
A Novel Client-Driven
Perspective on Class Hierarchy
Understanding and Quality

Assessment

AUTHOR

Petru-Florin Mihancea

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Faculty of Automatics and Computers of the
“Politehnica” University of Timişoara

Advisor

Prof. Dr. Ing. Ioan Jurca
Faculty of Automatics and Computers
“Politehnica” University of Timişoara

Timişoara
2009

placeholder

Motto

If you’re not prepared to be wrong,
you’ll never come up with anything original.

Sir Ken Robinson

placeholder

Acknowledgments

I would like to thank my advisor, Prof. Ioan Jurca, for continuously encouraging me during
all these years, both as his Ph.D. student and as his teaching assistant. I also thank him for
carefully reviewing my intermediate reports and several versions of the current dissertation
that definitely improved the final outcome.

My gratitude to Prof. Dana Petcu for accepting to be member of my Ph.D. examination
committee and for the financial support that she offered me during the first years of my Ph.D.
studies, as the head of the eAustria Institute. I also thank Prof. Ioan Salomie, Prof. Horia
Ciocârlie and Prof. Octavian Proştean for accepting to be part of my Ph.D. committee.

I would like to thank Marius Minea for his advices related to different aspects of my research
work, helping in this manner to implement my ideas. I also thank him for objectively reviewing
several of my papers.

My special thanks to Cristina and Radu Marinescu. I do not know how I could express my
gratitude to you in a few words, so I will just say a big: thank you for everything! I will never
forget our long (sometimes till 5 a.m.) but extraordinary enjoying grant proposal writing
sessions. Thank you Radu for your reviews, for guiding my thoughts, and for helping me
several times to unblock my Ph.D. work.

I also thank my office colleague, Mihai Balint, for his friendship and for the great time spent
implementing and hacking together. I hope we will have the opportunity to try again that
incredible “Space Mountain” from Disneyland :-).

I also thank Dan Cosma, Tudor Gîrba, Peter Mierluţiu, Daniel Raţiu and Mircea Trifu for
the great time spent together discussing on various research topics (including aspects of the
current dissertation) during the meetings of LOOSE Research Group or with other (many)
occasions. I also thank Andreea Ionete and Mihai Tarce for helping me implementing several
aspects of jMondrian and Andrei Gyorfi for helping me refining some implementation details
of MemBrain.

I am also grateful to Mr. Marius Pentek (Océ Software, Timişoara) for financially supporting
my research via the grant accorded to me in 2006.

I would like to thank Cojocaru Marcel for his friendship and his support during some difficult
times of my Ph.D. studies. I will never forget our long discussions about object-orientation,
eating “Á la Complex Potatoes” and drinking coke. I also thank all my pals for remembering
me from time to time that at first, I am a human being, and only after that I am a Ph.D.
student.

I would like to thank my girlfriend Edit, mom and dad, my sister Cristina, my brother-in-law
Ciprian and my nephew Ciprian-Mihai for being so understanding during the last 5 years, when
I had intensively worked on my Ph.D. To all that I know and appreciate and which I did not
mentioned, all my respect, my gratitude and my consideration, for taking part of this period
of my life.

Above all, I would like thank God for helping me writing this thesis and the related papers,
and for giving me the joy to spend these days together with all that I love.

Timişoara,
December 2009

Petru Florin Mihancea

Contents

1 Introduction 9
1.1 Context . 9
1.2 Problem in Brief . 10
1.3 Goal and Contributions . 10
1.4 Organization . 11

2 Inheritance in Object-Oriented Design 13
2.1 Basics of Object-Orientation . 13

2.1.1 Objects and Classes . 13
2.1.2 Object’s Class and Object’s Type . 14
2.1.3 Inheritance . 14
2.1.4 Polymorphism . 15

2.2 Inheritance Related Design Principles . 16
2.2.1 The Open-Closed Principle . 16
2.2.2 The Liskov Substitution Principle . 17
2.2.3 The Dependency Inversion Principle 19

2.3 Discussion . 20

3 Understanding and Assessing the Quality of Class Hierarchies 21
3.1 Quality Assessment for Class Hierarchies . 21
3.2 Understanding Class Hierarchies . 26
3.3 The Problem . 29

4 Type Highlighting 33
4.1 Goal . 33
4.2 Attacking the Problems . 35
4.3 The Type Highlighting Analysis Vehicle . 35

4.3.1 Measuring Client Code Abstractness 35
4.3.2 The Microprint . 38

5

4.3.3 The Client Grid . 39
4.3.4 Level of Abstraction View . 39
4.3.5 Group Discrimination View . 40

4.4 Tool Support in Brief . 42
4.5 Experimental Results . 43

4.5.1 Pattern Vocabulary . 43
4.5.2 Type Highlighting in a Maintenance Episode 51
4.5.3 Limitations . 61

4.6 Contextual Related Work . 62

5 A Metric-Based Bi-Dimensional Characterization of Class Hierarchies 65
5.1 Goal . 65
5.2 Characterizing Base Classes . 66

5.2.1 Two Characterization Dimensions . 66
5.2.2 Interface Reuse Perspective . 67
5.2.3 Code Reuse Perspective . 67

5.3 Measuring Interface Reuse Perspective . 68
5.3.1 Uniformity Related Concepts . 68
5.3.2 Uniformity Metrics . 69
5.3.3 Interpreting the Uniformity Metrics at Method Level 69
5.3.4 Characterizing Interface Reuse with Uniformity Metrics 70

5.4 Measuring Code Reuse Perspective . 70
5.5 Tool Support in Brief . 71
5.6 Experimental Results . 71

5.6.1 Investigation Approach . 71
5.6.2 Discussion of the Most Interesting Findings 72
5.6.3 Limitations . 75

5.7 Contextual Related Work . 75

6 Discovering Pitfalls of Understanding in Class Hierarchies 77
6.1 Goal . 77
6.2 Derivation Process . 79
6.3 Extending the Suite of Uniformity Metrics 80
6.4 Pitfalls of Understanding . 82

6.4.1 Partial Typing (PT) . 82
6.4.2 Uneven Service Behavior (USB) . 83
6.4.3 Premature Service (PS) . 84

6.5 Tool Support in Brief . 87
6.6 Experimental Results . 87

6.6.1 Investigation Approach . 87
6.6.2 Precision and Frequency . 88
6.6.3 Discussion of Several Findings . 89

6.7 Contextual Related Work . 93

7 Tool Support 95
7.1 iPlasma Platform . 95

7.1.1 Structure Overview and Benefits . 95
7.1.2 Prerequisites for Implementing the Tool Support 97

7.2 jMondrian . 98
7.2.1 Contextual Related Work . 98
7.2.2 The Visualization Engine . 98

7.3 MemBrain . 101
7.3.1 Data-Flow Analysis Basics . 101
7.3.2 Specific Requirements . 103
7.3.3 Contextual Related Work . 104
7.3.4 Discussion . 105
7.3.5 The Anatomy of MemBrain . 105
7.3.6 Towards the Unification . 109
7.3.7 Performances . 109

7.4 Patrools . 110
7.4.1 Static Class Analysis in Brief . 110
7.4.2 Views Implementation . 112
7.4.3 Uniformity Metrics Implementation 112
7.4.4 Detection Strategies Implementation 113
7.4.5 Implementation Limitations and Possible Improvements 115

8 Conclusions and Perspectives 117
8.1 Summary of Contributions . 117
8.2 Future Work . 119

A Details on the Analyzed Software 121

B List of Publications 123
B.1 Papers Published in Proceedings of International Conferences with ISI Ranking

(abroad) . 123
B.2 Papers Published in Proceedings of International Conferences with ISI Ranking

(in Romania) . 124
B.3 Papers Published in Proceedings of International Conferences Indexed in In-

ternational Databases . 124

B.4 Papers Published in Proceedings of Other Conferences and Workshops 124

C List of Research Grants 127
C.1 National Research Grants (as Director) . 127
C.2 International Research Grants (as Team Member) 127
C.3 National Research Grants (as Team Member) 127

List of Figures 131

List of Tables 133

Bibliography 135

Chapter 1

Introduction

1.1 Context

Many object-oriented developers do not enjoy being maintainers. Is it because maintenance
is perceived as a dumb job that does not involve much intellectual activity? On the contrary:
it is because maintenance is hard!

It is known that more than 50% of a software product cost is generated by maintenance
activities (e.g., [80]). It is also known that in order to reduce this cost, the structure of a
software system must be designed to be easy to maintain. While object-oriented programming
languages have provided the required mechanisms (e.g., class, inheritance, polymorphism) to
design highly maintainable programs, the principles of object-oriented design explain how to
achieve this objective. However, although we have the necessary technology and knowledge,
the maintenance cost of object-oriented systems continues to be a serious issue.

One cause of this can be found by studying Lehman’s software evolution laws [44]. They
state that software systems must be continually adapted to new requirements else they become
progressively less satisfactory. However, many such changes cannot be anticipated at the initial
design time of a system. Additionally, even when the needed changes could be accommodated
in the actual design of the system, they are usually implemented by other programmers (i.e.,
not the initial ones) that may not understand the original “philosophy” of system’s design. As
a result, the structure of the system gradually decays and transforms over time into a rigid,
unmaintainable and hard to understand monster.

Redeveloping from scratch such a legacy program is a costly option. Consequently, creating
design understanding and quality assessment techniques in order to support the maintenance
of object-oriented legacy systems are vital concerns for today’s software industry.

9

10 1. INTRODUCTION

1.2 Problem in Brief

Much effort has been spent in the last decade to support the understanding and the quality as-
sessment of object-oriented design (e.g., [4, 22, 41, 42, 51]). Although great contributions, we
consider that they are insufficient in the context of characterizing class hierarchies. The reason
is that none of the current analysis means capture nor exploit the manner in which all the
clients of a hierarchy make use of polymorphism when they manipulate the hierarchy.

As Martin states in the context of designing highly reusable components by means of poly-
morphism, “a model, viewed in isolation, cannot be meaningfully validated [...] the validity
of a model [class hierarchy] can only be expressed in terms of its clients” [53]. Consequently,
characterizing class hierarchies with respect to the manner in which they are used via poly-
morphism by their clients is of vital importance for both class hierarchies understanding and
for quality assessment.

A possible explanation of this problem may reside in the following observation: many of
the state-of-the-art contributions appeared in the context of analyzing old legacy systems,
programs which are very valuable but hard to understand and maintain. These systems
were built in the early days of object-oriented technology when it was not sufficiently well
understood by practitioners. So, the initial analysis means were focused on basic aspects
of object-orientation (e.g., knowledge distribution over classes, high class cohesion, proper
abstraction, etc.), letting the polymorphism usage aspect, with only some exceptions (e.g.,
missing polymorphism reengineering patterns [21]), in a relative shadow.

In our days, when object-oriented systems, built based on a stronger knowledge of practitioners,
have also become legacy, new analysis means for class hierarchies to directly address and exploit
their polymorphic usage in a legacy software are a must.

1.3 Goal and Contributions

The scope of this thesis is in the field of program understanding and quality assessment for
object-oriented legacy programs. Its main goal is to enhance the current support for class
hierarchies understanding and quality assessment based on the manner in which their clients
make use of polymorphism when they use the hierarchies.

Following this direction, the main contributions of this dissertation can be summarized as
follows:

• A visual analysis vehicle, called Type Highlighting. It can (i) capture the usage of
polymorphism in the clients of a class hierarchy and (ii) can help us discover various
ways of using this information to enhance the understanding of class hierarchies and
their quality assessment.

• A set of visual patterns for the clients of a class hierarchy. These patterns were dis-
covered using the previous analysis vehicle and they reveal characteristics of a class
hierarchy which support its understanding and quality assessment.

1.4. ORGANIZATION 11

• A metric-based characterization of class hierarchies helping to understand their intended
nature (i.e., are they intended to be implementation hierarchies, type hierarchies, or
both?). For this purpose, a suite of metrics, called uniformity metrics, has been intro-
duced in order to capture the extent to which a class hierarchy is polymorphically used
by all of its clients.

• The description of a set of recurrent situations, called comprehension pitfalls, in which
polymorphism and class hierarchies can easily mislead a maintainer during software
understanding activities.

• A suite of logical rules based on the uniformity metrics that can be used to automatically
detect the described comprehension pitfalls.

• A tool that implements all the analysis means proposed in this dissertation.

1.4 Organization

This dissertation is structured as follows. In Chapter 2 we present the definitions of the
basic elements of object-oriented technology intensively used in this thesis (e.g., inheritance,
type inheritance, polymorphism, etc.). At the same time, we discuss the fundamental design
principles which drive the usage of class hierarchies in good object-oriented design.

In Chapter 3 we describe our investigation of the state-of-the-art, we discuss the problem of
the currents understanding and quality assessment analysis means related to class hierarchies,
and we set the main direction of our thesis.

Chapter 4 describes the Type Highlighting analysis vehicle. First, we introduce a software
metric (i.e.,Level of Abstraction) to capture the usage of polymorphism in the clients of a class
hierarchy. Next, two software visualizations are described in order to enable us to discover
what can we learn about a class hierarchy based on its polymorphic usage in clients. As a
result, a set of visual patterns have been identified and described in this chapter. We also
provide the interpretation of these patterns and we show how they support class hierarchies
understanding and quality assessment.

Starting with the results of Chapter 4, we introduce in Chapter 5 a client-driven metric-based
characterization of class hierarchies. Its goal is to support class hierarchies understanding by
revealing if they are intended to be implementation hierarchies, type hierarchies or both.

Further support for class hierarchies understanding in introduced in Chapter 6. The notion
of comprehension pitfall is described, together with a set of concrete examples. Using the
metrics introduced in the previous chapter, a set of logical rules are proposed in order to
automatically detect the described pitfalls of understanding.

The tool support is described in Chapter 7. We describe its essential components and some
implementation details. The chapter ends by discussing several implementation limitations
and possible improvements.

Chapter 8 concludes our dissertation, presents personal contributions and plans our future
work.

12 1. INTRODUCTION

placeholder

Chapter 2

Inheritance in Object-Oriented
Design

Inheritance is a key mechanism for object-oriented programming and design. In this chapter
we discuss the inheritance relation and the design rules which govern its usage. The goal is to
answer an essential question: how should inheritance be used when designing object-oriented
systems and why should it be used in this manner?

2.1 Basics of Object-Orientation

Booch defines object-oriented programming as “an implementation method in which pro-
grams are organized as cooperative collections of objects, each of which represents an in-
stance of some class, and whose classes are all members of a hierarchy of classes united via
inheritance relations” [9]. Analyzing this definition we can identify three basic elements of
object-orientation: the object, the class and the inheritance relation.

2.1.1 Objects and Classes

The object is the atomic logical block of an object-oriented program. An object “packages
both data and the procedures that operate on that data” [30]. An essential characteristic of
an object is that it has its own state. The current state of an object “encompasses all of the
properties [data] of the object plus the current values of each of these properties” [9].

When implementing an object-oriented program, we do not work with objects per se. We
actually work with classes. The class is “a set of objects that share a common structure and
a common behavior [...] a single object is simply an instance of a class” [9]. Thus, the class
represents the implementation of an object specifying its internal data and representation, and
defining the operations the object can perform on this data [30].

13

14 2. INHERITANCE IN OBJECT-ORIENTED DESIGN

2.1.2 Object’s Class and Object’s Type

Very often, the notions of type and class are used interchangeably. However, it is important
to understand the distinction between the object’s class and the object’s type. As previously
mentioned, the class represents the implementation of an object, it defines “the object’s
internal state and the implementation of its operations” [30].

The concept of object’s type comes from the theory of abstract data types. According to
Liskov [47] “an abstract data type defines a class of abstract objects which is completely
characterized by the operations available on those objects”. Thus, the object’s type refers to
the object interface, to the set of services it provides for its users, to the precise semantics of
these services independent of their implementation.

The fact that these two concepts are different is also sustained by the following observations
[30]: an object is an instance of one single class but the same object can have different types
since it can be viewed by different clients having different interfaces (e.g., the class of the
object implements two ore more different Java interfaces). Moreover, objects of different
classes can be of a common type (e.g., their classes implement the same Java interface and
ensure a common semantics to the operations declared in the interface).

These two different concepts are often used interchangeably because there is a very close
relationship between them. As remarked in [30], “because a class defines the operations an
object can perform, it also defines the object’s type”. Because of this, there is a general
tendency to make an equivalence between the class and the type concepts although they
are not the same thing (i.e., a class is actually used to implement a type). However, the
distinction is important especially in the context of inheritance and class hierarchies.

2.1.3 Inheritance

Conceptually, inheritance denotes an “is a” relationship between classes of objects: a lion
is a kind of feline, a feline is a kind of mammal, etc. Thus, inheritance is used to produce
hierarchies of classes, to order the classes of objects from a software system.

As a programing language mechanism, inheritance is a relation among classes wherein one
class shares the structure and behavior defined in one or more classes [9]. A class which
inherits structure and behavior from other classes is called subclass while a class from which
a subclass inherits is called superclass.

Class Inheritance and Type Inheritance

As in Section 2.1.2 where we discuss the difference between the object’s class and the object’s
type, it is also important to understand the distinction between class inheritance and type
inheritance.

• Class inheritance is a relation between two classes used to define an object’s implemen-
tation in terms of another object’s implementation [30]. Thus, it is simply a mechanism
to reuse code from a superclass. This kind of inheritance is also known under the name

2.1. BASICS OF OBJECT-ORIENTATION 15

of implementation inheritance. A hierarchy of classes built only with class inheritance
relations is known as being an implementation hierarchy [46].

• Type inheritance is also a relation between a superclass T and a subclass S but which
can be classified as type inheritance if and only if a S object can be used safely (i.e.,
without changing the program semantics) in place of a T object by the clients of the
involved hierarchy. In this case, we say that the subclass implements a subtype of the
type (called supertype) implemented by the superclass. Therefore, type inheritance is
actually a relation between types pointing to another case of reuse, namely interface
reuse. Type inheritance is also called interface inheritance, subtyping or behavioral
subtyping1. A hierarchy of classes built using this kind of inheritance relations is called
a type hierarchy [46]. Type hierarchies are also used to model related types. They
represent data abstractions that are similar (they represent the same general idea) but
different. In such a case, the supertype is often abstract (it has no objects of its own).
It is only a placeholder in the hierarchy for the related types which are its subtypes [46].

