ "echo", "a", "b", "c", NULL };
 char *arg2[]={ "ls", "-l", ".", NULL };
 int i, status;

 if((pid1=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid1==0) /* procesul fiu 1 */
 {
 execvp("echo", arg1);
 printf("Eroare la exec\n");
 exit(2);
 }

 /* procesul parinte */
 if((pid2=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid2==0) /* procesul fiu 2 */
 {
 execvp("ls", arg2);
 printf("Eroare la exec\n");
 exit(2);
 }

 /* din nou procesul parinte */
 for (i=1; i<=2; i++)
 {
 wpid = wait(&status);
 if(WIFEXITED(status))
 printf("\nChild %d ended with code %d\n", wpid, WEXITSTATUS(status));
 else
 printf("\nChild %d ended abnormally\n", wpid);
 }
}

a)

}code duplication?!

Important !

Important !

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

256

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> "
int main(int argc, char *argv[])
{
 pid_t pid[2], wpid;

 char *arg1[]={ "echo", "a", "b", "c", NULL };
 char *arg2[]={ "ls", "-l", ".", NULL };
 int i, status;

 char ** param[2];

 param[0] = arg1;
 param[1] = arg2;

 for(i=0; i<2; i++)
 {
 if((pid[i]=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid[i]==0) /* procesul fiu i */
 {
 execvp(param[i][0], param[i]);
 printf("Eroare la exec\n");
 exit(2);
 }
 } "
 /* procesul parinte */
 printf("Processes started:\n");
 for(i=0; i<2; i++)
 printf("%d ", pid[i]);
 printf("\n");
 for (i=1; i<=2; i++)
 {
 wpid = wait(&status);
 if(WIFEXITED(status))
 printf("\nChild %d ended with code %d\n", wpid, WEXITSTATUS(status));
 else
 printf("\nChild %d ended abnormally\n", wpid);
 }
}

Important !

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

257

homework...

b)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

258

#include <sys/types.h>
#include <unistd.h>
"
pid_t getpid(void);
pid_t getppid(void);

Finding out the IDs of the current and parent process

#include <stdlib.h>
"
int system(const char *command);

Launching a system command

- uses fork and exec launch a command in a separate process that
executes /bin/sh -c command  
- waits for the command termination and returns its exit status

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

5. Signals

259

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Main concepts

260

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

261

Signal

= a software-level interruption, used for modeling
asynchronous events 
→ signals are sent to processes 
→ sources of signals: processes, the operating
system (and may also be caused by hardware events)"

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

262

Signal Value Action Comment
──
SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
SIGINT 2 Term Interrupt from keyboard (CTRL C)
SIGQUIT 3 Core Quit from keyboard (CTRL \)
SIGILL 4 Core Illegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term Kill signal
SIGSEGV 11 Core Invalid memory reference
SIGPIPE 13 Term Broken pipe: write to pipe with no
 readers
SIGALRM 14 Term Timer signal from alarm(2)
SIGTERM 15 Term Termination signal
SIGUSR1 30,10,16 Term User-defined signal 1
SIGUSR2 31,12,17 Term User-defined signal 2
SIGCHLD 20,17,18 Ign Child stopped or terminated
SIGCONT 19,18,25 Cont Continue if stopped
SIGSTOP 17,19,23 Stop Stop process
SIGTSTP 18,20,24 Stop Stop typed at tty
SIGTTIN 21,21,26 Stop tty input for background process
SIGTTOU 22,22,27 Stop tty output for background process

UNIX signals have identifiers and names derived from the
event they model. Examples (man 7 signal, Linux):

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

263

A process can specify the actions to be taken upon
receiving a signal:"

• ignore the signal  
→ there are signals that cannot be ignored: SIGKILL, SIGSTOP 
→ ignoring signals that were caused by hardware can lead to undefined behaviors"

• handle the signal  
→ the program must define signal handler for the target process 
→ the handler function must be registered to the kernel through calls like signal() or
sigaction() 
→ when the signal arrives, the kernel will interrupt the process, and call the handler;
after the handler ends, the process will resume at the point it was interrupted  
→ a signal occurrence can lead blocking system calls to be unblocked(example:
read). In this case, the respective call will return an error code (-1), and the errno
variable will be set to EINTR"

• accept the default behavior for the signal  
→ for most signals, this means the termination of the process"

 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

264

The kill, killall commands

kill -SIGNAL PID

→ sends a signal to a process
killall -SIGNAL command
→ sends a signal to all processes that run a given command

Examples:

kill -SIGUSR1 2346
killall -9 java

→ If the signal is not specified, SIGTERM is generated

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

265

#include <signal.h>
"
void (*signal(int sig, void (*func)(int)))(int);

The signal() system call

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

266

#include <signal.h>
"
void (*signal(int sig, void (*func)(int)))(int);

→ specifies, for the current process, the way it will react to a signal occurrence or
installs a signal handler function  
→ the sig parameter is the number of the signal  
→ the func parameter  
 - is a pointer to the signal handling function; 
 - can also take the following values: 
 SIG_IGN : signal will be ignored  
 SIG_DFL : reset to the default behavior for the respective signal  
→ the function returns the old value of the handler function (can also be one of
SIG_IGN, SIG_DFL) or SIG_ERR if an error occurred.

pointer to a function that
receives an int parameter

the returned value:  
pointer to a function that
receives an int parameter

The signal() system call

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

267

After the signal handler is installed, any such signal sent to the
process that installed the handler will lead to the asynchronous
execution of the handler function. 
 