As we are going to see in the following sections, this classification of inheritance is very
important. Unfortunately, it is easy to confuse these two concepts because the distinction
between them is not usually made explicit by object-oriented programming languages. The
same language mechanism (i.e., inheritance) is used to express both kinds of inheritance. Even
worse, the interface inheritance concept is sometimes used to denote only the statical safety
of the object substitution (i.e., at compile-time and not at runtime) which is insufficient from
the point of view of abstract data type theory.

2.1.4 Polymorphism

Polymorphism was described for the first time by Strachey in [81]. It is a concept from the
type theory wherein a name (e.g., a parameter of a function) may denote objects having
different types as long as they are related to some common supertype. Any object denoted
by this name is able to respond to some common set of operations, more precisely, to the set
of operations which defines the supertype. As we can observe, type hierarchy and interface
inheritance stays at the heart of polymorphism (i.e., using inheritance to denote only class
inheritance is not sufficient to make use of polymorphism).

In the presence of polymorphism there is another important problem: implementing a sub-
type in a subclass may require to override (to change or enhance) the implementation of an
operation inherited via class inheritance from the superclass that implements the supertype.
How can a module written in terms of the supertype invoke the correct implementation of an
operation since this depends on the actual subtype of the invoked object?

The answer to this question is late binding, a mechanism which goes hand in hand with
polymorphism. Late binding means that the decision upon the implementation of an operation
which is going to be executed at a particular operation’s invocation is made only at runtime,
based on the concrete subclass implementing the subtype of the invoked object.

1In the context of a strongly-typed language, these names may appear to denote different things. This
is because the type checker uses the notion of class/subclass/superclass and type/subtype/supertype inter-
changeably although they are not equivalent according to the theory of abstract data types. The name of
behavioral subtyping has probably appeared in order to avoid confusions.

24 2. INHERITANCE IN OBJECT-ORIENTED DESIGN

2.2 Inheritance Related Design Principles

In this section we are going to discuss some of the most important design principles of good
object-oriented design. The goal is to explain how inheritance must be used in object-oriented
programs and why should we use it in this manner.

2.2.1 The Open-Closed Principle

How

The Open-Closed Principle (OCP) is fundamental for any software design activity. It was
first introduced by Meyer in [56] and restated by Martin in [53]. The principle says that:
“software entities (classes, modules, functions, etc.) should be open for extension, but closed
for modification”. In essence, a software entity compliant with this principle has two major
properties:

• It is open for extensions, meaning that its behavior can be extended (more precisely
reused). In other words, we can make that entity behave in different ways.

• It is closed for modifications, meaning that the aforementioned extensions do not require
modifications in the source code of the software entity.

Many young developers and designers are very confused when they meet this principle for the
first time. How can, for example, a function be extended without modifying its code? The
answer is simple: making use of polymorphism.

By means of polymorphism we can define a function in terms of the services provided by a
supertype. Thus, the function can operate with instances of any subtype without knowing
it. Consequently, when a new subtype of the supertype is added into the hierarchy, we can
extend the behavior of the function without modifying its code, passing to it objects of this
new subtype. We emphasize that such extensions are possible if the involved hierarchy is a
type hierarchy and it is not possible if the hierarchy is just an implementation hierarchy.

Why

An essential problem in software maintenance is the management of changing requirements.
We must extend applications to meet these new requirements but we want for these extensions
to have minimal impact on the already written code. We can observe that open-closed entities
are the answer to this desire letting us to add code without modifying existing one.

When this principle is ignored, the developers end up writing code consisting of large switch
statements that select an action based upon the type of an object. Such long and almost
always duplicated switch statements are a nightmare for maintainers because adding new types
of objects involve their extension (and thus code modification) with new case branches. On
one hand, this task can be very hard if these statements are complicated (e.g., they make use
of the fall-through facility of a switch statement). On the other hand, the maintainer has to
locate these if-then-else chains in the code, a task that may require the inspection of a large

2.2. INHERITANCE RELATED DESIGN PRINCIPLES 17

part of the application’s code, if not all of it. How violations of this principle can appear? Well,
for example, they can appear when a class hierarchy is not a type hierarchy, because there is
not a supertype-subtype relation between the types implemented in the hierarchy.

2.2.2 The Liskov Substitution Principle

How

In order to understand the meaning of this principle let us recall the subtype-supertype rela-
tion according to Liskov: “What is wanted here is something like the following substitution
property: if for each object o1, of type S there is an object o2 of type T such that for all
programs P defined in terms of T , the behavior of P is unchanged when o1 is substituted
for o2 then S is a subtype of T” [46]. In less formal words, this definition states that the
subtype-supertype relation between the types implemented by a subclass respectively by a
superclass exits if substituting the corresponding objects does not change the behavior of a
program at runtime. Otherwise, we do not have a subtype-supertype relation between our
types and consequently, we do not have a type hierarchy.

In this context, the Liskov Substitution Principle (LSP) reiterated by Martin in [53] states
that at runtime, the objects of a subclass must be able to be used in place of the objects of
a superclass. In other words, there should be a subtype-supertype relation between the types
implemented by a subclass and its superclass. Even simpler, a class hierarchy should be a
type hierarchy in good object-oriented design.

Why

The importance of this principle becomes obvious when we consider the consequences of
violating it. Let us consider the Java example from Figure 2.1. For many developers it is
natural to say that a square “is a” kind of rectangle. For them, overriding the setLength and
setWidth methods in order to keep true the square invariant (i.e., length and width are always
equal) appears natural and safe.

Unfortunately, this relation is not correct for every developer. For the developer of the
SomeClient class (Figure 2.2) a Rectangle is not substitutable with an instance of the
Square class. The substitution will lead at runtime to an assertion exception2 because the
setters do not have an uniform semantics for both Rectangle and Square classes.

Based on this example, we can draw a first consequence of violating LSP: abnormal behavior
can be easily inserted into the application and it can be very difficult to discover its cause.
Unfortunately, this is not all. In order to avoid the abnormal behavior, the developer of
SomeClient will be tempted to transform her code in something like the one presented in
Figure 2.3. Consequently, she will violate OCP and finally she will eventually experience all
the maintenance problems presented in the previous section. In conclusion, designing class
hierarchies which are not type hierarchies is dangerous in object-oriented design.

2This is a theoretical example. In reality, the system will present eventually an unexpected behavior since
our developer can easily assume that the area of the “Rectangle” must be 35 at the assertion execution point.

18 2. INHERITANCE IN OBJECT-ORIENTED DESIGN

class Rectangle {

private int l, w;
public void setLength(int x) {

l = x;
}

public void setWidth(int x) {
w = x;

}

public int area() {
return l * w;

}
...

}

class Square extends Rectangle {

public void setLength(int x) {
super.setLength(x);
super.setWidth(x);

}

public void setWidth(int x) {
super.setLength(x);
super.setWidth(x);

}
...

}

Figure 2.1: A Violation of LSP

class SomeClient {

public void doSomething(Rectangle x) {
x.setLength(7);
x.setWidth(5);
assert(x.area() == 35);
...

}
}

Figure 2.2: A Client of the Hierarchy

2.2. INHERITANCE RELATED DESIGN PRINCIPLES 19

class SomeClient {
public void doSomething(Rectangle x) {

if (x instanceof Square) {
//do something

} else {
//do something else
x.setLength(7);
x.setWidth(5);
assert(x.area() == 35);

}
...

}
}

Figure 2.3: Transformed Client Code

Figure 2.4: A Structure Not Compliant With DIP [53]

2.2.3 The Dependency Inversion Principle

How

The Dependency Inversion Principle (DIP) is the one which makes the difference between
object-oriented design and structural design. It states that “High-level modules should not
depend on low-level modules; both should depend on abstractions. Abstractions should not
depend on details; details should depend on abstractions” [53]. Type hierarchies are again the
key to create DIP compliant software structures.

Why

According to Booch [10] “... all well-structured object-oriented architectures have clearly
defined layers, with each layer providing some coherent set of services through a well-defined
and controlled interfaces”. A naive interpretation of this statement will result in a software
structure like the one in Figure 2.4.

20 2. INHERITANCE IN OBJECT-ORIENTED DESIGN

Figure 2.5: A DIP Compliant Structure of an Application [53]

This structure is not compliant with the DIP principle. The Policy layer which contains the
high-level business rules of the application depends on lower level layers which contain the
implementation details of the application. This dependency has two major negative implica-
tions for maintenance. First, changes to lower level modules can have a direct effect on the
high-level modules forcing them to change. In other words, changes in implementation details
may force high-level policies to change! This is absurd and totally undesirable. Second, it is
hard to reuse the high-level policies and unfortunately this is what we actually want to reuse
in an application.

A structure compliant with the DIP principle is shown in Figure 2.5 and it is simple to be
achieved in the context of object-oriented technologies due to polymorphism. Each layer (i.e.,
ith layer) is defined only in terms of the abstract interfaces (supertypes) that include the
outside services the layer needs. These interfaces are then implemented by the successive
layers (i.e., i + 1th layer). We can see that in this manner the dependencies are inverted,
that the low-level modules depend on the high-level modules. Such a structure has two major
advantages. First, changes in the low-level modules do not affect the high-level policies of the
application. Second, we can easily reuse the high-level policies of the application in different
contexts, a more important case of code reuse than the one obtained via class inheritance. It
should be no surprise that this principle stays at the heart of framework design.

2.3 Discussion

In this chapter, we have presented three design principles which, by no accident, are some of
the most important principles of good object-oriented design. As we have seen, all of them
make use of type inheritance and polymorphism in order to build more maintainable, extensible,
flexible and understandable software. Consequently, we can draw the following conclusion: an
object-oriented program should make intensive use of polymorphism and, implicitly, should
use class hierarchies to model type hierarchies. The immediate question we can raise is: how
these expectations from an object-oriented program are emphasized and / or exploited in order
to understand and assess the quality of an object-oriented design?

Chapter 3

Understanding and Assessing the
Quality of Class Hierarchies

In the previous chapter we have seen that the usage of polymorphism and of class hierarchies
that model type hierarchies is essential in order to obtain more maintainable, extensible, flexible
and understandable software. In order to see how these expectations are captured and / or
exploited by the current understanding and design quality assessment approaches, we present
in this chapter our state-of-the-art investigation. At the end, we describe the limitations we
have identified and we set the main direction of our thesis.

3.1 Quality Assessment for Class Hierarchies

Design quality assessment is a major concern for the software industry because it can help
estimate the maintenance effort of a legacy software and to detect design weaknesses that
can hinder maintenance activities. Many criteria, design rules and heuristics for good object-
oriented design can be found in the state-of-the-art literature (e.g., [29, 53, 75]). Additionally,
various approaches have been proposed to verify the conformance of a design to these rules.
In the following we focus our discussion only on those analyses dedicated or related to class
hierarchies.

Design Metrics

In general, a metric captures in a quantifiable form a particular property of an entity. Design
metrics measure fine-grained properties of design entities (e.g., classes, methods) and are
a powerful means to estimate the quality of object-oriented design. The state-of-the-art
literature abounds of design metrics (e.g., [7, 14, 36, 48]) and includes metrics dedicated
to capture the conformance of class hierarchies to good object-oriented design criteria (e.g.,
manageable complexity, proper abstraction).

21

22 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

The shape of class hierarchies (i.e., their depths and widths) is considered by many authors
an important estimator for the quality of a design. Depth of Inheritance Tree (DIT) is defined
at the subclass level as the length of the path from the measured subclass to the root class
of the hierarchy [14]. The authors emphasize that “the deeper a class is in a hierarchy, the
greater the number of methods it is likely to inherit, making it more complex to predict its
behavior”. For a good design, a maximum value of 6 to 7 is suggested for the DIT metric
in [36]. A complementary metric is Height in the Inheritance Tree (HIT) [51]. While DIT
measures the longest path upwards for a class in the hierarchy, HIT measures the longest path
downwards in the inheritance-lattice.

Henderson-Sellers defines the average of DIT [36] suggesting that it indicates “the general
level of modeling or abstraction used in the hierarchy”. In a similar manner, the HIT metric
for all the classes is aggregated at the system level, giving birth to the Average Hierarchy
Height (AHH) metric [42]. This measurement is an indicator of the depth of the hierarchies
from a system i.e., a too small metric value may indicate too shallow hierarchies while a too
high value indicates too deep hierarchies.

The width of a class hierarchy can be captured by the Number of Children (NOC) metric
representing the number of immediate subclasses subordinated to a class in the hierarchy
[14]. Since inheritance is a form of reuse, the greater the number of children, the greater
the reuse. However, as the authors emphasize, a too great number of children may reveal
improper abstraction of the parent class. In the same direction, in [42] the authors introduce
the Average Number of Derived Classes (ANDC) as the average value of the NOC metric for
all the classes from a system. The metric is an indicator of the width of the hierarchies from
a system i.e., a too small value may indicate too narrow hierarchies while a too high value
means that the hierarchies are too wide.

The manner in which a subclass uses the inherited methods from its superclass is also consid-
ered an indicator for the quality of a design. In this direction, Lorentz and Kidd introduce a
series of three metrics: Number of Methods Overridden (NMO), Number of Methods Inher-
ited (NMI) and Number of Methods Added (NMA) by a subclass [48]. Abnormal values of
these metrics indicate a problematic subclass-superclass relation. For example, a high value
of NMO may emphasize the usage of subclassing only for the convenience of reusing code
(i.e., inheritance is used only as class inheritance). For the same purpose, a more specialized
metric, called Specialization Index (SIX), is also defined in [48]. The metric is computed based
on the formula from Equation 3.1 where NOM represents the Number of Methods (NOM)
metric. A low value of the SIX metric indicates subclassing only for code reuse purposes (i.e.,
the implied hierarchy is only an implementation hierarchy).

SIX = NMO ∗DIT
NOM

(3.1)

As we have shown in the previous chapter, the usage of polymorphism is another important
characteristic of good design. In [12] the authors introduce the Polymorphism Factor (PF)
metric in order to capture the polymorphism potential within a system. The metric is defined
at the system level as the number of methods that redefine inherited methods divided by the
maximum number of possible distinct polymorphic situations (i.e., the case in which all the
new methods introduced by a class are overridden in all its derived classes). More formally, the

3.1. QUALITY ASSESSMENT FOR CLASS HIERARCHIES 23

metric is computed using the Equation 3.2 where: N represents the number of classes from
the investigated system, NMO(Ci) represents the Number of Methods Overridden metric for
the Ci class, NMA(Ci) represents the Number of Methods Added metric for the Ci class
and NOD(Ci) stays for the Number of Descendants metric for the same class.

PF =
∑N
i=1NMO(Ci)∑N

i=1[NMA(Ci) ∗NOD(Ci)]
(3.2)

In [12], the authors suggest that the PF metric should have a value between 3.5% and
9.6%. A lower value emphasizes a weak object-oriented design in which polymorphism is
not used sufficiently, while a higher value emphasizes a too complex design which may raise
testability problems. A very similar metric, defined at the class hierarchy level, is introduced
in [71].

One problem of using metrics to evaluate a design is represented by their low granularity: a
single metric is considered too simple to quantify the entire set of symptoms a design problem
may exhibit (e.g., [51]). Consequently, various other approaches has been proposed to detect
design weaknesses.

A Graph-Based Approach for Problem Detection

An approach to detect violations of object-oriented design heuristics is introduced in [16].
Ciupke uses a graph-based model of the analyzed system represented as Prolog facts and
queries the model for design problems expressed as Prolog clauses. Based on this technique
he was able to detect a couple of design problems, some of them being related to class
hierarchies (e.g., base classes that depend on their subclasses).

Observing some implementation details of Ciupke’s tool (i.e., GOOSE) we noticed that he
also proposes the detection of inheritance which is not used to achieve polymorphism (and
thus, inheritance which may be used to achieve only code reuse). For this purpose, he looks
for those base classes whose methods are never directly invoked (i.e., none of the methods
from the base class is invoked using a reference declared as having the statical type designated
by the base class). In Figure 3.1 we present the Prolog query used in GOOSE to detect such
base classes.

unusedInheritance(Class, CodeBase) :-
class(Class),
class(CodeBase),
inheritsFrom(Class, CodeBase),
not((hasMethod(CodeBase, Method),
calls(_, Method))).

Figure 3.1: Prolog Rule to Detect Base Classes Not Used for Polymorphism

24 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

Detection Strategies

Detection strategies are logical rules based on software metrics, by which design entities having
particular properties can be identified in the code of a system [52]. Two detection strategies
are defined in [42] in order to detect design problems related to class hierarchies.

Refused Bequest is a design problem which appears when a subclass does not want or need the
members inherited from its superclass [29] and can also be caused by an inheritance relation
used to achieve only code reuse. In Figure 3.2 we present the detection strategy proposed in
[42] to detect this design flaw, where: NProtM represents the Number of Protected Members
of a class [42], BUR is the Base Class Usage Ratio (i.e., the number of inheritance-specific
members used by a subclass divided by the total number of inheritance-specific members from
the superclass) [42], BOrR is the Base Class Overriding Ratio (i.e., the number of methods
from the measured class that override methods from the superclass, divided by the number
of methods in the class) [42], AMW represents the Average Method Weight metric (i.e., the
average of the static complexity of all methods from a class) [51, 55], WMC is the Weighted
Method Count metric [14] and NOM represents the Number of Methods of the measured
class.

Class size is above average

Parent provide more than a
few protected members

NOM(C) > AVERAGE

AND

Refused
Parent

Bequest

Child uses only a little of
parent bequest

Overriding methods are rare
in child

Functional complexity above
average

Class complexity not lower
than average

AMW(C) > AVERAGE

WMC(C) > AVERAGE

BOvR(C) < A THIRD

BUR(C) < A THIRD

NProtM(Super(C)) >
FEW

OR

OR

AND

AND

Figure 3.2: Refused Parent Bequest Detection Strategy [42]

3.1. QUALITY ASSESSMENT FOR CLASS HIERARCHIES 25

Tradition Breaker [42] is another design problem related to class hierarchies which affects
subclasses that break the heuristic that their interfaces should increase in an evolutionary
fashion (i.e., the number of newly added methods in a subclass should not be excessively
high). In [42] the authors propose a detection strategy for this design flaw, by looking at
the internal complexity of the subclass and of its superclass, and at the child class interface
increment.

Missing Polymorphism Detection Heuristics

Long switch or if-then-else-if statements are a sign of bad object-oriented design, revealing
situations where polymorphism usage should be considered (i.e.,Missing Polymorphism design
flaws) [21, 29].

+init()

A

+z()

D

+init()
+y()

C

+x()

B

+m()

Client

...
switch(a.class) {
case B: a.init();((B)a).x();
case C: a.init();((C)a).y();
case D:((D)a).z();
}
...

-a

0..1

+init()
+execute()

A

+z()
+execute()

D

+init()
+y()
+execute()

C

+x()
+execute()

B

+m()

Client

...
a.execute();
...

-a

0..1

this.init();
this.x();

this.init();
this.y(); this.z();

Figure 3.3: Client Type Checking Restructuring

26 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

Demeter et al. discuss in [21] several forms of such switch statements and suggest spe-
cific restructuring actions (e.g., creating new class hierarchies or correcting the ill-designed
ones). For example, in Figure 3.3 we present the Client Type Checking problem together
with the proposed reorganization of the implied class hierarchy. Additionally, the authors sug-
gest a couple of heuristics to detect missing polymorphism design flaws (e.g., look for long
methods with complex decision structures, use a tool for regular expression identification to
detect if-then-else-if chained statements or particular keywords such as switch or instanceof,
etc.).

3.2 Understanding Class Hierarchies

Reverse engineering was defined by Chikofsky and Cross as “the process of analyzing a subject
system to identify the system’s components and their relationships, and to create represen-
tations of the system in another form or at a higher level of abstraction” [15]. The primary
purpose of a reverse engineering process is to increase the understanding of a system for both
maintenance and new development. Various approaches have been proposed to achieve this
goal, some of them being able or being dedicated to support different understanding aspects
related to class hierarchies.

Polymetric Views

Lanza introduces in [41] a visual approach, called polymetric views, to support understanding
the internal structure of a legacy system. In essence, a polymetric view is a two dimensional
visualization of software composed by nodes to display software entities and edges to represent
relations between them. While this is common in information visualization tools, polymetric
view enriches the visualization by also representing software metrics.

Several polymetric views dedicated for understanding class hierarchies are defined in [41]. For
example, Inheritance Classification View displays the amount of added methods relative to the
number of overridden or extended methods in a subclass. The purpose is to help understanding
the use of inheritance in class hierarchies by revealing whether a hierarchy is build on code
reuse through extending and overriding methods, or on mere addition of functionality. An
example of this visualization in shown in Figure 3.4.

In this polymetric view the nodes represent classes and the edges represent inheritance re-
lations. Three metrics are used in this visualization: Number of Methods Added (NMA)
associated with the width of a node, Number of Methods Overridden (NMO) associated with
the height of a node and Number of Methods Extended (NME) associated with the color of a
node. Based on this view we can quickly learn some important characteristics of a hierarchy.
The flat and light nodes represent classes where a lot of behavior has been added and few
methods have been overridden or extended. In this case the semantics of the inheritance
relation is an addition of functionality by the subclasses. Tall nodes represent classes where
lot of methods have been overridden and they may represent classes that have specialized
hook methods. If the node are dark, it means that many methods have been extended, which
hints at a higher level of code reuse.

3.2. UNDERSTANDING CLASS HIERARCHIES 27

Figure 3.4: An Example of Inheritance Classification View [41]

In [32] Gîrba et al. introduce an approach to characterize the evolution of class hierarchies
in order to answer important reverse engineering questions like “how old are the classes from
a hierarchy?” or “were there changes in the inheritance relations?”. Answering the first
question is important because old classes may be part of the original design and thus contain
useful information about the design. On the other hand, answering the second one is important
because changes in the inheritance relations might indicate class rename refactoring or removal
of classes. The authors introduce a couple of evolutionary metrics (e.g., Age of a Class) based
on information extracted from a versioning system and use them to create the Hierarchy
Evolution Complexity Polymetric View based on which the aforementioned questions can be
answered.

Design Patterns Detection

Design pattern [30] identification is an important source of information from program un-
derstanding perspective. They are typical solutions to recurring design situations and thus,
recognizing the usage of a particular design pattern in a legacy code provides the reverse engi-
neer with a lot of useful structural information like the reason of some relations between classes
(e.g., inheritance relations) or places where changes, reuse or extensions can occur.

Much effort has been spent in the field of design pattern recovery. Probably the first paper on
this subject was written by Kramer et al. [39]. Design information such as classes, inheritance
relations and/or associations between them are extracted from the subject system and stored
using Prolog facts. The structure of a design pattern is expressed as a Prolog rule letting next
the inference machine to detect a design pattern instance.

There are many other papers regarding the design pattern recovery, many of them being

28 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

variations of the previous work from the point of view of the structural information used
in the detection, the program and pattern representation or the actual detection algorithm
[3, 5, 18, 68]. An interesting improvement appears in [26] where Ferenc et al. propose to
filter the structural detection results using the rules inferred by a machine learning algorithm.
Another interesting step forward is made in [85] where the author proposes the usage of
dynamic analysis to recognize not only the static structure of a pattern but also the dynamic
behavior presented by sequence diagrams.

Discovering Hot Spots

A hot spot represents a point within an object-oriented application built based on inheritance
and which permits to add changes in a simple way. In [22] the authors introduce a step-by-
step methodology to detect such extension points. By inspecting overriding methods within
class hierarchies, they firstly detect potential hook methods. Next, by locating the callers
of these hooks, potential template methods are identified. These templates (which may be
located outside the investigated class hierarchy) must then be manually investigated in order
to understand the relationship between a template and its hooks and to decide if they represent
indeed a hot spot.

Formal Concept Analysis Approaches

Formal concept analysis [31] is a branch of lattice theory that allows us to identify meaningful
grouping of elements that have common properties.

In [4] the authors use formal concept analysis to discover dependency schemas in class hi-
erarchies. The grouped elements are method invocations and field accesses inside a class
hierarchy. The properties of invocations are (i) whether the call is a self/this or a super send
and (ii) the relationships between the class that defines and the one that invokes the methods
(e.g., the first class is an ancestor of the second class). Similarly, for accesses, the authors
are interested in the relationship between the class that defines the attribute and the one that
accesses it.

Using this approach, the authors have managed to identify several dependency schemas be-
tween the internal elements of a class hierarchy. The Cancelled Local or Inherited Behavior
(CLIB) schema can emphasize inheritance relations used to achieve only code reuse (i.e.,
inheritance used only as class inheritance). In Equation 3.3 we show the properties of the
classes from a system S that are compliant with this schema.

CLIB(S) = S′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S′ ⊆ S, ∀C ∈ S′
((C invokes method I via this)∧
(I is a concrete method of C)∧
(I is redefined with an empty body in a descendant of C))∨
((C invokes method I via this)∧
(I is a concrete method in an ancestor of C)∧
(I is redefined with an empty body in a descendant of C))

(3.3)

3.3. THE PROBLEM 29

Other schemas can reveal the presence of common idioms frequently used when building
class hierarchies. The authors conclude that the usage of formal concept analysis can help
in discovering dependency patterns between the internal elements of class hierarchies that
can be used afterwards to recover the understanding and to assess the quality of legacy class
hierarchies.

Another understanding and restructuring approach for class hierarchies based on formal con-
cept analysis is presented in [78]. The authors present a technique to transform a class
hierarchy based on how it is used by its clients (e.g., field accesses, method invocations which
includes polymorphic calls). Their transformation method produces a class hierarchy behav-
iorally equivalent with the original one but without situations like: fields that are never used,
fields that should be pushed down in hierarchy because they are used only in some parts of
the hierarchy, methods that are never invoked on instances of a particular subclass, etc. The
experimental results demonstrate that the method can provide valuable insights into the usage
of a class hierarchy, and can lead to useful restructuring proposals1.

3.3 The Problem

As we can observe from this chapter, many analyses dedicated to understand various aspects
of class hierarchies and to assess their quality have been defined in the last decade. Some
of these analyses aim to address understanding and quality aspects related to the usage of
polymorphism and to the usage of class hierarchies to model type hierarchies. However, we
consider that these analyses have a serious limitation: none of them capture nor exploit ade-
quately the manner in which the clients of a class hierarchy make use of polymorphism when
they use the hierarchy (e.g., do all the clients access the hierarchy using polymorphism?, do
all the clients non-polymorphically access it?, are there clients which access it polymorphi-
cally while others access it non-polymorphically?, are there some methods from the hierarchy
accessed polymorphically while other are accessed only non-polymorphically?, etc).

As Martin states in the context of designing highly reusable components by means of poly-
morphism, “a model, viewed in isolation, cannot be meaningfully validated [...] the validity
of a model [class hierarchy] can only be expressed in terms of its clients” [53]. However,
the current analyses dedicated to understand and to capture quality aspects related to the
usage of polymorphism and type hierarchies use almost always information extracted from the
hierarchies themselves (e.g., this class only overrides some methods from the base class, this
method is a specialization of a method inherited from the base class, etc.). Thus, although
these analyses are highly necessary, they are definitively not sufficient because they investigate
a hierarchy in isolation.

For example, the Polymorphism Factor metric is computed based exclusively on information
extracted from the implied hierarchies (see Equation 3.2). Thus, as recognized by the authors,
it can capture at most the polymorphism potential of a class hierarchy. The metric cannot
observe if the clients of the measured hierarchy actually exploit the measured potential (i.e.,
do the clients really use the hierarchy polymorphically?). Additionally, Polymorphism Factor
is the single metric we managed to find during our state-of-the-art investigation, related to

1Thus, the proposed technique is also a quality assessment technique for class hierarchy

30 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

+m()
+n()

A

+m()
+q()

B

a) A Simple Class Hierarchy

void aClient(A ref) {
if(!(ref instanceof B))

ref.n();
}

b) A Simple Client

Figure 3.5: The Importance of Observing How Clients Use Polymorphism

the usage of polymorphism in an object-oriented system. Consequently, the statement made
by Henderson-Seller in [36] that further work on inheritance metrics is urgently required to
address polymorphism, is still valid today.

In order to emphasize the important role of clients in understanding the aim of a class hierarchy
(e.g., is it a type hierarchy or not?), let us consider a simple example. By looking only at the
elements of the hierarchy in Figure 3.5a we may regard B as a specialization of A. But if we
take a look at the clients and see that all of them refuse to use the two classes defined in the
hierarchy in a polymorphic manner, we can strongly suspect that the inheritance is not used
for subtyping, but only for code reuse, in spite of its appearance.

Furthermore, there is an additional key aspect related to the specific knowledge about a
hierarchy, which is hidden in the client code. For example, let us consider again the hierarchy
in Figure 3.5a and look now closer at one of its clients (Figure 3.5b). Looking only at the
invocation of the n method and at the type of the ref reference we can conclude that aClient
method could invoke n on any instance of the classes A or B. But at a closer look, we see that
ref can only refer to an A instance in the context of the call and as a result we can conclude
that the real intention of the programmer of this client was to invoke the n method only for
A objects and not for B instances. This example makes it clear that in order to analyze the
way clients use a class hierarchy we need to go beyond simple information (e.g., the declared
type of a reference variable) and employ more advanced analysis techniques (i.e., data-flow
analysis) that can provide more detailed information about a client code.

We must emphasize here that in [78], the authors also propose to analyze a hierarchy based
on the manner it is used by the clients. However, they do not capture the extent to which
the clients of a class hierarchy make use of polymorphism2. This explains the “novel client-
driven perspective” part of our thesis title. On the other hand, we must also recognize that in
[16], the author proposes the detection of inheritance which is not used for polymorphism by
investigating how the clients invoke the methods from a base class (see Figure 3.1). However,
as we will see in different parts of this thesis, this is only a small part of what can be achieved
by capturing how the clients of a class hierarchy make use of polymorphism when using

2The proposed analysis depends and properly manipulates polymorphic invocations, but it is not intended
to see the extent of polymorphic usage of a hierarchy

3.3. THE PROBLEM 31

Type
Highlithing

Code Reuse /
Interface Reuse
Characterisation

Detect
Comprehension

Pitfalls

Petru-Florin
Mihancea

By observing in detail how the
clients of class hierarchies make

use of polymorphism when they use
the hierarchies, we can offer

additional support to enhance
the understanding of legacy class

hierarchies and their quality
assessment

THESIS CONCEPTUAL
CONTRIBUTIONS

Figure 3.6: The Thesis Roadmap

the hierarchy. Additionally, the proposed detection approach is limited because, as a simple
example, situations like the one discussed in the previous paragraph and in Figure 3.5b cannot
be captured.

In this context, our thesis states that:

By observing in detail how the clients of class hierarchies make use of polymorphism when they
use the hierarchies, we can offer additional support to enhance the understanding of legacy

class hierarchies and their quality assessment

In Figure 3.6 we present the main contributions of our thesis. First, starting with our initial
hypothesis, we introduce the Type Highlighting technique [62]. In essence its main goal
is to provide an analysis vehicle based on which we can discover patterns of polymorphic /
non-polymorphic usage of a hierarchy and the characteristics they reveal about a legacy class
hierarchy. To achieve this goal we introduce a software metric (i.e.,Level of Abstraction)
to capture in a quantifiable manner the extent to which a client of a hierarchy makes use
of polymorphism when it manipulates objects defined in the hierarchy. At the same time,
Type Highlighting employes visualization techniques in order to facilitate the discovery
of relevant patterns of client-hierarchy interaction.

Starting with the results obtained using the Type Highlighting technique, we introduce
next a bi-dimensional metric-based characterization of class hierarchies [60]. Its goal is to
identify the role a class hierarchy plays in a legacy system from its polymorphic manipulation
point of view (i.e., is it intended to be an implementation hierarchy, a type hierarchy or both?).

25 3. UNDERSTANDING AND ASSESSING THE QUALITY OF CLASS HIERARCHIES

In essence, the proposed characterization defines several software metrics (called uniformity
metrics) that capture the extent to which a class hierarchy is invoked by its clients in a
polymorphic / non-polymorphic manner. We also show during a case study that the proposed
suite of metrics can reveal the interface reuse intention of a legacy class hierarchy.

Next, we define a suite of recurring situations (called comprehension pitfalls) in which poly-
morphism and class hierarchies can easily mislead a maintainer during program comprehension
activities [64]. Based on the previously introduced uniformity metrics (and on other metrics)
we also provide logical rules to enable automatic detection of the described comprehension
pitfalls.

All these conceptual contributions have been implemented using the iPlasma software anal-
ysis environment. As a final (implementation) contribution of our thesis, we describe in the
end several details regarding the tool support built to instantiate and to validate the analysis
means proposed in this dissertation.

Chapter 4

Type Highlighting

In order to characterize a class hierarchy with respect to its polymorphic / non-polymorphic
usage by clients we have to (i) discover recurring situations (i.e., patterns) of using class hierar-
chies via polymorphism and (ii) analyze these patterns in order to document the characteristics
or anomalies they reveal about a hierarchy.

At a first glance, these tasks could be performed by manually analyzing the client source code.
However, such an approach is difficult and unfeasible: we would have to navigate in parallel
and to compare a lot of source code (e.g., the code of all the clients of all the hierarchies
from many different systems). In order to support these tasks, we introduce in this chapter
the Type Highlighting analysis vehicle [62].

4.1 Goal

Polymorphism and inheritance play a key role to increase the extensibility of an object-oriented
program [53]. Unfortunately, they also raise supplementary issues for software understanding
and design quality assessment. For example, inheritance can mean interface inheritance, class
inheritance or both [30]. When performing maintenance activities, it is important to clearly
identify the purpose of inheritance within the key class hierarchies (e.g., when used to build
type hierarchies extension points are revealed because the system’s behavior can be extended
by adding new subclasses into those hierarchies).

Many analysis methods have been proposed in the last decade to support different maintenance
goals related to class hierarchies (e.g., detecting design flaws, understanding class hierarchies
and their evolution, restructuring, etc.) [4, 21, 22, 32, 42, 78]. However, none of them
captures adequately and in detail the extent to which their clients use objects defined in the
analyzed hierarchy by means of polymorphism. As we state in Chapter 3, by observing in
detail if and how the clients of a class hierarchy use polymorphism when manipulating the
hierarchy, we can reveal different characteristics and / or anomalies about the investigated
hierarchy to support its understanding and quality assessment.

33

34 4. TYPE HIGHLIGHTING

Figure 4.1: Manually Investigating Client Code

In order to prove this statement, we must first discover recurring situations (i.e., patterns) of
polymorphism usage in the client code and then link these patterns to concrete properties of
the implied class hierarchy (i.e., document the patterns). Nevertheless, both these activities
are difficult to accomplish by manually analyzing the client source code.

Let us consider a typical example which appears in the case of the central hierarchies from a
system. In Figure 4.1 we try to display “all” the clients (i.e., their source code) of a hierarchy
from our case studies. Each window includes the code of just one client. It is simple to under-
stand that manually investigating the client code in order to identify patterns of polymorphism
usage is a difficult job. The exemplified hierarchy has more than 100 potential clients and
seeing all or almost all of them (and the hierarchy itself) simultaneously (ideally, in a single
screen) is not possible (e.g., only 9 clients are visible in Figure 4.1). Observing in parallel many
different clients of a class hierarchy is important in order to discover and document patterns
of polymorphism usage. That is, an analyst could identify relatively easy a pattern in the code
of a single specified client. However, she cannot (i) observe the prevalence of the pattern
in the entire client population and/or (ii) locate the clients exhibiting a particular pattern.
For example, a frequent non-polymorphic usage of a particular class from the investigated
hierarchy could emphasize that the class has some characteristics incompatible with the other
classes from the same hierarchy (e.g., it is not behaviorally equivalent with them).

Additionally, discovering patterns in a manual way suffers from what it is called viscosity
of the environment [53]: the analyst will lose a lot of time switching windows containing
client code, remembering the initial possible pattern she wants to investigate or track in the
client population, etc. In other words, she is distracted from the important job (i.e., pattern
identification) by intermediate activities caused by the working environment.

As a conclusion, in order to discover and document patterns of polymorphism usage in the
clients of a hierarchy, we need at first an efficient analysis vehicle.

4.2. ATTACKING THE PROBLEMS 35

4.2 Attacking the Problems

In order to address the problems mentioned in the previous paragraph, we need two things:

1. On one hand, we must capture in a quantifiable form the manner in which a client
makes use of polymorphism when manipulating objects defined in the investigated class
hierarchy. Moreover, this quantization means must be sufficiently fine-grained in order
to be able to distinguish (if necessary) areas within a client where polymorphism is
used from areas where polymorphism is not used. To achieve this goal, we start by
introducing the Level of Abstraction metric defined at the level of source code tokens.

2. On the other hand, the required analysis vehicle must be capable to simultaneously
present the information provided by the Level of Abstraction metric for all the tokens
in all the clients of a hierarchy. In order to efficiently present such an amount of
information, we have employed software visualization techniques [23]. In this manner
we also facilitate pattern discovery and their understanding since “seeing a pattern can
often lead to a key insight, and this is the most compelling reason for visualization” [84].