The handler function will be given (as an argument) the number of
the signal that occurred. A function can be installed as a handler
for multiple signals, therefore this parameter is useful for
implementing different behaviors for different signals.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

268

Example

A program made of two processes, parent and child. The parent
(process a) counts continuously starting with zero, until it is
interrupted by the user. The interruption is done by generating
the SIGINT signal, explicitly (using the kill command) or implicitly
(pressing Ctrl-C in the terminal on which the program runs in
foreground). To properly view the results, the process calls
usleep() at each step, generating a delay of about 1000
microseconds.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

269

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
#include <sys/wait.h>
"
pid_t child_pid = 0;
int n = 0;
"
void process_a_ends(int sig)
{
 int status;
"
 if (kill(child_pid, SIGUSR2) < 0)
 {
 printf("Error sending SIGUSR2 to child\n");
 exit(2);
 }
"
 /* waiting for the child to end */
"
 wait(&status);
 printf("Child ended with code %d\n", WEXITSTATUS(status));
"
 printf("Process a ends.\n");
 exit(0);
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

270

void process_a()
{
 int i;
"
 if (signal(SIGINT, process_a_ends) == SIG_ERR)
 {
 printf("Error setting handler for SIGTERM\n");
 exit(1);
 }
 for (i = 0;;i++)
 {
 usleep(1000);
 if (i%10 == 0)
 if (kill(child_pid, SIGUSR1) < 0)
 {
 printf("Error sending SIGUSR1 to child\n");
 exit(2);
 }
 }
}
"
void process_b_writes(int sig)
{
 printf("Process b received SIGUSR1: %d\n", ++n);
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

271

void process_b_ends(int sig)
{
 printf("Process b ends.\n");
 exit(0);
}
"
void process_b()
{
 /* Ignoring SIGINT. Process b will end only when receives SIGUSR2 */
 if (signal(SIGINT, SIG_IGN) == SIG_ERR){
 printf("Error ignoring SIGINT in process b\n");
 exit(3);
 }
 /* Setting the signal handlers */
 if (signal(SIGUSR1, process_b_writes) == SIG_ERR){
 printf("Error setting handler for SIGUSR1\n");
 exit(4);
 }
 if (signal(SIGUSR2, process_b_ends) == SIG_ERR){
 printf("Error setting handler for SIGUSR2\n");
 exit(5);
 }
"
 /* Infinite loop; process b only responds to signals */
 while(1)
 ;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

272

int main()
{
 /* First, ignore the user signals, to prevent interrupting the
child process before setting the appropriate handlers */
 signal(SIGUSR1, SIG_IGN);
 signal(SIGUSR2, SIG_IGN);
"
 /* Creating the child process.A global variable is used to store
the child process ID in order to be able to use it from the signal
handlers */
 if ((child_pid = fork()) < 0){
 printf("Error creating child process\n");
 exit(1);
 }
 if (child_pid == 0){ /* child process */
 process_b();
 exit(0);
 }
 else /* parent process */
 {
 process_a();
 }
 /* this is still the parent code */
 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

273

#include <signal.h>
"
int sigaction(int signum, const struct sigaction *act,
 struct sigaction *oldact);
"
"
"
"
struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_restorer)(void);
 };

The sigaction() system call
→ recommended to be used instead of signal()

handler handler, if the 3 parameter
version is preferred
(SA_SIGINFO setat în sa_flags)

signals that must be blocked during
the handler execution (bit mask, the
sigsetops have to be used)

various options for the sigaction() call (for
instance to control the behavior upon signal
receipt)

unused (old)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

274

 SA_NOCLDSTOP - if signum is SIGCHLD, the process will not get
a SIGCHLD signal when the child process is suspended (for
example using SIGSTOP), SIGCHLD will only be generated when the
child process ends;
"
SA_NOMASK sau SA_NODEFER - the respecive signal will not be
automatically included in sa_mask (the default setting is to
prevent the occurrence of a signal when executing the handler
for the same signal);
"
SA_SIGINFO - specified when sa_sigaction is to be used instead
of sa_handler.

- the sa_flags field (examples of options):

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

275

#include <signal.h>
"
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

The sigprocmask() system call

→ reads or changes the bit mask specifying the blocked
signals for the calling thread
how:  
 SIG_BLOCK - the signal set specified in the set argument is  
 added to the current set of blocked signals
 SIG_UNBLOCK - the signal set specified in the set argument is  
 removed from the current set of blocked signals 
 SIG_SETMASK - the current set of blocked signals is replaced with
the set specified in the set argument
 
set: the set of signals use by the call according to the how
 option  

oldset: if not NULL, a pointer where the old set of blocked signals
will be stored

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

276

Other functions
#include <sys/types.h>
#include <signal.h>
"
int kill(pid_t pid, int sig);

→Sends the signal sig to the process pid"
"
"
#include <signal.h>
"
int raise(int sig);

→Sends the signal sig to the current process"
"
"
#include <unistd.h>
"
unsigned int alarm(unsigned int seconds);

→ Installs an alarm; after seconds seconds, a  
SIGALRM signal will be generate to the current process

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

6. Pipes

277

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Creating and using pipes

278

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

279

Pipe

→ a UNIX inter-pocess communication primitive  
 
→ describes a data channel two processes can use to send
data to each other

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

280

Pipe

Process
A

Process
B

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

281

Pipe

Process
A

Process
B

fd[0] fd[1]

read end write end

- The read and write ends are modeled as file descriptors 
 
- A pipe is unidirectional

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

282

The pipe() system call

#include <unistd.h>
"
int pipe(int pipefd[2]);

→ Creates a pipe  
→ fills in the array given as argument with the pipe’s descriptors: 
 - pipefd[0]: read  
 - pipefd[1]: write

→ once the pipe is created, the current process will be able to
read and write from/to the pipe, using read() and write()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

283

?
→ once the pipe is created, the current process will be able to
read and write from/to the pipe, using read() and write()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

284

→ The two ends of the pipe are handled like file descriptors 
→ File descriptors are inherited by the child process after fork() 

A pipe is also inherited by a process from its parent if properly
initialized before fork()

→ once the pipe is created, the current process will be able to
read and write from/to the pipe, using read() and write()

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

285

How to use pipe()

→ the pipe is created by a process 
→ the process calls fork(): the child process will inherit the pipe,  
therefore will be able to use its descriptors (to read and write) 
→ the two processes (parent, child) agree on how the pipe will  
be used: one process writes, the other reads 
→ the agreement: each process closes the unused descriptor

Process
A

Process
B

fd[0] fd[1]

read end write end

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

286

 ...  
 int pfd[2];
 int pid;
 ...
 if(pipe(pfd)<0)  
 { printf("Eroare la crearea pipe-ului\n”); exit(1); }
 ...
 if((pid=fork())<0)  
 { printf("Eroare la fork\n”); exit(1); }

 if(pid==0) /* child process */
 {
 close(pfd[0]); /*closes the read descriptor => process writes */
 ...
 write(pfd[1],buff,len); /* writing to the pipe */
 ...
 close(pfd[1]); /* at the end, closes the used descriptor, too */
 exit(0);
 }
 else /* parent process */
 {
 close(pfd[1]);/* closes the write descriptor => process reads*/
 ...
 read(pfd[0],buff,len); /* reading from the pipe */
 ...
 close(pfd[0]); /* at the end, closes the used descriptor, too */
 exit(0);
 }