4.3 The Type Highlighting Analysis Vehicle

In this section we describe the Type Highlighting analysis means. We start by presenting
the Level of Abstraction metric, as a quantization means to capture the extent to which a
client code makes use of polymorphism with respect to a class hierarchy. Next, we present the
microprint [76], the basic block of our software visualizations. In the following, we show how
these blocks are combined in order to obtain the generic form of the views (i.e., the client grid).
Finally, we introduce the Level of Abstraction and Group Discrimination visualizations.

In a real software system, it is almost impossible to reach a uniform characterization for an
entire class hierarchy (i.e., inheritance lattice), since different parts of the same hierarchy
might be used in totally different ways. Consequently, we aim to analyze in isolation all the
hierarchies and their sub-hierarchies and therefore the analysis vehicle presented next must be
applied to every base class.

4.3.1 Measuring Client Code Abstractness

Definition. The Level of Abstraction (LA) metric can be computed for each source code
token1 of a method with respect to a base class (and its associated hierarchy) for which the
method is a client. For the sake of simplicity, we consider at this moment that the method has
only one reference variable through which it can access the corresponding hierarchy (i.e., used
as target reference in an invocation of a method declared in the hierarchy base class).

In essence, the metric value for a token tk is proportional with the number of concrete classes
from the hierarchy which may be referred at runtime by the variable before the execution of
that token. Considering this number to be mayBe and the number of all concrete classes from

1In terms of lexical analysis, a token is a lexeme

36 4. TYPE HIGHLIGHTING

the hierarchy to be canBe, the value of the metric is computed using the following formula.
We emphasize that mayBe is always smaller or equal to canBe.

LA(tk) =

 undefined↔ mayBe = 0
0↔ mayBe = 1
(mayBe− 1)/(canBe− 1)↔ mayBe > 1

Metric Rationale. The idea behind the LA metric is simple: it is a measure of uncertainty
of a programmer regarding the concrete kind of objects referred by a variable when she writes
a statement or expression.

If a programmer writes a token (more precisely a statement / expression which includes that
token) in a context in which she precisely knows that a variable always refers to instances of a
single class form the hierarchy, then it is highly possible that the corresponding token is part
of a concrete code with respect to that variable and hierarchy. The reason is that, there may
be some implicit relations between the written instruction and the particular class referred by
the variable (i.e., the statement has a meaning only for the particular class of objects referred
by the variable — it ensures some preconditions or expects some postconditions particular to
that class of objects).

By contrast, if a programmer writes a token in a context in which she is totally unsure about
the concrete class from the hierarchy referred by the variable, then it is highly possible that
the token is part of an abstract code (i.e., the meaning of the instruction does not depend
on some particular classes from the hierarchy; all of them are treated in the same way in that
source code).

Note. Since the degree of abstraction is hand in hand to the degree of polymorphism usage,
the LA metric is also a measure of the extent to which polymorphism is used at a particular
program point (i.e., at the position of the measured token) with respect to a hierarchy.

Interpretation and Examples. When the LA metric is undefined, it means that before the
execution of the token, the access variable does not refer to any instance of the classes from
the class hierarchy. This usually happens when the measured token is outside the visibility
domain of the variable or the variable is undefined. As an example, you can see that before
executing the guard condition and the jump of the if statement from line 3 (Figure 4.2),
x does not refer to any object. Thus, all the tokens from this line have an undefined LA
value.

When defined, the value of the LA metric is between 0 and 1. A value of 0 means that
before the execution of the token the access variable refers to instances of only one class
from the hierarchy. Thus, the token is part of a concrete code with respect to the hierarchy
because, when it has been written, the programmer already knew the concrete class of the
object referred by the access variable. The call from line 6 (and implicitly all the tokens from
this line) has a 0 value for LA because, before the execution of the call, x refers only to B
instances.

4.3. THE TYPE HIGHLIGHTING ANALYSIS VEHICLE 37

+p()
+q()
+r()
+r()

{Abstract}
A

B C D

a) The Investigated Hierarchy

(1)void someClient() {
(2) A x;
(3) if(random(1)==0)
(4) {
(5) x = new B();
(6) x.p();
(7) } else {
(8) x = new C();
(9) x.q();
(10) }
(11) if(random(1)==0)
(12) {
(13) x = new D();
(14) x.r();
(15) }
(16) x.s();
(17)}

b) A Client of the Hierarchy

Figure 4.2: Exemplifying LA Values

Similarly, a value of 1 for LA means that the variable refers to instances of all the classes
from the hierarchy, and thus the measured token is part of an abstract code. This is because,
when it has been written, the programmer could not make any assumption about the concrete
class referred by the access variable. The call from line 16 (and implicitly all the tokens from
this line) has value 1 for LA because before the execution of the call x refers to B, C or D
instances.

An intermediate value for this metric means that the variable refers to instances of more than
one class from the hierarchy but not of all of them. Thus, the token is part of a partially
abstract code. We emphasize that the degree of abstraction of the code is proportional with
the LA metric value. The tokens from line 11 have a value of 0.5 for LA because before their
execution x refers only to B or C instances.

Discussing the Formula. The formula used to compute the metric may appear awkward
at first: why is the metric not computed as a simple ratio between mayBe and canBe? The
reason is simple. The value of canBe depends on the analyzed hierarchy (e.g., in a hierarchy
we could have 3 concrete classes while in another one we could have 4). Thus, using a simple
ratio would raise the following problems:

1. A concrete token would have to be identified by looking for the minimum value of the
metric (e.g., 0.33 respectively 0.25 following the previous example)! Thus, it would be
difficult to use the metric to emphasize concrete code and to distinguish such code from
partially abstract code. To solve this problem, we fix the LA metric (second alternative
of the formula) to have a value of 0 for concrete tokens.

2. Because of the previous constraint, the metric would have a non-linear scale if a simple
ratio is used for mayBe greater than 1 (e.g., when canBe is 3, the possible metric values
would be 0, 0.66 or 1). Consequently, the third alternative of the formula was designed
to ensure a liner scale for the LA metric (i.e., equals intervals between the possible
metric values which are 0, 0.5 and 1 when canBe is 3).

38 4. TYPE HIGHLIGHTING

public String example(Object p) {
if(p instanceof AClass) {

((aClass)p).prepare();
}
return p.toString();

}

a) A Client Code of the Object Hierarchy

b) The General View of a
Microprint

c) The Control Flow
Microprint

Figure 4.3: Microprints Examples

Metric Aggregation. Until now, we have assumed that the client has only one variable
through which it can access the hierarchy. When there are more than one such variables, the
LA value for a token is the MINIMUM value of the LA for the same token computed with
respect to each variable. The aggregated metric is undefined when all the elementary values
of LA are undefined. We have used this aggregation (i.e., the MINIMUM value) considering
that if a variable forces the code to be less abstract (e.g., by down-casting its value) than
another variable, then the code is as abstract as induced by the first one. In this manner,
we can detect clients that may raise extensibility issues even if this is caused by a single
variable.

4.3.2 The Microprint

The notion of microprint, introduced by Robbes et al. in [76], forms a core part of our
analysis means. In essence, a microprint is a visual abstraction of a method body obtained by
mapping each source code character to a pixel (tiny rectangle). To keep the code familiarity,
the character-pixel mapping is performed in such a way that the pixel relative position in the
microprint directly reflects the character relative position in the source code. In Figure 4.3b we
present the generic microprint of the code from Figure 4.3a. We emphasize that by definition,
the method signature is not included in the method microprint.

In this general form, a microprint is almost useless because all the method implementation
details are invisible. However, colors can be used in order to emphasize different details of
interest. In [76], 3 color codes have been introduced giving birth to 3 concrete microprints.
As an example, in Figure 4.3c we present the Control Flow Microprint of the method from
Figure 4.3a. In short, its color code associates the red color to the pixels that represent the
characters of return statements, blue to the pixels of conditional control structures, purple
to the pixels of statement blocks, etc. Using this dedicated microprint one can quickly get
an impression, for example, about the cyclomatic complexity of the method without actually
seeing its code (e.g., many blue lines denote many conditional statements).

4.3. THE TYPE HIGHLIGHTING ANALYSIS VEHICLE 39

Figure 4.4: A Generic Type Highlighting View

LA Values Color
LA(tk) = 1 0 - Red
LA(tk) ≥ 0.5 ∧ LA(tk) < 1 0 - Diluted Red
LA(tk) > 0 ∧ LA(tk) < 0.5 0 - More Diluted Red
LA(tk) = 0 0 - White
undefined 0 - Light-gray

Table 4.1: Pixels’ colors in Level of Abstraction View

4.3.3 The Client Grid

The microprint visual abstraction is very useful in our case because it permits us to condense
the entire code of a hierarchy client into a small amount of space. This is essential for our
analysis vehicle: a hierarchy may have many clients that must be displayed simultaneously,
ideally in a single screen, in order to enable an engineer to correlate data extracted from
different clients.

In Figure 4.4 we present the client grid (for a hierarchy with 5 clients), the general form of
our Type Highlighting visualizations. First, we sort the clients in an ascending order
according to the Lines of Code (LOC) metric. Next, each client is microprinted. Finally,
the resulted microprints are arranged in a grid manner, conserving (from left to right, top to
bottom) the order imposed after the first step. The width of the view is limited to the width
of the display used to render the figure.

In the following, we present two color codes that we use to paint the client grid, giving birth
in this way to the Level Of Abstraction and Group Discrimination views.

4.3.4 Level of Abstraction View

In essence, the Level of Abstraction view is nothing more than an efficient way to present to
an analyst the values of the Level of Abstraction metric for all the tokens of all the clients
of a hierarchy. The visualization is obtained by painting a token (i.e., its characters) in the
client grid using the color code presented in Table 4.1.

In essence, a pixel will be red if its corresponding character is part of a token having a value
of 1 for LA metric or white if the value is 0. To avoid in this case a non-white background,

40 4. TYPE HIGHLIGHTING

+p()
+q()
+r()
+r()

{Abstract}
A

B C D

a) The Investigated Hierarchy

(1)void someClient() {
(2) A x;
(3) if(random(1)==0)
(4) {
(5) x = new B();
(6) x.p();
(7) } else {
(8) x = new C();
(9) x.q();
(10) }
(11) if(random(1)==0)
(12) {
(13) x = new D();
(14) x.r();
(15) }
(16) x.s();
(17)}

b) A Client of the Hierarchy

c) The View

Figure 4.5: Exemplifying the Level of Abstraction View

a thin frame is drawn around a microprint. Together with the manner in which we use the
red color (a metaphor for “hot spot” or a polymorphic client) this gives the impression of a
temperature map. Two diluted-red colors are used to draw pixels with intermediate values of
the LA metric (see Table 4.1).

In Figure 4.5c we present an example of the Level of Abstraction view. We emphasize
that in this example, the hierarchy has only one client. Its source code is presented in Fig-
ure 4.5b.

4.3.5 Group Discrimination View

The Level of Abstraction view can easily emphasize areas from the clients of a hierarchy where
only instances of some particular subclasses are referred. At the same time, it can also give us
an impression about the size of this particular set of subclasses (e.g., via the dilution of the
red color). However, it cannot tell us which are those subclasses! To eliminate this problem,
we introduce the Group Discrimination view. As in the previous subsection, we assume for the
moment that each client has only one variable through which it accesses the hierarchy.

First, we identify all the groups (or subsets) of concrete classes from the hierarchy, groups
that are particularly manipulated in at least one region of a client. Next, a distinct color2
is assigned to each group we have previously identified. As a particularity, in order to be
consistent with the previous view, red is assigned only to the group of all concrete classes

2In order to have consistent color codes, we do not use white, light-gray, gray, dark-gray or black for this
purpose (e.g., as in the previous view, light-gray is used in this view to draw the regions of a client where no
group can be referred)

4.3. THE TYPE HIGHLIGHTING ANALYSIS VEHICLE 41

from the hierarchy. Finally, in the client grid, we use the color-group association to draw the
pixels that render those regions where only instances of the corresponding group of classes
are referred by the access variable.

Additionally, in order to precisely indicate the composition of each group, a legend is also
provided: a view of the analyzed hierarchy similar with a class diagram. The classes are
represented as rectangles (including Java interfaces) while the inheritance relations (including
Java implements relations) are mapped to edges. In the legend we use the following color
code:

• White is used to fill concrete classes.

• Light-gray is used to fill interfaces.

• Dark-gray is used to fill abstract classes.

• The associated color of a group is used to mark by a small circle each concrete class
that is included in that group; because the composition of the group of all concrete
classes (that is always associated with red) is straightforward, we do not present its
composition in the legend.

• The associated color of a group is also used to mark by a small circle each abstract class
from the hierarchy whose set of concrete descendants is equivalent with that group. This
feature considerably helps an analyst to visually identify interesting abstract supertypes
without having to follow-up complex inheritance relations (e.g., a hierarchy that contains
many classes which have multiple inheritance relations).

In Figure 4.6 we present an example of Group Discrimination view for the hierarchy from
Figure 4.6a. We emphasize that in this example we consider that the hierarchy has only one
client. Reading the code from Figure 4.6b it is easy to observe that in the blue region from
Figure 4.6c x refers only to B instances (B is marked with a blue circle in Figure 4.6d). In
the green region x refers to B or C instances which explains why this classes are marked with
green in the legend.

Group Filtering. Using more than 8 colors for categorization purposes may be puzzling for
a viewer [84]. Unfortunately, in the case of large hierarchies we can have more than 8 groups.
To avoid a color explosion we adopted two strategies:

• If necessary, the Group Discrimination view can be parameterized with different group
filters. In this way, an analyst can select only particular groups to be rendered at one
time, based on her particular interest. Two of the most useful filters we have identified
during our experience are: Top8LargestGroups - selects at most the largest 8 groups,
Top8PrevalentGroups - selects at most the first 8 groups that appear in the largest
number of clients.

• The conditional code used to discriminate a particular type of an object is always micro-
printed in gray. This is because such conditions generate many groups of classes (e.g.,
in the implied if-instanceof-else-if-instanceof chain, each if condition usually generates a
new group by eliminating a single class from the group created by the previous if). For-
tunately, such groups appear only in chained type-checking conditions (and only before

42 4. TYPE HIGHLIGHTING

+p()
+q()
+r()
+s()

{Abstract}
A

{Abstract}
SomeA

{Abstract}
OtherA

B C D E F

a) The Hierarchy

void aClient(SomeA x) {
if(x instanceof B){

x.p();
}
x.q();

}
b) A Client Code

c) The Client Microprint

d) The Legend

Figure 4.6: A Group Discrimination View Example

a condition execution) which makes them irrelevant for the viewer. Thus, avoiding to
color such conditional code, the number of groups that must be rendered (and implicitly
the number of distinct colors we must use) in the Group Discrimination view becomes
considerably smaller.

Aggregation. A client having more that one variable through which it accesses the hierarchy
appears problematic. For example, if two variables refer to instances from different groups
in two distinct, but partially overlapping, regions of the client then the overlapping portion
should be rendered with distinct colors. In such cases we apply the following heuristic: the
common portion is drawn with the color of the smaller region. In this way, the larger region
appears as being “in the back” of the smaller one.

4.4 Tool Support in Brief

The LAmetric and the visualizations proposed in this chapter were implemented in Patrools,
an extension of the iPlasma program analysis platform [50]. In this section we briefly present
some implementation details. Further details are presented in Chapter 7.

In order to approximate3 the LA metric and to determine the regions of a client where a
reference variable refers only to instances of some particular subclasses, we have used an

3In general, precisely computing the LAmetric is not possible because, for example, an instanceof expression
can be simulated by an arbitrary complex equivalent expression

4.5. EXPERIMENTAL RESULTS 43

intra-procedural static class analysis (SCA) [20]. It is implemented based on MemBrain, a
static analysis tool we developed. This static analysis determines at particular program points
the set of classes for an object. In other words, it determines for any reference variable, at a
particular program point, the possible set of classes of the instance to which that reference
may refer to at runtime.

The views were generated based on jMondrian, the Java version of the Mondrian in-
formation visualization framework [58]. Using this tool we can describe a view as a Java
program. Combining this description with the information extracted using MemBrain, our
views implementation becomes a simple programming task.

We emphasize that the views generated with jMondrian are not “dead” pictures (i.e., are
not image files). The views are “live”. All the rendered entities are objects that can be
interrogated using the mouse (e.g., by clicking on a class we can ask it for its name, we can
ask it how many methods does it have, etc.) which is essential for the patterns discovery and
their understanding process.

4.5 Experimental Results

The Type Highlighting analysis vehicle can be used in two orthogonal ways:

1. On one hand, it can be used as a research vehicle. In other words, it supports a researcher
to discover patterns of polymorphism usage and the characteristics or anomalies they
can reveal about a hierarchy.

2. On the other hand, it can be used as a software maintenance vehicle. Once patterns
of polymorphic usage are documented, our visualizations can be used to investigate
different software systems by looking for these patterns and documenting the properties
of the analyzed hierarchies.

Thus, we emphasize the benefits of our visualizations following two directions:

• First, we discuss some of the visual patterns we have discovered using the Type High-
lighting analysis vehicle by applying it on some class hierarchies from several medium-
sized Java programs. Details about the analyzed software can be found in Appendix A.

• Second, we show the benefits of our visualizations during a maintenance episode.

4.5.1 Pattern Vocabulary

Using Type Highlighting as a research vehicle, we have discovered and documented several
visual patterns of polymorphism usage in the clients of a hierarchy. To enable programmers
communicate such recurrent situations, we have given a suggestive name to each pattern. In
this way we have formed a vocabulary of patterns.

In the following we exemplify these visual patterns (some of them similar with already known
ones) and their likely interpretations. All the examples are generated with respect to the
hierarchy rooted by the A class from Figure 4.7.

44 4. TYPE HIGHLIGHTING

+p()
+q()
+r()
+s()

{Abstract}
A

{Abstract}
SomeA

{Abstract}
OtherA

B C D E F

Figure 4.7: The Hierarchy Used to Exemplify Visual Patterns

Fine-Grained Patterns. The first category of visual patterns appears at the level of a single
client. Although they usually characterize a client rather than a hierarchy, these fine-grained
patterns are necessary in order to localize particular interesting clients in the client population
(which can improve the hierarchy understanding) and to extend the pattern vocabulary at the
population level (i.e., coarse-grained patterns) which characterize the hierarchy.