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

287

Notes

→ If a process reads from a pipe for which the write end is
closed, read() will return 0"

→ If a process writes in a pipe for which the read end is
closed, write() will fails, as follows: 
 - the respective process will receive the SIGPIPE signal  
 - if the process doesn’t handle, block or ignore SIGPIPE,
the process will be terminated; otherwise, the value returned
by write() will be -1, and errno will be set to EPIPE

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

288

→ Pipes can be inherited by several processes (all the
process subtree of the process that created the pipe) 
→ A process must always close all pipe descriptors it does not
use. If the process doesn’t use the pipe at all, it must close
both its descriptors 
→ Important recommendation: process/processes that write to
pipe and the process/processes that read must clearly agree,
at each moment in time, the size and meaning of the
exchanged packages of data  

Example: process A sends n bytes; the reading process B must
read (wait for) exactly n bytes: no less, no more.

Notes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

289

Explanation:  
 - if process B reads (waits for) more than n bytes, the read() call may
block waiting for data that will never come (if A does not send anymore)
or will read data from a different (future) “transmission” that does not
belong to the current exchange"

- if B reads less than n bytes, then the data read at the current step will
be incomplete, and unread data will remain in the pipe; this data will
probably be mistakenly read in the future at a step that is meant to
exchange a different set of data than the current one"

- such protocol errors may lead to one or more processes become
blocked (waiting forever data that will never come)"

- of course, there may be cases when this recommendation can be
ignored: nevertheless, you must know precisely what you’re doing

Example: process A sends n bytes; the reading process B must
read (wait for) exactly n bytes: no less, no more.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

290

Why unused pipe ends must always be closed ?

Explanation:  
 - Say process A is parent for B, A created the pipe before fork() 
 - A reads from pipe, B writes to pipe  
 - A “forgets” to close the write descriptor"

 - A reads data from the pipe in a loop"

 while((n=read(pfd[0], buff, no_of_bytes))>0) {
 …
 }

 - At some point, B ends its data transmission⇒

A locks forever in read(), because read() will never return zero (“end of
file”) while there still is a process that, theorethically could write data to
the pipe (has the pipe write descriptor open): this process is process A
itself

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

291

Remember!

→ create the pipe before fork() 
→ close all unused descriptors, for all pipes that are visible
in the respective process 
→ do close the used ends, immediately after they are not
needed (why?) 
→ define a precise communication protocol between the
reader and writer processes (the number of bytes read by a
reader must be exactly the same as the number of bytes
written by its peer at the same moment)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
File descriptor duplication and redirection

292

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

293

Duplicating a file descriptor

#include <unistd.h>
"
int dup(int oldfd);

→ duplicates oldfd, creating a new descriptor which will point to
the same file; the new descriptor is returned by the function call  
→ both descriptors will share the current file offset, open flags,
etc. 
→ the new descriptor will always be the lower unused descriptor
available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

294

...
fd=open("Fisier.txt", O_WRONLY);
...
fd1=dup(fd);
...
write(fd1, ”Un text”, 8);
...

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

295

Duplicating file descriptors with dup2()

#include <unistd.h>
"
int dup2(int oldfd, int newfd);

→ duplicates oldfd, creating a new descriptor which will point to
the same file;  
→ the new descriptor will have the value given by the newfd
argument 
→ if newfd was already used for an open file, the file is closed,
then the descriptor is given the new meaning  
→ returns the newly allocated descriptor (newfd)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

296

Redirecting file descriptors
→ setting a new meaning for an existing file descriptor, to
point to a different file than the one it initially designated  
→ it is a particular case of duplication  
→ can be done by duplicating the descriptor that points
the new file, while making sure that the descriptor value
obtained through duplication is precisely the one of the
descriptor that needs to be redirected"

For example, a duplication that ensures that descriptor 1
corresponds to a file on the disk, effectively represents the
redirection of the standard output 
→ all calls that write “to the standard output” (example: printf) really write
to the descriptor having the value 1 (STDOUT_FILENO); redirecting this
descriptor, the effect of all these functions will be visible in the target file
of the redirection

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

297

 ...
 fd=open("Fisier.txt", O_WRONLY);
 ...
 if((newfd=dup2(fd,1))<0)
 {
 printf("Eroare la dup2\n");
 exit(1);
 }
 ...
 printf("ABCD");
 ...

Example of redirecting the standard output

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

298

Again, about pipe…

→ The two ends of a pipe are modeled as file descriptors 

⇒ they can be used in duplications or redirections

→ for example, we can redirect  
 - the standard output: to the write end of a pipe  
 - the standard input: from the read end of a pipe

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

299

Example

→ connecting two processes through a pipe; one
process runs (exec) a program from the disk

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

300

 void main()
 {
 int pfd[2];
 int pid;
 FILE *stream;
"
 ...
 if(pipe(pfd)<0)
 {
 printf("Eroare la crearea pipe-ului\n");
 exit(1);
 }
 ...
 if((pid=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

301

 if(pid==0) /* child process */
 {
 close(pfd[0]); /* closes the read descriptor; */
 /* process writes to pipe */
 ...
 dup2(pfd[1],1); /* redirects standard output to pipe*/
 ...
 execlp("ls","ls","-l",NULL); /* process runs ls*/
 printf("Eroare la exec\n);
 }
 else /* parent process */  
 {
 close(pfd[1]); /* closes the write descriptor; */
 /* process reads from the pipe */
 ...
 stream=fdopen(pfd[0],"r");
 /* opens a stream (FILE *) for the read descriptor */
 while(...)  
 { ...  
 fscanf(stream,”%s”,string);  
 /* reads from the pipe, using the associated stream */
 ...
 }
 ...
 close(pfd[0]); /* at the end, also closes the used descriptor */
 exit(0);
 }
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

302

Note: the example uses fdopen()

#include <stdio.h>
"
FILE *fdopen(int fd, const char *mode);