1. Polymorphic Client - a microprint in the Level of Abstraction view that is entirely red.
This is a sign that the client method is a polymorphic client of the hierarchy (i.e., the
client behavior could be extended by configuring it with instances of different classes
from the hierarchy or by adding new subclasses into the hierarchy [46]). An example is
shown in Figure 4.8.

void polymorphic(A x) {
x.p();

}

Figure 4.8: Polymorphic Client

2. Partially Polymorphic Client - a microprint in the Level of Abstraction view that is
entirely covered with the same diluted red color. This is a sign that the client polymor-
phically manipulates a subset of hierarchy’s concrete classes but not all of them (e.g.,
the client is written in terms of some sub-hierarchy of the analyzed one and thus, its
behavior could be extended by adding new subclasses only to some sub-hierarchies). An
example is presented in Figure 4.9.

void pPolymorphic(SomeA x) {
x.p();

}

Figure 4.9: Partially Polymorphic Client

4.5. EXPERIMENTAL RESULTS 45

3. Concrete Client - a microprint in the Level of Abstraction view that is entirely white.
This means that the client manipulates objects of only one concrete class from the
hierarchy. Such a client is presented in Figure 4.10.

void concrete(B x) {
x.p();

}

Figure 4.10: Concrete Client

4. Mixed Client - a microprint in the Level of Abstraction view that contains a continuos
region colored with different levels of red. This pattern usually appears in the context of
some type-related operations (i.e., casts, instanceof expressions and even instantiations).
Moreover, if the region gradually becomes more and more red-diluted (frequently, inter-
laced with white regions) then the client is usually affected by a Client Type Checking
design problem [21]. An example is shown in Figure 4.11 which exhibits the typical
pattern for client type checking flaw (i.e., a chain of statements having the form if-
then-else-if). By contrast, when the microprint starts as being white and becomes more
and more red, the mixed client usually emphasizes a factory of objects.

void mixed(A x) {
if(x instanceof SomeA) {

x.p();
} else if(x instanceof D) {

x.q();
} else if(x instanceof E){

x.r();
} else {

x.s();
}

}

Figure 4.11: Mixed Client

5. Indirect Client - a microprint in the Level of Abstraction view that starts as being
light-gray. This situation usually appears when the client interacts with the objects
defined in the hierarchy through local variables that are initialized via object instantiation
operations or via the return value of another method. In the latter case, this is a sign
of Law of Demeter violation [45]. A short example is shown in Figure 4.12.

46 4. TYPE HIGHLIGHTING

void indirectClient(Intermediate y) {
A x = y.getAnyAObject();
x.p();

}
class Intermediate {

private A a;
public Intermediate(A a) {

this.a = a;
}
public A getAnyAObject() {

return a;
}

}

Figure 4.12: Indirect Client and Auxiliary Code

The last pattern is also an extension point of our vocabulary. The non-light-gray areas of an
indirect client can be red, white, diluted-red or mixed. Thus, the client in Figure 4.12 can
also be called an Indirect Polymorphic client.

Coarse-Grained Patterns. The second category of visual patterns appears at the level of
the client population of a hierarchy. They capture characteristics of the clients that are
spread across multiple clients of the investigated hierarchy and, consequently, they also reveal
properties of the analyzed hierarchy.

1. Intensively Polymorphic External Population - the external clients of the hierarchy (i.e.,
client methods defined outside the hierarchy) form a population which is almost entirely
composed by Polymorphic or Indirect Polymorphic clients. In other words, the Level of
Abstraction view for the external clients of the hierarchy is almost entirely drawn in red.
In Figure 4.13 we present an example of this pattern, for an external client population
of 4 members.

The prevalence of the red color means that many external clients polymorphically ma-
nipulate instances of all the classes from the hierarchy. Thus, the methods from the
base class of the hierarchy are probably capable to offer (to their clients) a uniform
semantics for all the subclasses from the hierarchy. In other words, the clients do not
have to make particular assumptions about the concrete class of an object defined in
the hierarchy they interact with. In general, they can uniformly interact with all these
classes. Consequently, the hierarchy may be intended to be a type hierarchy with respect
to the interface methods declared in its base class.

2. Intensively Partially Polymorphic External Population - the external clients of the hi-
erarchy form a population which is almost entirely composed by Partially Polymorphic
or Indirect Partially Polymorphic clients. In other words, the Level of Abstraction view
is almost entirely drawn in red-diluted. In Figure 4.14 we present an example of this
pattern, for an external client population of 4 members.

The prevalence of the red-diluted color means that many external clients polymorphically

4.5. EXPERIMENTAL RESULTS 47

void polymorphic(A x) {
x.p();

}
void polymorphic1(A x) {

x.s();
}
void polymorphic2(A x) {

x.q();
x.r();

}
void indirectClient(Intermediate y) {

A x = y.getAnyAObject();
x.p();

}

Figure 4.13: Intensively Polymorphic External Population

void pPolymorphic(SomeA x) {
x.p();

}
void pPolymorphic1(OtherA x) {

x.q();
}
void pPolymorphic2(SomeA x) {

x.r();
}
void pPolymorphic3(OtherA x) {

x.s();
}

Figure 4.14: Intensively Partially Polymorphic External Population

manipulate instances of only some subclasses from the hierarchy (i.e., only some sub-
hierarchy are intensively used by means of polymorphism). Following a similar rationale
as in the previous case, this visual pattern is a sign that the hierarchy is not intended to
be a type hierarchy. However, some of its sub-hierarchies could have this intention with
respect to the interface methods declared in the base class of the analyzed hierarchy.

3. Intensively Concrete External Population - an external client population which is almost
entirely composed by Concrete or Indirect Concrete clients. In other words, the Level
of Abstraction view is almost entirely drawn in white. In Figure 4.15 we present an
example of this visual pattern, for an external client population of 4 members.

Following a similar rationale as in the previous two paragraphs, this visual pattern is a
sign that the hierarchy is not intended to be a type hierarchy since the external clients
interact only with a single class (not necessarily the same for each client) from the
hierarchy.

48 4. TYPE HIGHLIGHTING

void concrete(B x) {
x.p();

}
void concrete1(C x) {

x.q();
}
void concrete2(D x) {

x.r();
}
void concrete3(E x) {

x.s();
}

Figure 4.15: Intensively Concrete External Population

4. Twins and Mixed Twins - when two significantly sized microprints or areas from some
microprints have a similar contour, we say that they are Twin clients / areas. The
presence of twins is a sign of duplicated code. Additionally, and more important in
the context of our thesis, when two twins are drawn with different colors in the Group
Discrimination view, we say that they are Mixed Twins4. An example is presented in
Figure 4.16, for a hierarchy with 2 clients.

void twin1(F x, int i) {
if(i > 0) {

while(i > 0) {
x.p();
i--;

}
}
x.q();

}
void twin2(E x, int i) {

if(i > 0) {
while(i > 0) {

x.p();
i--;

}
}
x.q();

}

Figure 4.16: Mixed Twins

4The term mixed twins is taken from medicine where it is used for twin brothers which have different skin
colors (i.e., one is black while the other is white)

4.5. EXPERIMENTAL RESULTS 49

Mixed twins is a sign that they duplicate the same policy / algorithm, but for different
kinds of objects from the hierarchy. This case of duplication could be eliminated by
unifying the algorithm at a higher level of abstraction: the twins could be replaced by a
single client / area defined in terms of a common superclass of the manipulated ones.
A possible unification of the previously exemplified twins is presented in Figure 4.17a.

void unified(OtherA x, int i) {
if(i > 0) {

while(i > 0) {
x.p();
i--;

}
}
x.q();

}
a) First Possible Unification

void unified(EF x, int i) {
if(i > 0) {

while(i > 0) {
x.p();
i--;

}
}
x.q();

}
b) Another Possible Unification

Figure 4.17: Mixed Twins Unification

Is this duplication problem always generated by copy-paste-adapt programming or it
can have another cause? To answer this question let us take again a closer look at
Figure 4.16. We can see that the policy is applicable for E and F classes of objects.
However, the unified policy from Figure 4.17a is applicable also for D objects being
defined in terms of OtherA class. If the policy does not have a relevant meaning (i.e.,
should not be applicable) for D objects, then the proposed unification is made at a too
high level of abstraction.

In this case, the mixed twins appeared because of a Missing Intermediate Class problem
in the hierarchy. That is, E and F should inherit a common superclass in order to be
able to perform the unification. Additionally, this class must not be extended by D.
As can be see in Figure 4.16, such a superclass does not exist. Consequently, a proper
unification can be obtained by (i) inserting a common superclass EF for E and F into the
hierarchy (that will inherit OtherA and will be extended by E and F) and (ii) defining
the unified algorithm in terms of the EF class (see Figure 4.17b).

5. External Short-Circuits - this visual pattern appears in the context of an Intensively
Polymorphic External Population and it can be identified by the presence of some mixed
clients in the population. An example is presented in Figure 4.18 for an external popu-
lation of 4 clients (the example is displayed in terms of the Group Discrimination view).

This visual pattern is a sign that, in spite of the fact that the hierarchy may have
the value of a type hierarchy, there are some contexts, revealed by the mixed clients, in
which it (more precisely some methods from the hierarchy base class) cannot be invoked
polymorphically. Emphasizing such contexts is important because similar situations may
appear during maintenance (e.g., in a similar context, we want to write a new client and
thus, it should also short-circuit the polymorphic usage of the hierarchy). If the number
of short-circuits is high and refers to the same base class method, a redefinition of the
method should be considered in order to eliminate these discontinuities in the uniform
usage of the hierarchy.

50 4. TYPE HIGHLIGHTING

void polymorphic(A x) {
x.p();

}
void polymorphic1(A x) {

x.s();
}
void polymorphic2(A x) {

x.q();
x.r();

}
void shortCircuits(A x) {

if(x instanceof B) {
x.r();

}
x.p();

}

Figure 4.18: External Short-Circuits

6. Polymorphic External Islands - the visual pattern appears in the context of Intensively
Partially Polymorphic or Concrete External Population patterns and it can be identified
by the presence of some polymorphic clients in a sea of red-diluted or white colors. An
example is shown in Figure 4.19.

In this case, the hierarchy appears to not be intended to be a type hierarchy (see patterns
no. 2 and 3). However, it is worth to take a closer look at these islands of polymorphic
usage in order to understand the few circumstances in which the objects defined in the
hierarchy can be used in an uniform manner.

void pPolymorphic1(OtherA x) {
x.q();

}
void polymorphic(A x) {

x.p();
}
void pPolymorphic2(SomeA x) {

x.r();
}
void pPolymorphic3(OtherA x) {

x.s();
}

Figure 4.19: Polymorphic External Islands

4.5. EXPERIMENTAL RESULTS 51

4.5.2 Type Highlighting in a Maintenance Episode

Although Type Highlighting has been created as a research vehicle (i.e., pattern discovery
and their understanding), it can also be used during maintenance activities (i.e., increasing
the understanding of class hierarchies, detect design problems related to hierarchies, etc.).
In order to exemplify this case of using Type Highlighting and its benefits, we present
our analysis vehicle in the context of a maintenance episode using some hierarchies from
Jung and InternalProduct case studies (details in Appendix A). These examples illustrate
the simplicity of using our visualizations, the simplicity of revealing different properties of a
hierarchy, and should be seen as instances of Type Highlighting use-cases.

UserDataContainer Hierarchy (from Jung system)

This is one of the two tallest hierarchies from our case studies. It has a height of 8, 63 descen-
dants and 121 external clients. Figures 4.20, 4.21 and 4.22 present the Type Highlighting
views for this hierarchy. In the followings, we present the most interesting things we can learn
about this hierarchy based on the patterns presented in the previous section. We also show
how to perform a manual investigation in order to validate the patterns’ specifications.

Case 1. The Level of Abstraction view from Figure 4.20 exposes an Intensively Partially Poly-
morphic External Population pattern: it contains many Partially Polymorphic clients (e.g., B)
and many Indirect Partially Polymorphic clients (e.g., C). According to the pattern specifi-
cation, the UserDataContainer hierarchy may not be intended be a type hierarchy but it
may contain some sub-hierarchies that have this property. Which are these sub-hierarchies?
Which are the clients that polymorphically manipulate different kinds of objects defined in
these sub-hierarchies?

To answer these questions we have used the Group Discrimination view parameterized with
the Top8PrevalentGroups filter (Figures 4.21 and 4.22). In this manner we can easily see that
the cyan clients are dedicated to the cyan sub-hierarchy (rooted by the Edge interface), the
green clients to the green sub-hierarchy (rooted by the Vertex interface), etc.

We have also manually compared the code of the clients painted in different colors (clicking on
their microprints) in order to see how they invoke the UserDataContainer methods. To the
best of our understanding, we have found that many of these methods cannot offer an uniform
semantics for all the kinds of UserDataContainer objects. For example, one method is used
to record data into UserDataContainer objects. However, different kinds of data are specific
to different classes of objects (i.e., some data are specific for Vertex objects, other data are
specific for Edge objects, etc). Thus, when the method is invoked, a client must partially know
the concrete class of the UserDataContainer object in which it records data. Generalizing,
this is the reason for which the clients of the UserDataContainer interface are usually defined
in terms of a particular sub-hierarchy. As a conclusion, the UserDataContainer hierarchy
is not a type hierarchy but contains some sub-hierarchies that are type hierarchies from the
perspective of the UserDataContainer interface methods.

52 4. TYPE HIGHLIGHTING

Figure 4.20: Level of Abstraction View for UserDataContainer Hierarchy

4.5. EXPERIMENTAL RESULTS 53

Figure 4.21: Group Discrimination View for UserDataContainer Hierarchy filtered with
Top8PrevalentGroups

54 4. TYPE HIGHLIGHTING

Figure 4.22: Legend of Group Discrimination View for UserDataContainer Hierarchy filtered
with Top8PrevalentGroups (rotated)

4.5. EXPERIMENTAL RESULTS 55

Case 2. Using the Level of Abstraction view, one can quickly spot the polymorphic clients in
a sea of non-polymorphic ones (i.e., the Polymorphic External Islands visual pattern). In order
to understand the few circumstances in which a hierarchy is used by means of polymorphism
at the entire capacity, it is worth to take a closer look at these Polymorphic clients.

We have quickly noticed that the UserDataContainer hierarchy has only one significant
polymorphic client (the entirely red client marked A in Figure 4.20 and 4.21 and called
saveUserData()). It is simple to understand that its localization would have been extremely
difficult since the hierarchy has 121 external clients. Manually analyzing the code of this
client (giving a mouse click on its microprint) we have found that it can serialize (in an XML
format) any object whose class is defined in the hierarchy. Thus, one of the few benefits of
the UserDataContainer interface from the polymorphism perspective is to homogenize the
serialization policy.

Case 3. In Figures 4.20 and 4.21 we identified several appearances of the Twin clients
pattern (e.g., the clients marked E and F). According to the pattern specification, this is a
sign of duplicated code. To the best of our manual investigation effort, we conclude that the
aforementioned clients could be replaced by a single one.

Case 4. The G microprint (see Figure 4.21) exhibits a Mixed Twins pattern. That is, it has
two areas with similar contours but which are painted with different colors. According to the
pattern specification, these areas implement the same algorithm, but which is duplicated for
different classes of objects defined in the analyzed hierarchy.

We have investigated the code of this client (giving a simple click on its microprint) and we
have found that the corresponding areas duplicate the same policy, the same set of conceptually
equivalent actions. In essence, in the green area, a new instance of a class that models the
rank of a vertex is created (for each vertex of a graph) and added to a list. In the cyan area, a
new instance of a class that models the rank of an edge is created (for each edge of the same
graph) and added to the same list. However, all these actions could have been implemented
in an unified manner (e.g., in a separate method written at a higher level of abstraction5)
disregarding that Vertex or Edge objects are implied in the algorithm. Why did this not
happen?

Investigating the legend (Figure 4.22) we can see that the Element interface (orange) links
together the Vertex (green) and the Edge (cyan) hierarchies. Thus, it can be used to
unify the aforementioned duplicated policies. However, the unified policy will also be able to
interact with objects of any concrete class marked with orange in the legend (i.e., not only
with Vertex and Edge objects). Do the duplicated policy (and consequently the unified one)
have a meaning for objects that are not vertexes nor edges?

We have tried to identify both visually (i.e., by investigating the Group Discrimination view)
and manually (i.e., by investigating the source code) a similar duplicated policy for classes
that do not model vertexes nor edges. We have not found such a duplication. Additionally, we
have not found a class that models the rank of an object which is neither a vertex nor an edge.

5The object instantiations should have also been hidden in the back of a common interface. For the sake
of simplicity we do not detail these actions.

56 4. TYPE HIGHLIGHTING

Thus, we conclude that the duplicated policies (and consequently the unified policy) might
be meaningful only for Vertex and Edge instances. As a result, the Element interface is not
adequate to unify the duplicated policies. We need another interface that links together only
the Vertex (green) and the Edge (cyan) hierarchies. Investigating the legend (Figure 4.22), we
can see that such an interface does not exist. Thus, this Missing Intermediate Class problem
is the main cause that lead to the appearance of the duplicated policies.

Case 5. We have also noticed the big indirect clients at the bottom part of Figure 4.20.
For example, the client D has 163 lines of code. According to the specification of the visual
pattern, this is a sign of “Law of Demeter” violation. A manual investigation of this client
code (giving a click to its microprint) has revealed that the violation really occurs and that
it is due to some static method invocation that provides instances of some classes from the
analyzed hierarchy.

Another interesting observation was that the red-diluted area of this client could be extracted
into a new method, splitting in this way the biggest client of our hierarchy. This may be
beneficially for the system further maintenance and extensions (i.e., we would not have to
duplicate this piece of code if the same set of actions are required in another, possibly new,
client of the hierarchy, we might be able to arrange that the newly extracted method would
not violate the “Law of Demeter”, etc.).

Edge Hierarchy (from Jung system)

Green and cyan are the most prevalent colors in the Group Discrimination view from Fig-
ure 4.21. They are associated to the Vertex (green), respectively to the Edge (cyan) sub-
hierarchies. Thus, it would be interesting to see how different kinds of Vertex, respectively
Edge objects are manipulated via these interfaces. In Figures 4.23, 4.24 and 4.25 we present
the Type Highlighting views for the Edge hierarchy, containing 43 external clients.

Case 6. We can easily see that the Level of Abstraction view from Figure 4.23 exhibits a
Intensively Polymorphic External Population. According to the visual pattern specification the
Edge hierarchy is intended to be a type hierarchy. We have manually analyzed the code of
the red clients and of the methods declared in the Edge interface. To our best understanding
of the code, almost all the polymorphic clients and polymorphic indirect clients can interact
with Edge objects without having to be concerned about their concrete class (i.e., they can
safely interact with instances of any concrete descendant). Thus, it is highly possible that the
Edge hierarchy has the value of a a type hierarchy in this system.