→ asociates stream of type FILE * (managed by the stdio
library) to an open file designated by the fd integer
(system-calls-specific) file descriptor 
→ at the enf, the file must be closed with fclose(), and
NOT with close() (to let the stdio library make the
necessary cleanup, such as emptying the memory buffers
to the disk). fclose() calls close() in its implementation. 
→ the mode options must be compatible with the mode
specified when opening the fd descriptor

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

303

Note

→ the pipe is the communication primitive used by the
shell when chaining commands separated by the ‘ | ’
operator"

Exercise: write a simplified version of a program that
provides the same effect as the following line:"

 prog1 | prog2

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

304

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdlib.h> ""
int pfd[2]; ""
int main(int argc, char *argv[])
{
 int pid_a, pid_b;

 if(argc != 3)
 {
 printf("Utilizare: %s prog1 prog2\n",
argv[0]);
 exit(1);
 } "
 if(pipe(pfd)<0)
 {
 printf("Eroare la crearea pipe-ului
\n");
 exit(1);
 } "
 if((pid_a=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid_a==0) /* a */
 {
 close(pfd[0]);

 dup2(pfd[1],1); "
 execlp(argv[1], argv[1], NULL);
 printf("Eroare la exec\n");
 exit(1);
 }

 /* parent */

 if((pid_b=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }

 if(pid_b==0) /* b */
 {
 close(pfd[1]);

 dup2(pfd[0],0); "
 execlp(argv[2], argv[2], NULL);
 printf("Eroare la exec\n");
 exit(1);
 }

 /* b */
 close(pfd[0]);
 close(pfd[1]);

 /* Parent process reads the results */

 int status;

 waitpid(pid_a, &status, 0);

 waitpid(pid_b, &status, 0);

 /* a simplified version of getting the
return status */
 if(WIFEXITED(status))
 return WEXITSTATUS(status);
 else
 return 1;

 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Named pipes

305

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

306

Named pipes

→ pipes that can be explicitly created from the command line or
programs, while associating names to them 
→ they are visible in the file system as special files, to which the
normal read and write operations can be done  
→ reading and writing is done following the FIFO mechanism 
→ named pipes can be used explicitly, for instance in scripts, to
communicate between processes, commands, to replace
temporary files, etc.

Note: the pipes we previously discussed (those created calling pipe()) are
called anonymous pipes (in contrast to named pipes)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

307

Creating named pipes
mkfifo [-m mode] name  
 
where mode: the access rights to the special FIFO file to
be created

mkfifo --mode=0766 ~/tmp_pipe

#include <sys/types.h>
#include <sys/stat.h>
"
int mkfifo(const char *pathname, mode_t mode);

◆

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

308

$ mkfifo pipe1
$ wc -l < pipe1 > result.txt &
[1] 768
$ ls -l > pipe1
[1]+ Done wc -l < pipe1 > result.txt
$ cat result.txt
 28

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

7. Threads

309

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

310

Multitasking

= the ability of doing several tasks at the same time

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

311

Multitasking

→ Processes

= the ability of doing several tasks at the same time

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

312

Multitasking

→ Processes"

→ Threads

= the ability of doing several tasks at the same time

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

313

Thread  
 
 = a sequential execution inside a process

Stack

Data

Code

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

314

Several threads can exist inside the same process 
→ they run in parallel and execute different or even the same code  
→ share the data area of the process,  
but have separate stacks 
When created, a process has a single thread (main thread)

Stack

Data

Code

Consequences?

Thread
stack

Thread
stack

Thread
stack

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

315

Advantages against processes

→ Managing threads requires less resources 
→ Context switching (switching from one thread to
another) is faster 
→ Threads can easily communicate to each other using
the shared memory

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

316

Notes:"
"
 → At creation time, a process is made of a single thread. 
 → All threads inside a process run in parallel.  
 → A process ends: 
" - when its main thread ends 
" - if a thread calls exit() 
" - when the main() function ends (therefore the main thread ends) 
" - if the process receives an un-handled signal  
" … 
→ If a process made of multiple threads ends, all its threads end."
 → as they share the same data area, threads in a same process share
all global variables. Local variables and function arguments are not
shared, as the stacks are separate for each thread."
 → Many system and library calls have effect on the entire process,
consequently they will affect all its threads, regardless of the thread that
calls them. Example: the sleep() function."

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

317

Remark: the pthreads library is used for working with threads.  
 
→ usually, it is not linked automatically by gcc* to the object code of the
program, therefore this must be explicitly asked for (option -lpthread). In newer
UNIX and gcc versions, thread support is directly included in the glib library,
and can be activated using the option  
-pthread  
 
→ functions in this library usually return 0 when they ended correctly, and an
error code otherwise

*actually, the link editor

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

318

Thread identification  
 
→ unique identifiers inside the process

#include <pthread.h>
"
pthread_t pthread_self(void);

→ gets the current thread ID  
→ the actual definition of the pthread_t type depends on the
implementation, it may be a data structure

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

319

Creating threads 

#include <pthread.h>
"
int
pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

→ creates a thread which will start immediately by calling the
start_routine function with the argument arg.

address at which the
function will store the
ID of the newly created
thread

attributes for creation
(or NULL for the default
attributes)

thread main function (thread
body); obviously, this function
may in turn call other functions
in the program

argument passed to the
thread function

Note: the restrict keyword tells that, for the entire life of the p pointer, only p or a pointer expressed
directly using p (such as p + 1) is the only pointer that indicates the respective memory area. This
information is used by the compiler for optimizations, and its validity through the code must be ensured
by the programmer.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

320

Other functions

#include <pthread.h>
"
int pthread_join(pthread_t thread, void **value_ptr);

→ waits for the thread thread to end, then gets its return value
and writes it at the address value_ptr. The value_ptr argument
can be NULL, if the return value is not needed. 
→ can be called by any thread in the process 
→ if the caller tries to wait for itself, or a similar circular
dependency is detected, the function returns an error code

#include <pthread.h>
"
void pthread_exit(void *value_ptr);

→ ends the current thread, setting its return value to value_ptr.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

321

Other functions

#include <pthread.h>
"
pthread_t pthread_self(void);

→ returns the current thread ID

#include <pthread.h>
"
int pthread_equal(pthread_t t1, pthread_t t2);

→ returns non-zero if t1 and t2 represent the same thread,
otherwise return zero.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

322

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
"
void *thread_code(void *arg)
{
 int i;

 for(i=0; i<1000; i++)
 printf("%s", (char *)arg);
 printf("\n");
"
 return (void *)(*((char *)arg) - 'A' + 1);
}
"
int main(int argc, char *argv[])
{
 pthread_t th1, th2;
 void *ret1, *ret2;

 pthread_create(&th1, NULL, thread_code, (void*) "A");
 pthread_create(&th2, NULL, thread_code, (void*) "B");

 printf("Threads created.\n");

 pthread_join(th1, &ret1);
 pthread_join(th2, &ret2);

 printf("Thread 1 ends returning: %d.\n", (int)ret1);
 printf("Thread 2 ends returning: %d.\n", (int)ret2);
 exit(0);

 return 0;
}

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

323

Another example. Is there a mistake?#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
"
void *thread_code(void *arg)
{
 int i;
 for(i=0; i<1000; i++)
 printf("%c", *((char *)arg));
 printf("\n");
"
 return (void *)(*((char *)arg) - 'A' + 1);
}
"
int main(int argc, char *argv[])
{
 pthread_t th1, th2;
 void *ret1, *ret2;
 char c;

 c='A';
 pthread_create(&th1, NULL, thread_code, &c);
 c='B';
 pthread_create(&th2, NULL, thread_code, &c);

 printf("Threads created.\n");
 pthread_join(th1, &ret1);
 pthread_join(th2, &ret2);
 printf("Thread 1 ends returning: %d.\n", (int)ret1);
 printf("Thread 2 ends returning: %d.\n", (int)ret2);
 exit(0);

 return 0;
}
"

? (c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

324

for (i=0; i<100; i++)
 pthread_create(&th[i], NULL, thread_code, NULL);

What effect has the following code:

?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

325

Types of threads

• joinable 
→ the value returned at termination can be read by
another thread  
→ the resources allocated for the thread are not
released until another thread calls join() for it"

• detached 
→ cannot be joined by other threads 
→ the resources allocated for the thread are
released immediately when the thread ends

In most implementations, pthread_create() creates by
default joinable threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

326

“Detached” threads

→ a joinable thread can be transformed in a
detached one using:

#include <pthread.h>  
 
int pthread_detach(pthread_t thread);

Example:
pthread_detach(pthread_self());

→ a thread can be directly created as detached by
setting attributes in the attr parameter of
pthread_create().

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

327

Setting attributes for pthread_create()
#include <pthread.h>
 
int pthread_attr_init(pthread_attr_t *attr);
"
int pthread_attr_setdetachstate(pthread_attr_t *attr,
 int detachstate);
"
int pthread_attr_getdetachstate(const pthread_attr_t *attr,
 int *detachstate);
"
int pthread_attr_destroy(pthread_attr_t *attr);

Steps: 
" 1. Initialize an attribute variable with pthread_attr_init() 
" 2. Set the desired attribute using the corresponding
pthread_attr_set…() call  
" 3. After the thread was created, free the resources created for the
attribute variable by calling pthread_attr_destroy().

Notă: other attributes exist, but are outside the scope of this discussion

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

328

Example

…  
pthread_attr_t attr;  
…
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
…
pthread_create(…);
…
pthread_attr_destroy(&attr);  
…

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

329

Notes

→ Once a thread was marked as detached, it cannot be
made joinable"
→ Setting the detached attribute only refers to the way
system resources are allocated for those threads.
Detached threads do not remain in the system after the
process ends 
→ For each thread created in a process (except the main
one) either pthread_join(), or pthread_detach() must be
called

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

330

Revisiting pipes: an example

→ program made of 3 processes, called in the command line:"

 program n file  

→ process A: uses an external command to print the last n lines
in file, and sends them to process C  
→ process B: sends 100 random numbers to process C then
receives and prints the results from C  
→ process C receives, in turn, data from A and B, and: 
 - counts lower case characters from A 
 - finds the maximum even number received from B 
 - sends the results to B, as soon as they are available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

331

A

B

C

→ process A: uses an external command to print the last n lines
in file, and sends them to process C  
→ process B: sends 100 random numbers to process C then
receives and prints the results from C  
→ process C receives, in turn, data from A and B, and: 
 - counts lower case characters from A 
 - finds the maximum even number received from B 
 - sends the results to B, as soon as they are available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

332

A

B

C

→ process A: uses an external command to print the last n lines
in file, and sends them to process C  
→ process B: sends 100 random numbers to process C then
receives and prints the results from C  
→ process C receives, in turn, data from A and B, and: 
 - counts lower case characters from A 
 - finds the maximum even number received from B 
 - sends the results to B, as soon as they are available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

333

A

B

C

→ process A: uses an external command to print the last n lines
in file, and sends them to process C  
→ process B: sends 100 random numbers to process C then
receives and prints the results from C  
→ process C receives, in turn, data from A and B, and: 
 - counts lower case characters from A 
 - finds the maximum even number received from B 
 - sends the results to B, as soon as they are available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

334

A

B

C

→ process A: uses an external command to print the last n lines
in file, and sends them to process C  
→ process B: sends 100 random numbers to process C then
receives and prints the results from C  
→ process C receives, in turn, data from A and B, and: 
 - counts lower case characters from A 
 - finds the maximum even number received from B 
 - sends the results to B, as soon as they are available

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

335

#include <stdio.h>
#include <unistd.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdlib.h>
#include <limits.h>
#include <time.h> "
int pipe_ac[2], pipe_bc[2], results_pipe[2]; "
enum processes { COUNTER, MAXRANDOM };
struct result_data {
 enum processes type;;
 long data;
}; "
void process_c()
{
 int count = 0, n1, n2, index;
 int num;
 long max = LONG_MIN;
 int end1=0, end2=0;
 char c;
 struct result_data res;

 close(pipe_ac[1]);
 close(pipe_bc[1]);
 close(results_pipe[0]);

 while(!(end1 && end2))
 {
 if(!end1)
 {
 if((n1=read(pipe_ac[0], &c, sizeof(char)))<0)
 {
 printf("Eroare la citire din pipe a-c\n");
 exit(1);
 }

 if(n1 >0)
 {
 if(islower(c))
 count++;
 }
 else
 {
 res.type = COUNTER;
 res.data = count; "
 if(write(results_pipe[1], &res, sizeof(struct
result_data))<0)
 {
 printf("Eroare la scriere in pipe rezultate
\n");
 exit(1);
 }
 end1=1;
 }
 }

 if(! end2)
 {
 if((n2=read(pipe_bc[0], &num,
sizeof(long)))<0)
 {
 printf("Eroare la citire din pipe b-c\n");
 exit(1);
 }
 if(n2>0)