Case 7. In Figures 4.23 and 4.24 we can observe the presence of the External Short-Circuits
visual pattern. This tells us that there may be some repetitive situations in which some
methods from the base class of the analyzed hierarchy cannot offer a sufficiently uniform
semantics for all the descendants with respect to some clients’ expectations (e.g., clients A
to H in Figure 4.23 and 4.24). As can be seen from the legend (Figure 4.25), these clients

4.5. EXPERIMENTAL RESULTS 57

Figure 4.23: Level of Abstraction View for the Edge Hierarchy

58 4. TYPE HIGHLIGHTING

Figure 4.24: Group Discrimination View (without filters) for the Edge Hierarchy

4.5. EXPERIMENTAL RESULTS 59

Figure 4.25: Legend of the Group Discrimination View for the Edge Hierarchy

manipulate in a non-polymorphic manner UndirectedEdge respectively DirectedEdge in-
stances. Which are the situations in which instances of these kinds are not used by means of
polymorphism?

In order to answer this question, we can quickly investigate the short-circuiting clients (simply
by clicking on their microprints, and not having to manually navigate through all the clients of
the Edge hierarchy). In this manner, we have found that UndirectedEdge and DirectedEdge
objects cannot be uniformly treated via the Edge interface while computing the successors or
predecessors of a vertex from a graph.

That is, the getEndpoints() method from the Edge interface returns a pair of vertexes
representing the extremities of an edge. However, while computing the successors / prede-
cessors of a vertex, we must know if the edge is or is not directed. Thus, the aforemen-
tioned method (and neither other methods from the Edge interface) cannot offer an uniform
semantics for all descendants from the hierarchy in the discussed context (i.e., computing
successors/predecessors).

A Hierarchy From the InternalProduct System

In order to exemplify how our technique can visually guide an engineer during a problem
detection and correction process, we present in Figure 4.26, the Type Highlighting views
for a hierarchy from InternalProduct, containing all its internal clients (i.e., clients inside
the hierarchy).

Case 8. Visualizing the Level of Abstraction view, we can immediately observe the presence
of two mixed clients (i.e., clients A and B from Figure 4.26a). According to the visual pattern
specification they may contain a Client Type Checking design flaw [21].

A manual investigation of the code of these two clients has confirmed our assumption. A
long list of disjunctions between instanceof expressions is used to identify the concrete class

60 4. TYPE HIGHLIGHTING

a) Level of Abstraction

b) Group Discrimination (without any group filter)

c) The Legend

Figure 4.26: Type Highlighting Views for a Hierarchy from InternalProduct

of the this reference6. Moreover, the this instance is differently treated in the cyan code,
respectively in the orange one. The cyan code is dedicated only for the classes marked with
cyan in the legend while the orange one is dedicated for the classes marked with orange
(see Figures 4.26b and 4.26c). An encouraging aspect of our manual investigation was the
discovery of a comment that recognizes the flaw and briefly proposes a restructuring solution
according to the Client Type Checking reengineering pattern [21].

Case 9. An even more encouraging fact is that based on Figures 4.26b and 4.26c, we
have been able to plan and estimate the effort of applying the mentioned reengineering pat-
tern.

Let us consider restructuring the client A. First, a new abstract method will be inserted in the
6This is actually a particular case of Self Type Checking design problem [21]

4.5. EXPERIMENTAL RESULTS 61

root of the hierarchy. Next, two new abstract classes will be created as direct descendants
of the root: one will become a common superclass for all the classes marked with cyan while
the second one will become a common superclass for all the orange-marked classes. The cyan
client code will become the implementation of the abstract method in the former abstract
class. Similarly, the orange code will implement the method in the latter abstract class. Next,
using the legend, we can easily see how inheritance relations should be changed, an operation
which is not simple to plan just by reading the client code. For example, our client code
cannot tell us that the rightmost concrete classes (see Figure 4.26) already have a common
superclass and that this is the one that must extend the corresponding newly inserted class
(and not its descendants). Finally, the cyan and orange code in our client will be replaced by
a simple call to the new abstract method.

4.5.3 Limitations

An inherent limitation of our techniques is that we cannot exactly compute the LA metric or
the group of classes whose objects may be referred at runtime by a variable at a particular
program point. For example, in the case of dynamically extensible frameworks, it is possible to
load at runtime new subclasses which are not known in the statically-extractible hierarchy. All
we can do is to approximate the aforementioned information. Moreover, we can use various
approximation approaches for the information encoded in our visualizations. At the moment,
we have used an intra-procedural SCA as a basis for our implementation. Consequently, it is
possible for a visual pattern to appear as a result of an inadequate approximation. Despite
of this, based on our current experience with the Type Highlighting views, we strongly
believe that the current approximation is sufficiently exact.

To start proving this statement formally, we have evaluated the detection precision of the poly-
morphic clients (including indirect ones). That is, we have manually investigated 137 clients
which exhibited a polymorphic or indirect polymorphic visual pattern in order to compare
the pattern characteristics with the reality from the source code. To our best understanding
of the code, we found that 100 clients had been correctly classified. Thus, the precision of
polymorphic clients identification is around 0.73.

This result is clearly encouraging. However, a complete evaluation of the patterns’ accuracy
requires a more complex experiment. The evaluation must follow two complementary aspects:
(i) the accuracy of the approximation used to build the visualizations and (ii) the accuracy
of the interpretation of the visual patterns. Such an experiment is part of our planned future
work.

Another limitation of Type Highlighting may come from the usage of colors. About
10% of the male population and 1% of the female population have some form of color vision
deficiency [84]. For these persons, our analysis vehicle is useless. Additionally, pixel aliasing
(i.e., incorrect color perception) is another problem which might indicate that colors should
have been avoided in our visualizations. An alternative would have been the usage of different
filling formats instead of colors. However, this alternative might generate vibrations [83] which
would cloud the important information in the views. Thus, we consider that colors are the
best option in encoding the needed data in our Type Highlighting visualizations.

62 4. TYPE HIGHLIGHTING

4.6 Contextual Related Work

Type Highlighting can be related from various points of view with different state-of-the-
art reverse engineering and design quality assurance approaches. In the following, we discuss
each comparative perspective separately.

Visualization Techniques. The notion of microprint has been introduced by Robbes et
al. in [76]. The authors also introduce a set of dedicated microprints (e.g.,Control Flow
Microprint) based on which one can easily discover methods having complex logic, can see
if a class relies or not on its superclass for certain behavior, etc. Eick et. al. present in
[24] a tool for visualizing statistics at the level of lines of code for large programs. The tool
represents each source file as a column (a tall rectangle that fits in a screen) while each code
line from the file is represented as a line within this column. The analyst can chose what
lines of code (from the entire program) to visualize via a color scale that depends on the
used statistic. Using this visualization technique, different analyses can be performed e.g.,
visualizing the age of each line of code.

As a visualization technique, Type Highlighting is not something new. The single dif-
ference between it and the two aforementioned extremities (i.e., visualizing a single method,
respectively an entire program) is the level of granularity: we simultaneously visualize the
microprints of all the clients of a hierarchy (i.e., not only a single method but neither the
entire code of a program). Nevertheless, Type Highlighting is different when it comes to
the information rendered in the views (i.e., the LA metric).

Measuring Abstractness. The idea of measuring the abstractness of the source code also
appears in [53]. The author introduces the A metric at the package level as the relative
number of abstract classes within the measured package. Although an important metric in
the context of ensuring a good package design (e.g., Stable-Abstractions Principle [53]), the
metric does not take into account the polymorphic usage of the abstract classes (i.e., of the
implied class hierarchies). This is also highly necessary in order to ensure a higher level of
code reuse (i.e., writing abstract client code7 or high-level polices which stay at the heart of
framework design — Dependency Inversion Principle [53]). Thus, LA metric complements
the A metric.

Analyzing Clients of Class Hierarchies. Demeyer et. al. propose in [22] a step-by-
step methodology to identify the “hot spots” from an object-oriented system. By inspecting
overriding methods, they firstly detect potential hook methods. Next, by locating the callers
of these hooks, potential template methods are identified. These templates are actually
polymorphic clients (i.e., methods whose behavior can be extended by varying the classes
that implement the hooks [46]). As we have shown in this chapter, the Level of Abstraction
view can be used to identify polymorphic clients for a hierarchy. Additionally, it can also be

7In this case, Martin uses in [53] the term of generic code. However, in order to avoid misunderstanding
— potential confusion with generic types — we use the term of abstract code since it depends on abstractions
and not on details regarding the implementation of the used abstractions.

4.6. CONTEXTUAL RELATED WORK 63

used to achieve this task even if the polymorphic clients invoke hook methods that are never
overridden, a limitation of the approach from [22]. Moreover, by analyzing a client method
in each execution point (i.e., at token level), it supports an engineer to validate the potential
template methods (are they really polymorphic clients or are they polymorphic only in the
hook invocation point?), an entirely manual operation in [22]. Nevertheless, our approach
cannot be applied when concrete classes do not exist yet in the analyzed hierarchy.

The Self/Client Type Checking design problems are introduced in [21] as forms of a more
general design flaw called missing polymorphism. The authors also present a simple method,
based on regular expressions, to automatically detect this class of problems. The Level of
Abstraction view can also be used to detect Client Type Checking (via the mixed visual
pattern) and even a particular form of Self Type Checking. Additionally, Level of Abstraction
and Group Discrimination views enable an engineer to quickly observe the problem prevalence
(by simultaneously seeing all the clients of the hierarchy), can offer visually restructuring
hints and can help to plan and estimate the effort of applying the corrective reengineering
pattern.

Both previously discussed related works require the analysis of the clients of a class hierarchy in
order to reveal different polymorphism-related characteristics of the hierarchy (i.e., identify hot
spots, respectively missing polymorphism design problems). However, the required analysis
of clients is usually made separately for each client (i.e., each client is analyzed in isolation).
The analysis is not made simultaneously at the level of the entire client population. Our
visualizations go beyond a single client characterization and offer an overall image about how
all the clients of a hierarchy make use of polymorphism when manipulating objects defined in
the hierarchy. Thus, it should be no surprise that the fine-grained patterns identified by us
have a corespondent in the mentioned related works (e.g., the mixed pattern may emphasize
a client-type checking problem). However, the identified coarse-grained patterns are novel (to
the best of our knowledge) and can reveal interesting new characteristics of a legacy hierarchy
for program understanding and quality assurance.

The idea of using all the clients to analyze a hierarchy also appears in [78]. The authors propose
a technique, based on concept analysis [31], to automatically restructure a hierarchy in such
a way that each object contains only the members that are needed. Although an extremely
valuable contribution, the approach is not focused on the importance the polymorphism plays
for object-oriented programs (e.g., it is not focused on the intensity to which polymorphism is
used by the clients of the investigated hierarchy, it is not focused on categorizing the properties
revealed by the polymorphism usage in clients and the impact of these properties on software
understanding and design quality assurance, etc.).

26 4. TYPE HIGHLIGHTING

placeholder

Chapter 5

A Metric-Based Bi-Dimensional
Characterization of Class
Hierarchies

In many programming languages, inheritance has a dual nature: it can be used as a code reuse
and as an interface reuse mechanism. However, these two ways of using inheritance are not
necessarily exploited simultaneously when designing a class hierarchy, raising understandability
issues for a maintainer (e.g., was a hierarchy intended for interface reuse or only for code
reuse?). In this chapter, we introduce a bi-dimensional metric-based characterization of class
hierarchies in order to automatically reveal the nature of a legacy class hierarchy [60]1.

5.1 Goal

Inheritance is both the “beauty” of object-oriented design and at the same time the “beast”,
when it comes to maintain a program. It is the beauty when we design or discover some
high level policies which can then be reused in different contexts. However, it usually starts
as being the beast because it makes the system hard to understand, due to the so-called
“yo-yo effect” [8]. The “yo-yo effect” works like this: in a strongly typed language, a reader
of the code is tempted to think that a particular method invoked at some program point is
defined in the class designated by the type of the target reference used in the call, only to
realize later that the method is actually defined in one of its ancestor classes. Even worse,
the method could be overridden in one of the descendants of the reference’s class making the
reader become very confused.

1Initially, the two characterization dimensions were strongly coupled together. In this chapter, we present a
more general approach which treats independently each characterization dimension. Consequently, the metrics’
definitions were extended and we also renamed the metrics in order to be more informative.

65

66 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

A further difficulty in understanding an object-oriented system arises from the dual nature of
class hierarchies. As stated by Snyder [79], “one can view inheritance as a private decision
of the designer to reuse code [...] alternatively, one can view inheritance as making a public
declaration that objects of the child class obey the semantics of the parent class, so that the
child class is merely specializing or refining the parent class”.

The nature of a class hierarchy is very important in the context of understanding and assessing
the quality of a legacy system. Knowing if a particular hierarchy is primarily intended for
interface reuse or code reuse would help the maintainer in using it correctly and systematically.
Furthermore, this would help her locate design fragments where the instances of hierarchy
classes are treated uniformly, and thus she could spot the places in the system where high
level business policies are expressed. Last but not least, understanding how a hierarchy is used
could emphasize anomalies that reveal maintainability problems (i.e., class hierarchies that
model only implementation hierarchies).

In Chapter 4 we showed that Level of Abstraction view can reveal the interface reuse intention
of a class hierarchy (i.e., the type hierarchy intention of a class hierarchy). However, using
the Level of Abstraction view for this purpose raises two problems:

• It does not enable a maintainer to quickly focus on her particular investigation goals.
For example, a maintainer could be interested to locate extension points in a system.
Thus, she is interested to quickly locate class hierarchies which are intended for interface
reuse. Unfortunately, in order to achieve this goal, she must investigate first the Level
of Abstraction views for all the base classes from the subject system.

• It does not tell us almost anything about the code reuse nature of a class hierarchy.

In order to address these problems, we introduce in this chapter a complementary analysis
means: a metric-based bi-dimensional characterization of class hierarchies.

5.2 Characterizing Base Classes

In a real software system, it is almost impossible to reach a uniform characterization for an
entire class hierarchy, since different parts of the same hierarchy might be used in different
ways. Consequently, we aim to characterize all the sub-hierarchies and therefore the analysis
presented next must be applied to every base class.

5.2.1 Two Characterization Dimensions

Discovering the nature of a base class requires a bi-dimensional characterization: one from
the perspective of interface reuse and a second one from the perspective of code reuse.
Although we characterize classes, both code and interface reuse are determined by how the
members of the class are defined and used. In other words, each member contributes to the
characterization of a base class. Therefore, next we will focus on a base class with a single
public method, while in Section 5.3 and Section 5.4 we will show how the characterization of
a base class can be inferred in a more general case.

5.2. CHARACTERIZING BASE CLASSES 67

Base Class Public Method Calls from clients on descendant objects
Uniform Uniform for some descendants Non uniform

Inherited for interface reuse? Yes Partially No

Table 5.1: Interface Reuse Characterization Based on a Base Class Method’s Invocation by
its Clients (the horizontal perspective)

Base Class Public Method Usage in descendants
Inherited Specialized Overridden

Inherited for code reuse? Yes Yes No

Table 5.2: Code Reuse Characterization Based on a Base Class Method’s Usage in Descen-
dants (the vertical perspective)

5.2.2 Interface Reuse Perspective

In Table 5.1 we summarize the rules based on which we decide that a base class is intended for
interface reuse. The characterization takes into account one single public method, and more
precisely how the method is used by the external clients of the hierarchy i.e., by the methods
of a class from outside the hierarchy that call the method on instances of its definition class
descendants.

The notion of uniform usage is central in this characterization. We say that in a client, a
call of a method from a base class uniformly uses a set of its concrete descendants when the
target reference used in the call may refer to instances of any set member at runtime. When
this reference refers only to instances of one particular descendant the usage is non-uniform.
In this context, we identify the following extreme cases:

• When all the clients always uniformly use all the concrete descendants of a base class,
we say that the base class is inherited for interface reuse.

• When all the clients always non uniformly use all the concrete descendants of a base
class, we say that the base class is not inherited for interface reuse.

• When all the clients always uniformly use a subset of the concrete descendants of a base
class, we say that the base class is inherited for partial interface reuse.

5.2.3 Code Reuse Perspective

In the context of this thesis, focused on the interface reuse nature of class hierarchies, this
characterization perspective is not very important. Thus, we decided to approximate it in a
simple manner.

Table 5.2 captures the rules based on which we infer that a base class was intended or not for
code reuse, as this is reflected by one of its public methods. This characterization is based
on the way the method is reused in the descendants and not from the external clients. We
identify the following extreme cases:

68 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

• When all concrete descendants simply inherit the method implementation (i.e., there
is not a redefined implementation) then we say that the base class is inherited by
descendants for pure code reuse.

• When all concrete descendants inherit or define a specialized implementation of the
method (i.e., a redefined implementation which invokes the old implementation) then
we say that the base class is inherited by descendants for specialized code reuse.

• When all concrete descendants have an overridden version of the original implementation
(including here the implementation of an abstract operation) then we say that the base
class is not inherited for code reuse.

5.3 Measuring Interface Reuse Perspective

In this section we describe how to characterize the extent to which a base class is intended
for interface reuse by analyzing how external clients use all its public methods. As discussed
before (see Table 5.1) the intention of interface reuse is reflected by the extent to which
clients use a hierarchy uniformly i.e., to which extent client calls are made in a polymorphic
manner being targeted towards the common base class rather than towards many concrete
descendant classes. In order to characterize the intention of interface reuse of a base class we
need to find proper means to make this property quantifiable. Therefore, we define next for
this purpose an adequate suite of metrics.

5.3.1 Uniformity Related Concepts

Before introducing the metrics we have to introduce some supplementary concepts on which
the metrics definitions rely. These are accompanied by a concrete example (Figure 5.1) aimed
to illustrate the concepts.

Implementors Set. The Implementors set of a public method M is the set of classes com-
posed of the method declaration class and all the descendants of that class. Abstract classes
(including Java interfaces which are seen as pure abstract classes) are excluded from this set.
For all the methods declared in A (Figure 5.1) the Implementors set is {B,C,D}.

Strongly Uniform Call. A strongly uniform call of a public method M is a call made through
a reference which may refer at runtime to instances of any class from Implementors(M). The
call from line 6 represents such an invocation.

Non Uniform Call. A non uniform call of a public method M is a call made through a
reference which may refer at runtime to instances of a single class from Implementors(M) set.
In line 2 such an invocation is exemplified.