 {
 if(num%2 == 0)
 {
 if(num >= max)
 max = num;
 }
 }
 else
 {
 res.type = MAXRANDOM;
 res.data=max;

 if(write(results_pipe[1], &res, sizeof(struct
result_data))<0)
 {
 printf("Eroare la scriere in pipe rezultate
\n");
 exit(1);
 }
 end2=1;
 }

 }
 } /* while */ "
 close(pipe_ac[0]);
 close(pipe_bc[0]);
 close(results_pipe[1]);
} ""
int main(int argc, char *argv[])
{
 int pid_a, pid_c;

 if(argc != 3)
 {
 printf("Utilizare: %s nr_linii fisier\n",
argv[0]);
 exit(1);
 } "
 if(pipe(results_pipe)<0)
 {
 printf("Eroare la crearea pipe-ului\n");
 exit(1);
 } "
 if(pipe(pipe_ac)<0)
 {
 printf("Eroare la crearea pipe-ului a-c\n");
 exit(1);
 }

 if((pid_a=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }
 if(pid_a==0) /* a */
 {
 close(pipe_ac[0]);
 close(results_pipe[0]); close(results_pipe[1]);

 dup2(pipe_ac[1],1); "
 execlp("tail", "tail", "-n", argv[1], argv[2],
NULL);
 printf("Eroare la exec\n");
 exit(1);
 }

 /* b */
 if(pipe(pipe_bc)<0)
 {
 printf("Eroare la crearea pipe-ului b-c\n");
 exit(1);
 }

 if((pid_c=fork())<0)
 {
 printf("Eroare la fork\n");
 exit(1);
 }

 if(pid_c==0) /* c */
 {
 process_c();
 exit(0);
 }

 /* b */
 close(pipe_bc[0]);
 close(pipe_ac[0]); close(pipe_ac[1]);
 close(results_pipe[1]);

 unsigned int i;
 long num;
 srand((int)time(NULL));
 for(i=0; i<100; i++)
 {
 num = 3*rand();
 if(write(pipe_bc[1], &num, sizeof(long))<0)
 {
 printf("Eroare la scriere in pipe b-c\n");
 exit(1);
 }
 }

 close(pipe_bc[1]); /* important sa fie aici */

 /* Procesul parinte (b) preia rezultatele */
 struct result_data res;

 for(i=0; i<2; i++)
 {
 if(read(results_pipe[0], &res, sizeof(struct
result_data))<0)
 {
 printf("Eroare la citire din pipe rezultate\n");
 exit(1);
 }
 printf("Rezultat primit: %s = %ld\n",
res.type==COUNTER ? "Nr. litere mici" : "Numar generat
maxim", res.data);
 }

 close(results_pipe[0]); "
 int s;

 wait(&s); wait(&s); /* preluarea starii fiilor - in
mod normal ar trebui facuta aici si verificarea
starilor de return */

 return 0;
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

336

How would you solve the following problem?

→ Program made of several processes.

→ A variable number of “producer” processes that generate,
concurrently, data. Producers are of different, clearly defined
types (categories). 
→ A number of “consumer” processes, equal with the number of
producer types, each consumer being therefore responsible for
a single category of producers. 
→ Data from producers must be sent only to the consumers
responsible for the respective category.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

8. Advanced concepts

337

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Rights, users, identifiers

338

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

339

Identifiers associated with any process

→ real User ID, real Group ID: the real owner of the process 
→ effective User ID, effective Group ID: the user/group on
behalf on which the process runs (can be different from the real
one) 
→ supplementary Group IDs: groups the user belongs to~ 
→ saved set user-ID, saved-set-group-ID: copies of the IDs,
saved by exec

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

340

When a program on a disk is launched

• usually, the effective UID/GID are equal to the real UID/GID
of the current process (the process that launches the
program)"

• among the modes (rights, etc.) set for a file on a disk there
are two special flags: 
 - set-user-ID (SETUID): if set for a program, the program
will be executed by setting its effective UID to the UID of the
file owner (instead of the UID of the launching process) 
 - set-group-ID (SETGID): if set for a program, the program
will be executed by setting its effective GID to the GID of the
owner group of the file (instead of the launching program’s
GID)

→ the file on the disk has an owner user and an owner group

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

341

Example:
→ program that runs as root, although it was launched by a
regular user (example from Linux):

"
> ls -l /usr/bin/passwd
-rwsr-xr-x 1 root shadow 81792 oct 29 2011 /usr/bin/passwd

How to set SETUID and SETGID:
> chmod 4766 fisier

> chmod 2766 fisier

> chmod u+s fisier

> chmod g+s fisier

SETUID

SETGID

> chmod 6766 fisier > chmod ug+s fisier both

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

342

Changing the real/effective identity (UID, GID) of a process

It is needed when 
 - process needs more rights in order to do privileged
operations 
 - process reduces its own privileges to prevent the
access to certain resourcess

Adopting the mimimal privileges strategy is
recommended: a process should always retain only the
minimal set of rights needed for accomplishing its job

Changing identity is governed by strict rules.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

343

#include <sys/types.h>
#include <unistd.h>
"
int setuid(uid_t uid);
int setgid(gid_t gid);

Rules: 
 1. If process has root privileges (superuser): 
 real UID ← uid, effective UID ← uid, saved SETUID ← uid "

 2. If process is not root AND  
 (uid == real UID OR uid == saved SETUID): 
 effective UID ← uid"

 3. Else, functions return -1 and set errno to EPERM

The setuid, setgid functions

(likewise for groups, with setgid())

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

344

Remarks:"

- only a process with root privileges can change real UID/GID"

- when the root-privileged process uses setuid, setgid, all the three
types of identifiers are changed, therefore, that process cannot
regain the root privileges in the future. 
" → useful when a privileged program (example: login) launches a user " "
" program, which is never allowed to run in a privileged state  
" → in fact, root does not have any other reason for calling setuid, except to  
" permanently reduce privileges 
" → if a temporary privilege reduction is needed, other function can be used  
" (seteuid)

The exec functions "

 a) if for the executable file the SUID flag is set (activated): 
" exec sets effective UID to the file owner UID-ul  
 b) always, exec saves effective UID in saved SUID; "

Task b) is done after a) (if it is the case), therefore the saved id is the
one got from the executable file

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

345

The seteuid, setegid functions
#include <sys/types.h>
#include <unistd.h>
"
int seteuid(uid_t euid);
int setegid(gid_t egid);

Sets only effective UID/GID, even if the process is privileged."