5.3. MEASURING INTERFACE REUSE PERSPECTIVE 69

+firstMethod()
+secondMethod()
+thirdMethod()

<<Interface>>
A

+firstMethod()
+secondMethod()
+thirdMethod()

B

+firstMethod()
+secondMethod()
+thirdMethod()

C

+firstMethod()
+secondMethod()
+thirdMethod()

D

void aClient() {
1: A x = new B();
// Here, x refers only to B objects
2: x.firstMethod();
3: if(random(1) == 0) x = new C();
// Here, x may refer to B or C objects
4: x.secondMethod();
5: if(random(1) == 0) x = new D();
// Here, x may refer to B, C or D
6: x.thirdMethod();

}

Figure 5.1: Exemplifying Types of Invocations

Weakly Uniform Call. A weakly uniform call of a public method M is a call which is neither
strongly uniform neither non uniform. An example is shown in line 4.

5.3.2 Uniformity Metrics

Based on the previously introduced concepts, we introduce three uniformity design metrics at
the method, and, respectively, at the class level.

Strong Uniformity (SU). Strong uniformity for a public method M is defined as the relative
number of strongly uniform calls to that method. At the class level, we define ASU as the
average of the SU metric for all its public methods.

Weak Uniformity (WU). Weak uniformity for a public method M is defined as the relative
number of weakly uniform calls to that method. At the class level, we define AWU as the
average of the WU metric for all its public methods.

Non Uniformity (NU). Non uniformity for a public method M is defined as the relative
number of non uniform calls to that method. At the class level, we define ANU as the average
of the NU metric for all its public methods.

Observation. Note that for the same measured entity (i.e., base class or method) the sum
of these metrics is always 1.

5.3.3 Interpreting the Uniformity Metrics at Method Level

In the following we are going to interpret the values of the uniformity metrics at the level of
a single method.

70 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

SU close to 1 means that the measured method is predominately invoked in a strongly
uniform manner (i.e., almost all its invocations are directed to instances of all the classes from
Implementors(M)). Thus, the clients of the method tend to invoke it without being concerned
of the concrete type of the invoked object.

WU close to 1 means that almost all the invocations to the measured method are directed
to instances of several (but not all) classes from Implementors(M). Thus, the clients of the
method tend to invoke it partially knowing the concrete type of the target object.

NU close to 1 means that the measured method is predominantly invoked in a non uniform
manner (i.e., knowing that the target is an instance of a single class from Implementors(M)).
Consequently, the clients tend to invoke the method knowing exactly the class of the receiver
object.

5.3.4 Characterizing Interface Reuse with Uniformity Metrics

In the following we are going to interpret the values of the uniformity metrics, from the
perspective of characterizing the interface reuse of base classes.

ASU close to 1 indicates that the instances of the subclasses of the measured base class are
almost always used in an uniform way with respect to all the base class public methods. This
means that clients invoke all these methods without being concerned about the concrete type
of the invoked object and, as a conclusion, the base class in inherited for interface reuse.

ANU close to 1 indicates that the instances of the subclasses of the measured class are almost
always used in an non uniform way with respect to all the base class public methods. This
means that clients invoke all these methods knowing exactly the concrete type of the invoked
object and, as a conclusion, the base class is not inherited for interface reuse.

AWU close to 1 indicates that the instances of the subclasses of the measured class are almost
always used in an partially uniform way with respect to all the base class public methods. This
means that clients almost always invoke all these methods knowing that the target object is an
instance of some subset of these subclasses. As a conclusion, the base class is not inherited for
interface reuse, but it is possible that clusters of descendants actually intend to inherit the base
class to reuse its interface (i.e., the base class is intended for partial interface reuse).

5.4 Measuring Code Reuse Perspective

In order to detect the base classes which are inherited for code reuse we define the Code
Reuse Intention (CRI) metric for a public method as the number of concrete descendants of
its definition class which inherit the method’s implementation in a pure or specialized form,
divided by the total number of concrete descendants of the same class. If the method is
abstract then CRI is 0. At the class level, the CRI metric can be aggregated as the average
of CRI metric for all of its public methods.

The metric interpretation is straightforward: its value is directly proportional with the intention
of code reuse of the base class i.e., a high value means that the measured base class is

5.5. TOOL SUPPORT IN BRIEF 71

inherited for code reuse while a low value indicates that the base class is not inherited for this
purpose.

5.5 Tool Support in Brief

The approach proposed in this chapter has been implemented in Patrools, an extension
of the iPlasma program analysis platform [50]. In this section we briefly present some
implementation details. Further details are presented in Chapter 7.

In order to approximate the uniformity metrics we have implemented an intra-procedural static
class analysis (SCA) [20] using MemBrain [61]. This analysis determines for any reference
variable, at a particular program point, the possible set of classes of the instances to which
that reference may refer to at runtime. Based on this information we can easily categorize the
invocations to a base class method and thus, we can easily compute the uniformity metrics
for that method. Once the metrics are computed at the method level, computing them at the
base class level is trivial.

5.6 Experimental Results

In the previous sections we have discussed theoretically our approach to discover the inter-
face / code reuse natures of a base class. In this section we present the results we have
obtained by applying our methodology to 4 concrete Java software systems called Recoder,
Jung, FreeMind, and InternalProduct. Details about these programs can be found in
Appendix A.

5.6.1 Investigation Approach

In the context of our thesis, we are particularly interested in emphasizing the interface reuse
nature of a base class. Additionally, from a maintainer point of view, the highest difficulty in
discerning this property of a class hierarchy appears when the subject hierarchy is intended to
achieve code reuse (e.g., base classes with many concrete methods). Consequently, we have
applied the following investigation approach.

First, we have computed the CRI metric for all base classes from the analyzed systems and,
in conformity with the aspects discussed in Section 5.4, we have kept for the rest of the
investigation process only those that had a CRI value close to 1.0. Table 5.3 presents the
total number of base classes from each system and the number of base classes having a CRI
metric greater than 0.75.

After this step, for the remaining base classes, we have computed the uniformity metrics and
we have interpreted their values with respect to the interpretation model from Section 5.3.4.
Next, we have inspected manually several base classes in order to see if our interpretation
models are confirmed by the reality in the code.

72 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

System All Base Classes Base Classes having CRI > 0.75
Recoder 219 40

Jung 168 54
FreeMind 239 29

InternalProduct 20 5

Table 5.3: The Analyzed Base Classes

Class CRI ASU AWU ANU

AbstractArrayList 1.0 0.0 0.12 0.88
LineAdapter 0.77 0.0 0.88 0.12

AbstractLayout 0.94 1.0 0.0 0.0

Table 5.4: Metric Values for the Discussed Base Classes

5.6.2 Discussion of the Most Interesting Findings

Based on the uniformity metric values, we have chosen a set of three base classes for a detailed
discussion. The metric values for these base classes are shown in Table 5.4. In this manner,
we also illustrate how to manually investigate the automatically characterized base classes in
order to validate the results and to increase the understating of the subject hierarchies.

Case 1: The AbstractArrayList Class (from Recoder system). This base class has a
high value for the ANU metric. This means that the instances of the subclasses are almost
always called knowing their concrete type. Additionally, the class has a high value for the
CRI metric. According to the interpretation models of our metrics, this class is intended only
for code reuse.

After manually analyzing this class we have found that it has 42 descendants and a height in
the inheritance tree of 1. A partial class diagram is shown in Figure 5.2. All of these descendent
classes model different kinds of lists like ConstructorList, ClassTypeList, etc, and imple-
ment their added functionality based on the protected interface of the AbstractArrayList
class. Some of these added operations are add, which inserts a particular type of object in the
list, and the corresponding access methods getConstructor and getClassType. It seems
that this hierarchy has appeared in the system because the version of the Java language that
was used to implement the system did not have generic types. Based on these observations
and based on the fact that any list should provide trim, indexOf, isEmpty, size interface
operations, it is clear that the inheritance relations between the AbstractArrayList and
its descendants tend to be oriented only to reuse code. A very encouraging fact is that in a
newer version of the Recoder system, this hierarchy of lists has been collapsed into a small
hierarchy of generic classes, which proves the correctness of our observations. As a result, we
conclude that, in the discussed case, the interpretation models of our metrics is consistent
with the reality from the source code.

Case 2: The LineAdapter Class (from Freemind system). The base class has 12 de-
scendants and a height in the inheritance tree of 3. A partial class diagram of the hierarchy is
presented in Figure 5.3. According to the interpretation models of the proposed metrics, the

5.6. EXPERIMENTAL RESULTS 73

+trim()
+indexOf()
+isEmpty()
+size()
...

{Abstract}
AbstractArrayList

+add(Constructor)
+getConstructor():Constructor
...

ConstructorList

+add(ClassType)
+getClassType():ClassType
...

ClassTypeList

<<Interface>>
ObjectList

Different
interfaces or

sub-interfaces of
ObjectList

Figure 5.2: A Partial View of the AbstractArrayList Hierarchy

base class (i) tends to be inherited for code reuse and (ii) it is not fully intended for interface
reuse but some of its descendants form sub-hierarchies that extend our base class for this
purpose.

Manually investigating the source code, we have found that the LineAdapter base class
defines many methods that represent common implementation for many descendants (e.g.,
for LinkAdapter and CloudAdapter types of descendants). From this point of view, the
LineAdapter class is inherited to reuse code. However, the EdgeAdapter class overrides
several methods it inherits from LineAdapter and thus, this sub-class does not inherit
LineAdapter for code reuse. This explains the value of the CRI metric (i.e., 0.77) that
is not too close to 1. Thus, the LineAdapter base class only tends to be inherited to reuse
code, a conclusion consistent with the interpretation model of the CRI metric.

Manually investigating the code of the external clients, we have found that they are actually
written in terms of some sub-hierarchies of the implied one. Thus, they can uniformly invoke
the interface methods of our base class only on particular sets of descendants (e.g., some clients
are written in terms of MindMapLink interface, and thus, they can uniformly interact only with
descendants of the LinkAdapter class). Consequently, we can conclude that the subject base
class is not fully intended for interface reuse and, as predicted by our interpretation models,
some different clusters of descendants inherit the LineAdapter class for this purpose.

Case 3: The AbstractLayout Class (from Jung system). This base class has a maximum
value for the ASU metric and a high value for CRI. According to the presented interpretation
models, the associated hierarchy is intended for both interface reuse and code reuse.

A partial class diagram of the AbstractLayout hierarchy is presented in Figure 5.4. It has 9
descendants and a height of 2. Manually investigating the code of the hierarchy we have found
that the base class implements a lot of common functionality required when defining a layout

74 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

+getColor()
+getWidth()
+setTarget()
+getTarget()
...

{Abstract}
LineAdapter

+getSource()
+setDestinationt()
...

{Abstract}
LinkAdapter

+getColor()
+getWdth()
+getRealColor()
...

{Abstract}
EdgeAdapter

+getExteriorColor()
...

{Abstract}
CloundAdapter

...
...

...

<<interface>>
MindMapCloud

<<interface>>
MindEdge

<<interface>>
MindMapLink

<<interface>>
MindLine

Figure 5.3: A Partial View of the LineAdapter Hierarchy

+initialize()
+getX()
+getY()
+resize()
+advancePosition()
...

{Abstract}
AbstractLayout

+advancePosition()
+adjustForGravity()
-calDelataXY()
...

KKLayout

+advancePosition()
+calcAttraction()
-cool()
...

FRLayout

<<Interface>>
Layout

...

Figure 5.4: A Partial View of the AbstractLayout Hierarchy

5.7. CONTEXTUAL RELATED WORK 75

algorithm (i.e., an algorithm which arranges the nodes of a graph in a view). Additionally, few
of its methods (e.g.,advancePosition) are overwritten in descendants in order to implement
variation points of the concrete layout algorithms implemented by these descendants. Thus,
the base class is inherited for code reuse, an observation consistent with the interpretation
model of the CRI metric.

Manually analyzing the external clients of the hierarchy, we have found that they implement
actions (e.g., user interface actions) that need to interact with the layout algorithms in order
to be accomplished (e.g., locating the position of an entity positioned by a layout). However,
to the best of our understanding, these actions are almost always independent on the concrete
layout algorithm. Thus, the clients implement almost always abstract actions with respect to
the interface methods from AbstractLayout base class (i.e., they do not depend on particular
descendants). In conclusion, the AbstractLayout class is intended for interface reuse, an
observation consistent with the interpretation of the uniformity metrics.

5.6.3 Limitations

During our experiment we have also encountered an example which emphasize a potential
limitation of our approach. More precisely, the AbstractHashSet from Recoder has been
characterized as tending to be intended for interface reuse (i.e., it has a relatively high value
for ASU). Manually analyzing the client invocations we have found a large number of calls
having a target reference of AbstractHashSet type. Based on this observation one could
say that this hierarchy tends to be a type hierarchy as the ASU metric anticipated, since the
client code is written in terms of a super-type.

The interesting part with this experiment is that it has shown us that the things can be
much more complicated. Manually analyzing the clients invocations we have also found that
some of these calls are targeted to instance variables that are initialized (outside the client
methods) with concrete descendants of the AbstractHashSet base class, and never changed!
Yet, these calls are incorrectly identified as uniform calls using an intra-procedural static class
analysis which cannot observe these initializations. In order to solve this problem, a more
advanced approximation of the uniformity metrics could be performed (e.g., based on inter-
procedural SCA). This would produced a smaller value for the ASU and, according to our
interpretation model, the AbstractHashSet would not have been considered intended for
interface reuse. However, such an implementation could be too conservative. To the best of
our understanding, in our concrete experiment a particular kind of set might be substitute with
another one without breaking the functionality of the client code. Thus, despite the restrictive
initializations, we can still speak about a type hierarchy. As a conclusion, we should further
investigate various implementation alternatives of the uniformity metrics and, how to use the
object instantiation information in the context the uniformity metrics approximation.

5.7 Contextual Related Work

The dual nature of class hierarchies in object-oriented software systems is intensively discussed
in theory and practice [9, 30, 46, 53, 57] especially in the context of forward engineering. The

76 5. A METRIC-BASED BI-DIMENSIONAL CHARACTERIZATION OF CLASS HIERARCHIES

design and enforcement of correct behavioral type hierarchies is an important part of software
development especially in the context of designing reusable components e.g., [28].

In the reverse engineering community, much effort has been spent in the last decade to
decompose and analyze the complexity of class hierarchies from multiple viewpoints. As our
work is also placed in the context of reverse engineering and design quality assurance we relate
next our work to several valuable state-of-the-art contributions.

In order to understand the details of class hierarchies Lanza [41] defines a number of visualiza-
tions, called polymetric views, which help to reveal whether a hierarchy is built on code reuse
by means of extending and overriding methods or on mere addition of functionality. This is
useful in order to find the classes that have a big impact on their subclasses, or to understand
class implementation in the presence of inheritance. While these visualizations can help to
discover the code reuse intention of a base class they do not take into consideration the actual
usage of the hierarchy in clients. Because of this, they cannot discover easily the second nature
of a base class, namely interface reuse. Additionally, the approach is visualization-based which
makes it less efficient than a metric-based one that can be performed automatically.

In [42] two detection strategies are defined in order to detect Refused Parent Bequest bad
smell [29] and a further inheritance related problem called Tradition Breaker. These design
problems usually indicate that the hierarchy is ill-designed and so their detection is important
in order to improve the hierarchy. However, the detection of Refused Parent Bequest is
limited because the detection strategy is using information only from the hierarchy itself,
more precisely, the usage of the protected interface of a base class in descendants. It does not
take into consideration the client perspective which sees the public interface. Thus, it may be
that a public method inherited by a descendant from its base class is never invoked by clients
on its instances. This is also a sign of Refused Parent Bequest which could be detected if a
client-driven analysis of the hierarchy is performed.

As part of [16], the author proposes the detection of inheritance which is not used for poly-
morphism by investigating how the clients of a class hierarchy invoke the methods from the
base class (e.g., are there any calls which are statically bound to the declaration of a method
from the base class? — if yes, this is a sign that a client uses polymorphism). However,
the proposed approach is strongly limited. It cannot emphasize cases of inherence intended
for partial interface reuse, it cannot emphasize cases of non-polymorphic invocations of the
methods which are not overridden (e.g., an invocation to a non-overridden method is also
statically bound to the method declaration from the base class although the method may be
invoked using a reference statically declared as having a descendant type and thus, being non-
polymorphically invoked). Additionally, the proposed detection approach will classify a base
class as being intended for polymorphism even if there is just a single polymorphic invocation
of a single method from the investigated base class i.e., it does not take into consideration
that only one of many other invocations is actually polymorphic.

The idea of using the clients to analyze a hierarchy also appears in [78]. The authors propose
a technique, based on concept analysis, to automatically restructure a hierarchy in such a way
that each object contains only the members that are needed. Although an extremely valuable
contribution, the approach is not focused on the importance of using polymorphically the
objects defined in a hierarchy (e.g., it does not reveal if a hierarchy is used as a type hierarchy
or not).

Chapter 6

Discovering Pitfalls of
Understanding in Class
Hierarchies

Despite many advances in program comprehension, polymorphism and inheritance are still the
source of many misunderstandings in object-oriented code. In this chapter, we present a suite
of concrete, recurrent patterns where particular ways of using inheritance and polymorphism
can easily mislead maintainers during software understanding activities. We define these as
comprehension pitfalls [64]. Furthermore, we describe a metric-based approach aimed to
automatically detect such situations in code.

6.1 Goal

In order to maintain a software system one has to understand it first (at least partially).
The practice has revealed that about a half of maintenance costs are due to software com-
prehension activities [35]. Therefore, a significant reduction of software maintenance and
reengineering expenses can be obtained by creating powerful techniques to support program
understanding.

As observed by Chikofsky and Cross in [15], the cost of understanding software is manifested
in the time required to comprehend software, which includes the time lost due to misunder-
standing. Thus, one way to reduce comprehension costs is to minimize the time wasted due
to misunderstandings.

Certainly, there are many potential sources of misunderstanding a program. In particular, var-
ious understandability issues raised by polymorphism have been recognized long time ago and
continue to be emphasized and discussed in the state-of-the-art literature (e.g., [8, 11, 53]).
In a strongly-typed language for example, when a maintainer wants to track a dynamically
bound method call, she is tempted to assume that the invoked method is defined in the class

77

78 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

+operation1()
+operation2()
+pitfall_op()
+operation3()
+operation4()

<<Interface>>
AnInterface

AnImplementor AnotherImplementor

Non Uniform
Semantics

Uniform
Semantics

Figure 6.1: A Pitfall Example

designated by the type of the target reference. However, she can realize later that the method
is actually defined in an ancestor of the reference’s class or that the method is overridden in
one of the descendants of the reference’s class. This “yo-yo” effect (i.e., going repeatedly up
and down into a hierarchy in order to localize a definition of a method) [8] is a clear evidence
that polymorphism can easily mislead an engineer when trying to understand object-oriented
programs. Unfortunately, the “yo-yo” effect is not the single misunderstanding trap set by
polymorphism and inheritance.