A process without root privileges can only set the attribute on the real UID/
GID or saved SUID/SGID values already associated to the process.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

346

Example*

*After: W.R.Stevens, S.A.Rago, Advanced Programming in the UNIX Environment, Third Edition; Addison Wesley, 2013

The at command, which schedules the execution of programs in
the future.

Security problems: 
- at must run with the privileges specific to the user, as long as
possible  
- it must access system configuration files, therefore at a point it will
need higher privileges 
- the program that will be launched will have to run exclusively with
the rights of the user that scheduled it"

There are two components of this system: 
- the at command, used for setting the schedule for programs 
- the atd service (runs in background), which actually launches the
programs at the scheduled times

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

347

In some sistems (e.g.: Linux 3.1) the file /usr/bin/at has SETUID set,
and the owner is root. The following steps are done:"

1. When starting at, because SETUID is set for root, the process
attributes are: 
- real UID == the UID of the user who started at 
- effective UID = root 
- saved SUID = root"

2. At start, at reduces its privileges to run as the user who started it. To
do this, at calls seteuid(). Consequently: 
- real UID == the UID of the user who started at 
- effective UID = the UID of the user who started at 
- saved SUID = root"

3. After a while, at needs higher privileges. Calls seteuid() to regain
root privileges. It is allowed to, because root was saved in saved
SUID (this case shows the utility of saved SUID): 
- real UID == the UID of the user who started at 
- effective UID = root 
- saved SUID = root

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

348

4. After it finished accessing the configuration files, returns to the
privileges of the user that started it, calling seteuid() again: 
- real UID == the UID of the user who started at 
- effective UID = the UID of the user who started at 
- saved SUID = root"

5. The atd service is a program that runs in the system with root
privileges. When it prepares to start the program scheduled by the
user, it must ensure the program runs strictly with the user rights. 
 
To launch the program, atd calls fork(). Then, the child process calls
setuid(the_uid_of_the_user_who_scheduled_the_program). As the
process has root privileges, all the three types of UIDs are set to the
user’s UID. The child process then runs the scheduled program. 
- real UID == the UID of the user who started at 
- effective UID = the UID of the user who started at 
- saved SUID = the UID of the user who started at

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
File rights

349

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

350

The process rights for accessing files

When a process tries to create/modify/read/delete a file, the following
checks are done, in order*: 
- if effective UID of the process is root, access is allowed; 
- else, if effective UID == file owner ID, access is allowed only if the
permission bits corresponding to the operation are set (those belonging to
the “user” category), else access is denied; 
- else, if effective GID or one of the supplementary GIDs is equal to the
GID of the file, access is allowed only if the group permission bits
corresponding to the operation are set, else access is denied;  
- else, if the bits corresponding to the “other” category are set, access is
allowed, else access is denied;

* First matching rules applies, the rest are ignored. 

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

351

The owner of a newly created file

When a file is created: 
 — the owner (UID) of the file is set as being the effective UID of
the process that creates the file  
— the owner group (GID) of the file is set depending on the UNIX
version or on the options specified when mounting the file system.
It can be one of the: 
" - effective GID of the process that creates the file  
" - the GID of the directory where the file is created (Linux:
makes it so if the directory has the SETGID flag set)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
The fcntl function

352

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

353

#include <unistd.h>
#include <fcntl.h>
"
int fcntl(int fd, int cmd, ... /* arg */);

The fcntl function

Applies various commands on the fd descriptor. The return value and the arguments
depend on the specific commands. Returns -1 on error. 
 
commands (the cmd argument): 
- F_DUPFD (long) — duplicates fd and returns the new descriptor, which will be the
lowest available (unopened) descriptor greater than arg (arg is considered of type
long) 
- F_DUPFD_CLOEXEC (long) — duplicates fd (as above) and sets the
FD_CLOEXEC flag. (close on exec, i.e., the descriptor will be closed at exec) 
- F_GETFD (void) — reads the descriptor flags; arg is ignored; for now, only the flag
FD_CLOEXEC is defined  
- F_SETFD (long) — sets the descriptor flags to the value given in arg  
- F_GETFL (void) — gets the status flags of the file; the same ones used with open():
O_RDONLY, O_RDWR, etc. 
- F_SETFL (long) sets descriptor status flags; only some of them can be modified, in
Linux they are O_APPEND, O_ASYNC, O_DIRECT, O_NOATIME, O_NONBLOCK) 
- F_GETLK, F_SETLK, F_SETLKW: acquiring, testing, releasing of locks for portions
of files (outside the scope of this course, details in bibliography)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Non-blocking I/O

354

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

355

Non-blocking input-output operations

Some I/O operations that usually imply blocking (examples:
read, write) can be performed without blocking (ex: read
tries to read, but if no data is available it doesn’t wait
anymore)

Two ways of doing it: 
- With open(), the flag O_NONBLOCK is explicitely set 
- With fcntl, by adding the O_NONBLOCK flag for an
already open descriptor

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

356

Effect:  
 - operations will be performed without blocking, thus the respective
calls will return immediately 
 - the operations (e.g.: read) can return error, but setting errno to
EAGAIN — this means the operation did not succeeded right away,
bat it is able to continue (for read(): no data was available at that
time)

Non-blocking input-output operations

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

357

int oldflags;  
...  
if ((oldflags = fcntl(fd, F_GETFL, 0)) < 0)
 { printf("Error at fcntl\n"); exit(1); } 
if (fcntl(fd, F_SETFL, oldflags | O_NONBLOCK) < 0)
 { printf("Error at fcntl\n"); exit(1); }
...
while(1)
{
 do_stuff();

 size = read(fd, buff, expected_size); 
 if(size < 0)
 {
 if(errno == EAGAIN)
 continue; /* or do other stuff */
 else
 { printf("Error at read\n"); exit(1); }
 }
 else
 if(size == 0) /* end of file */
 break;
}

Example

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
I/O Multiplexing

358

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

359

Multiplexing input-output operations

C

…
read(pipe_ac[0], &c, sizeof(char))
…
read(pipe_bc[0], &num, sizeof(long))
…

Problems?

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

360

The select() function

#include <sys/select.h>  
 
int select(int nfds, fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, struct timeval *timeout);

- readfds, writefds, exceptfds = the monitored sets of descriptors 
" → readfds: for reading, writefds: for writing, exceptfds: exceptions*  
" → can be NULL if the respective operation doesn’t need to be  
 monitored  
- timeout: the maximum time to wait (NULL = unlimited) 
- nfds: the maximum value (integer) of the monitored descriptors, 
plus one (must be calculated)

Monitors sets of descriptors blocking itself until at least one of them
becomes ready for the i/o operation

*exceptional conditions — for now the only exceptional condition is the
existence of “out of band” data on a socket; outside the scope of this course

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

361

void FD_CLR(int fd, fd_set *set); - clears all descriptors!
int FD_ISSET(int fd, fd_set *set); - verifies if a descriptor is in set !
void FD_SET(int fd, fd_set *set); - sets (adds) a descriptor to set!
void FD_ZERO(fd_set *set); - initializes the descriptor set

Sets of descriptors are filled using specific macros. First FD_ZERO
must be called, then the needed descriptors are set (added) with
FD_SET

The set can be pictured as a bit array, one for each possible
descriptor

0 1 2 3 4 5 6 7 …

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

362

When select() returns because one or more descriptors have become
ready, it will reinitialize the three sets, adding (setting) only the
descriptors that have become ready

The return value of select():"

-1: "" error or a signal occured (in which case errno is set to EINTR) 
 0: "" select returned because the timeout elapsed  
> 0:" success, returns the total number of ready descriptors, which
will be available in the three sets

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

363

A descriptor is considered ready, depending on the setul it is
part of, as follows:"

- readfds: a subsequent call to read() on that descriptor will not
block (data is available)"

- writefds: a write() to the descriptor will not block"

- exceptfds: an exceptional condition occurred for that descriptor "

"

Other remarks:"

- for regular files, the descriptors are always considered ready 
- at “end of file”, the descriptor is considered ready

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

364

Example int nfds = 1 + (pipe_ac[0]>pipebc[0] ? pipe_ac[0] : pipe_bc[0]);
…
int over=0, n;
while (1) {
…
FD_ZERO(&readfds);
FD_SET(pipe_ac[0], &readfds);
FD_SET(pipe_bc[0], &readfds);
"
if((nready = select(nfds, &readfds, NULL, NULL, NULL))<0)
 { printf(“Eroare\n”); exit(1); }
"
if(FD_ISSET(pipe_ac[0], &readfds))
{
 n = read(pipe_ac[0], &c, sizeof(char));
 if(n==0) over++; /* end of data */
 …
}
if(FD_ISSET(pipe_bc[0], &readfds))
{
 n = read(pipe_bc[0], &num, sizeof(long));
 if(n==0) over++; /* end of data */
 …
}
if(over == 2)
 break;
…
}

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Groups of processes, jobs

365

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

366

Groups of processes

= a set of de one or more processes, usually associated with
a same job."

Any process can belong to a process group."

Any process group has an identifier (GID). The process with
the identifier equal to the group is considered the “group
leader”."

After fork(), the child process inherits the GID of its parent
(belongs to the same group)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

367

Finding out the group ID:"

#include <unistd.h>
"
pid_t getpgid(pid_t pid);
 dacă pid==0, returns the group of the pid process
"
pid_t getpgrp(void);
 returns the group of the current process

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

368

Jobs

A job is a process group which can be controlled through the
framework provided by the command interpreter. Not all shells support
job control."

A process group is usually created when pipelining commands,
launching background commands, etc. Example: the following lines
create 2 process groups and, implicitly, 2 jobs:

$ ls -l | grep abc &
[1] 1165
$ ls &
[2] 1166  
(after pressing ENTER) 
[1] Exit 1 ls -l | grep abc 
[2]+ Done ls

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

369

Job control

$ fg %1 brings in foreground job 1

$ program
CTRL+Z: suspends the foreground job (SIGTSTP) 
CTRL+C: ends (SIGINT) the foreground job  
CTRL+\: ends (SIGQUIT) the foreground job

$ bg %1 sends in background and resumes the suspended job no. 1
$ bg sends in background and resumes the last suspended job

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

370

Creating a group and adding processes to groups

#include <unistd.h>
"
int setpgid(pid_t pid, pid_t pgid);

Sets the group for a given process."

- if pid == 0, sets the group for the current process 
- if pid == pgid, the pid process becomes the leader of a new group 
- if pgid == 0, the group of the pid process will be made equal with pid
(pid process becomes the leader of a new group) 
- else, pgid must be an existing group, in the same session with the
current one; the process is moved to that group"

A process can call setpgid only for itself and for any of its children that
have not yet called exec

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

371

#include <sys/types.h>
#include <signal.h>
"
int kill(pid_t pid, int sig);

→ pid>0: Sends signal sig to process pid  
→ pid=0: Sends signal sig to the current group of processes 
→ pid<0: Sends signal sig to the -pid group of processes

A process can send a signal to an entire group of processes.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a
Sessions

372

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

373

Session"

= a set of one or more process groups

A session has at most one control terminal, which is a device
capable of displaying data and providing input (keyboard)"

A control terminal can be associated to a session when the
“session leader” process is created, only if that terminal was not
already associated. The way a terminal is requested differs from
one UNIX variant to another. At login, a terminal is automatically
associated."

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

374

If a session has a control terminal:  
- Only one group of processes is the foreground group. Only this
group will be able to read from the terminal (keyboard). All processes
in this group will be affected by CTRL-C, CTRL-\ (will receive the
corresponding signals) 
- All other process groups are background groups. A read() from the
terminal made by a process in a background group will suspend the
group (the group will receive SIGTSTP)

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

375

Creating a new session

 #include <unistd.h>
"
 pid_t setsid(void);

If the caller process is NOT a group leader, a new session is created: 
- the session will NOT have a control terminal  
- the process becomes “session leader” 
- the process becomes the leader of a new process group, the first in
the session  
- if the process had a control terminal before the call, its connexion with
it is lost"

If the caller process is already a group leader, the call returns error (-1).