The state-of-the-art literature presents many empirical rules and heuristics that drive the us-
age of polymorphism and inheritance in good object-oriented design [30, 53, 75]. However,
in particular design contexts, these rules are not entirely obeyed because a tradeoff had to be
made between contradictory forces. Such fine-grained deviations from good object-oriented
design heuristics can lead to hierarchies whose polymorphic manipulation can be easily mis-
understood. We define these cases as comprehension pitfalls.

Such situations are of real importance for maintenance. Let us consider an example based
on Figure 6.1. The good object-oriented design heuristics tell us that if two classes share
a common interface then they should inherit a common base class only if they will be used
polymorphically (Heuristic 5.11 [75]). Thus, when a maintainer sees an interface used to
define polymorphic behavior, she is tempted to assume that all the interface’s methods can
be used by means of polymorphism. However, sometimes, a few methods from an interface
(e.g.,pitfall_op in Figure 6.1) do not have an uniform semantics for all the implementors
(i.e., it cannot be polymorphically invoked). They are declared in the interface only to enforce
all descendants to implement the corresponding service. If a maintainer is not aware about
this characteristic of the pitfall_op operation then she can spend a lot of time debugging
and she could even insert bugs into the maintained application (e.g., polymorphically invoking
the pitfall_op method can break some particular precondition of an implementor which
will result in an abnormal program behavior). Therefore, documenting and detecting compre-
hension pitfalls is of real importance for maintenance: engineers could avoid making wrong
assumptions, could avoid losing time during long debugging sessions, and could even avoid
introducing bugs into the maintained application. Consequently, misunderstanding costs can
be reduced.

In this chapter we describe first a simple generic process we have followed in order to define

6.2. DERIVATION PROCESS 79

Main
usage

Alternative
usage
(pitfall)

Detection
Means

Heuristics

Alternative
usage
(pitfall)

Alternative
usage
(pitfall)

Detection
Means

Detection
Means

...

Design
Entity

1

2

3
List of

relevant
pitfalls

4
Particular

Cases

Practical
experience

General
Case

Particular
Cases

Figure 6.2: The Process of Defining Pitfalls

comprehension pitfalls. Next, we present in detail three concrete pitfalls that we have derived
based on the previous process. For each pitfall, we also quantify its symptoms based on the
manner in which the investigated entity (e.g., method, interface) is used by its clients. In
other words, we provide three detection strategies [52] to enable the automatic detection of
the introduced pitfalls of understanding.

6.2 Derivation Process

The generic process used to define comprehension pitfalls is presented in Figure 6.2. In
step 1, we identify the main characteristics of a program entity (e.g., a method) in good
object-oriented design from the point of view of its polymorphic manipulation. The task
can be performed by identifying and analyzing design heuristics and patterns that govern the
usage of that entity from polymorphism’s perspective (e.g., a method should have an uniform
semantics for all the descendants of its declaration base class).

In step 2, we identify situations in which the subject entity is used in a different manner
with respect to its primary way of usage obtained in the previous step. This goal can also
be achieved by investigating design heuristics, rules and patterns as many of them present
tradeoffs or design contexts when a rule is neglected. Additionally, personal experience and
common practices may also be applied during this definition step (e.g., some design rules are
neglected in commonly known situations). The result of this step consists in a list of informal
descriptions of one or more comprehension pitfalls.

80 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

Next (step 3), a detection technique must be proposed for each identified pitfall. To achieve
this task, different approaches may be used (e.g., a graph-based approach). In our particular
case, we have used a metric-based approach. That is, we have defined several detection
strategies [52] that quantify the informal description of each pitfall. The definition of our
metric-based logical rules has followed the process presented in detail in [52]. In short, the
informal description of a pitfall is split into a correlated set of symptoms that can be captured
by a single metric. Next, a proper metric is selected together with an adequate relational
operator in order to quantify each of the previously identified symptoms. In the end, the
quantified symptoms are linked together with logical operators following the manner in which
the symptoms are correlated in the informal description of the pitfall.

In the last phase (step 4) of our generic process, an evaluation is performed in order to prove
the relevance of each pitfall (e.g., how frequently does it appear?) and to analyze the precision
of the proposed detection means.

6.3 Extending the Suite of Uniformity Metrics

In order to quantify the symptoms of the identified pitfalls of understanding, we extend the
suite of uniformity metrics introduced in Section 5.3.

Type Affinity (TA). The goal of this metric is to capture the tendency of the external
clients of a base class method to invoke it only on particular descendants from the implied
hierarchy when knowing at least partially the class of the target object. For a method M ,
the metric is computed using the formulas from Figure 6.31 which make use of the uniformity
related concepts introduced in Section 5.3.

TA(M) = max{D(M,Ci)|Ci ∈ Implementors(M)} (6.1)

D(M,Ci) = |x(M,Ci)−
∑n
i=1 x(M,Ci)
n

| (6.2)

x(M,Ci) = No. of Weak or Non Uniform Calls to M on Ci objects
No. of Weak or Non Uniform Calls to M

(6.3)

Figure 6.3: Computation of the Type Affinity Metric

First, we compute for each class Ci from Implementors(M) the relative number of weak
or non uniform calls to M which may have as target reference an instance of that class
(Equation 6.3). Next, we compute the absolute deviation from the mean for each previously
obtained value (Equation 6.2). Finally, the maximum deviation obtained in the previous step
represents the TA metric for the M method (Equation 6.1). The maximum value is selected
because it can indicate that weak or non uniform invocations of M are mainly directed to
some particular classes from Implementors(M).

1The metric is an instance of the maximum absolute deviation used in statistics.

6.3. EXTENDING THE SUITE OF UNIFORMITY METRICS 81

+m()

<<Interface>>
A

+m()

B

+m()

C

void client1(C c) {
//c refers only to C objects
c.m();

}

void client2(A a) {
if(a instanceof C) {

//a refers only to C
a.m();

}
}

Figure 6.4: Exemplifying the Type Affinity Computation

Example. To exemplify the metric computation, we provide an example based on Figure 6.4.
The base class has only two external clients i.e.,client1 and client2 each of which con-
taining a non uniform call. The Implementors set for the m method is {B,C}. Thus, (i)
x(m,B) is equal to 0 because, none of the two calls can be targeted to instances of B and
(ii) x(m,C) is 1 because both the non uniform calls are directed to instances of the C class.
Consequently, the mean value for x(m,B) and x(m,C) is 0.5 and the absolute deviations
from the mean are both 0.5. Thus, the TA metric for m is 0.5.

Interpretation. When the SU metric for a method M is small then we interpret the TA
values as follows:

• A value close to 0 for the TA metric means that the measured method has a relevant
meaning for all the descendants of the method declaration base class. That is because
the external clients of the method do not have an affinity to invoke the method only on
particular descendants of the base class. The method is invoked in a balanced manner
on all the descendants.

• An increased value for the TA metric means that the measured method does not have
a relevant meaning for all the descendants of the method declaration base class. That
is because the external clients of the method have an affinity or tend to invoke the
method only on particular descendants of the base class (i.e., when knowing at least
partially the class of the target object, the external clients will invoke the method
only on those descendants for which it has a relevant meaning). According to our
experience, the method should have a relevant number of invocations in order to be
properly characterized by increased values of this metric.

82 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

6.4 Pitfalls of Understanding

Following the process from Section 6.2, we have defined several comprehension pitfalls. In
this section we describe three of them using the following template:

• Name - A name to identify the pitfall

• Entity - The program entity affected by the pitfall

• Description - The rationale of the pitfall

• Example - An example

• Detection - A detection strategy to detect the pitfall

• Actions - A description on how the pitfall detection may improve the comprehension
process. Usually, it raises attention about difficult to observe implementation / design
details. In some cases, refactoring actions may also be considered.

The evaluation required by the fourth step of the definition process (see Section 6.2) and
the selection of the thresholds values from the proposed detection strategies are discussed in
Section 6.6.

6.4.1 Partial Typing (PT)

Entity. Interfaces (i.e., Java interfaces, pure abstract classes).

Description. Usually, an interface is used as a placeholder in the hierarchy for all the classes
that implement it [30, 46, 53, 75]. In this case, we say that the hierarchy is a type hierarchy
[46]. However, there are situations when two type hierarchies are linked together by a common
interface, although the resulting larger hierarchy is not intended to be a type hierarchy. In
such cases, we say that this common interface is affected by the Partial Typing pitfall. This
practice appears in the context of organizing libraries of similar but behaviorally different types
[46]. Unfortunately, this situation is counter-intuitive because an interface is usually used as
a placeholder for any class that implements it. As a result, if one assumes this fact for an
interface affected by this pitfall, the risk of losing time during long debugging sessions is
high.

Example. Consider the Collection interface from the Java collection system. The List
and the Set interfaces extend the aforementioned interface. However, a List object cannot
be usually used in place of a Set object because they are behaviorally different (e.g., a list
accepts duplicated elements while a set does not). Thus, the List and the Set sub-hierarchies
are type hierarchies but, in spite of the natural expected way of using an interface, the objects
they define cannot be usually treated uniformly as Collection objects. If one misunderstands
this fact (although in this particular example it should not be the case) then there is a high risk
of inserting bugs into the application (e.g., substituting and/or permitting the substitution of
a List for a Set).

6.4. PITFALLS OF UNDERSTANDING 83

The base class is
intended for

partial interface reuse

The base class
is an interface

AWU(C) > HIGH

AND Partial
Typing

Figure 6.5: Partial Typing Detection Strategy

Detection. The essential characteristic of this pitfall is that the interface is intended for
partial interface reuse (see Section 5.2.2). In other words, the invocations to the methods
declared in the affected interface are predominantly directed to objects of several but not of
all concrete subclasses from the implied hierarchy. This property can be captured by a high
value of the AWU metric (see Section 5.3). The resulting detection strategy is presented in
Figure 6.5: we are looking in a system for all the classes that define interfaces and we select
only those having AWU greater than the HIGH threshold.

Actions. When encountering a situation like this, it must be immediately documented. The
maintainers can be warned that, usually, the clients of such a base class must be written in
terms of some sub-hierarchy of the affected interface. At the same time, they should try to
reduce drastically the number of clients defined in terms of the affected interface and they
must intensively test such clients to check the objects substitutability.

6.4.2 Uneven Service Behavior (USB)

Entity. Public methods of a base class

Description. There are cases when a small subset of services are declared in a base class
although they do not have uniform semantics for all the descendants of the base class (i.e.,
they cannot be uniformly invoked because the client expectations are specific to each concrete
subclass from the implied hierarchy). The services are declared in the base class simply because
they must be provided by all the descendants. In such cases we say that the corresponding
methods are affected by the Uneven Service Behavior pitfall. In the object-oriented technology,
developers reason in terms of objects that provide a cohesive set of services [9]. Thus, a
maintainer is tempted to think that, if a set of objects are strongly uniformly manipulated
via a common interface then all the services of that interface are intended to be invoked in
a strongly uniform manner. However, if one does not understand that some services cannot
be uniformly called (i.e., without making any assumption regarding the concrete type of the
target object) then she could spent a long time to debug the application.

84 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

Example. In the Prototype design pattern [30], the cloning method is declared in the root
of a hierarchy to force all descendants to implement that service. Additionally, the root
also contains other methods to manipulate polymorphically the cloneable objects. However,
when the clone initialization depends on the concrete type of the cloned object, the cloning
method will not be usually invoked polymorphically (e.g., the cloning method must take
specific parameters whose meaning depends on the concrete type of the cloned object [30]).
Consequently, if the method is invoked without knowing the concrete type of the target object
the clone object can be erroneously initialized.

Detection. The detection of this pitfall is based on the following characteristics of the
affected method:

1. The method declaration base class tends to be inherited for interface reuse (see Sec-
tion 5.2.2). In other words, many interface services of the method declaration base class
are predominantly invoked without knowing the concrete type of the target object (i.e.,
in a strongly uniform manner). This characteristic of a base class is emphasized by a
high value of the ASU metric (see Section 5.3).

2. By contrast, the problematic method is not intensively invoked in a strongly uniform
way: the method is invoked knowing at least partially the concrete type of the target
object. A small value for the SU metric distinguishes this property of a method (see
Section 5.3).

3. The affected method has a relevant meaning for each descendant. In other words, the
method tends to be invoked on instances of all subclasses of its declaration class when
knowing at least partially the concrete type of the target object. A reduced value of
TA metric can capture this characteristic of a method declared in a base class (see
Section 6.3).

The resulting detection strategy is presented in Figure 6.6. We are looking in a system for
all the methods whose declaration base classes have an ASU value higher than the HIGH
threshold. After that, we select only those methods having LOW values for SU metric and
REDUCED values for TA.

Actions. The methods affected by this pitfall should be clearly emphasized in code (e.g.,
via a documentation comment). In this way maintainers can be warned that the interface
methods of the implied base class fall in two categories. The larger one contains methods that
can be invoked in highly polymorphic contexts (i.e., where the concrete class of the target
object is unknown). The smaller one (the dangerous category) contains methods that can be
invoked on instances of any descendant but only when the concrete class of the target object
is known or at least partially known.

6.4.3 Premature Service (PS)

Entity. Public methods of a base class

6.4. PITFALLS OF UNDERSTANDING 85

The method declaration class
tends to be reused for its

interface

ASU(Class(M)) > HIGH

The method does not
contribute to the previous
property of the base class

SU(M) < LOW

The method is relevant for all
the descendants of the

method declaration class

TA(M) < REDUCED

AND
Uneven
Service

Behavior

Figure 6.6: Uneven Service Behavior Detection Strategy

Description. This pitfall also affects methods that are not intended to be uniformly invoked,
but which are declared in a base class containing many methods that have this purpose.
Additionally, the affected methods do not have a significant meaning for all the descendants
of the implied hierarchy. In other words, these methods are declared too high in the hierarchy.
That is why we say that they are affected by the Premature Service pitfall.

Example. In the Composite design pattern [30], the Component interface is intended to
transparently manipulate Leaf and Composite objects. Unfortunately, a proper tradeoff
must be found between transparency and safety when it comes to the declaration of the
addComponent method. When it is declared in the Component interface it represents a
premature service pitfall. This is because, usually, it will not be polymorphically invoked (it
does not have sense for Leaf objects) although the remaining interface methods from the
Component will. Such a situation is risky from the safety point of view if the maintainer is
unaware of the manner in which the addComponent method should be called (e.g., it might
raise an unexpected exception if called on a leaf object).

Detection. The main characteristics of this pitfall are:

1. The method declaration base class tends to be inherited for interface reuse: many inter-
face services of this base class are predominantly invoked without knowing the concrete
type of the target object (i.e., in a strongly uniform manner). This characteristic of a
base class is emphasized by a high value of the ASU metric (see Section 5.3).

2. By contrast, the suspected method is not intensively invoked in the previously mentioned
manner. A small value for the SU metric distinguishes this property of a method (see
Section 5.3).

86 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

The method declaration class
tends to be reused for its

interface

ASU(Class(M)) > HIGH

The method does not
contribute to the previous
property of the base class

SU(M) < LOW

The method is not relevant for
all the descendants of the
method declaration class

TA(M) > INCREASED

AND Premature
Service

The service has a sufficient
number of invocations

NOCALLS(M) > FEW

Figure 6.7: Premature Service Detection Strategy

3. The affected method does not have a relevant meaning for all the descendants of the
method declaration base class. Thus, when knowing at least partially the concrete
type of the target object, the clients will invoke the method only on instances of those
subclasses for which the service has a relevant meaning. If the method has a significant
number of invocations (counted by the Number of Calls (NOCALLS) metric), this
aspect can be caught by an increased value of the TA metric (see Section 6.3).

The resulting detection strategy is presented in Figure 6.7. We are looking in a system for
all the methods whose declaration base classes have an ASU value higher than the HIGH
threshold. After that, we select only those methods having LOW values for SU metric. The
last two terms of our strategy ensure that each detected method has a NOCALL value higher
than FEW and an INCREASED value for TA.

Actions. When such a pitfall is encountered, the descendants for which the affected method
has a significant meaning should be identified. To achieve this task, an in-depth analysis of
the hierarchy and/or of its clients is required. Additionally, it would be worth to investigate
the possibility of moving such a method down to the relevant subclasses in order to increase
safety (e.g., to avoid making unsafe uniform calls that may be targeted at runtime to instances
for which the method does not have a relevant meaning).

Note. This pitfall is close to the Uneven Service Behavior. However, they have different
causes and different actions should be considered when they are encountered.

6.5. TOOL SUPPORT IN BRIEF 87

6.5 Tool Support in Brief

The approach proposed in this chapter has been implemented in Patrools, an extension
of the iPlasma program analysis platform [50]. In this section we briefly present some
implementation details. Further details are presented in Chapter 7.

In order to approximate the uniformity metrics we have implemented an intra-procedural
static class analysis (SCA) [20] using MemBrain [61]. This analysis determines at particular
program points the set of classes for an object. In other words, it determines for any reference
variable, at a particular program point, the possible set of classes of the instance to which
that reference may refer to at runtime. Based on this information we can easily categorize the
invocations to a base class method and thus, we can easily compute the uniformity metrics
for that method. Once the metrics are computed at the method level, computing them at the
base class level is trivial.

The presented detection strategies have been implemented making use of the iPlasma fil-
tering mechanism. In essence, it enables us to implement a detection strategy as a Java class
which will be dynamically loaded at runtime by the iPlasma front-end. Finally, the defined
strategy can be used to select from a system all the design entities having the properties
specified by the strategy.

6.6 Experimental Results

In Section 6.4, we have presented three comprehension pitfalls and for each we have defined
a metric-based rule to support their automatic detection. In this section we discuss the most
significant findings we obtained by applying these rules to three medium-sized Java programs.
Details about the analyzed programs can be found in Appendix A.

6.6.1 Investigation Approach

In order to apply the proposed metric-based rules on the case studies, we had to establish
concrete values for their thresholds. The proper threshold selection for a detection strategy
(in general, for a metric) is difficult. One approach is the “tuning machine” methodology [59].
The idea is to infer the thresholds from a set of examples manually classified as “affected /
unaffected” by a particular pitfall. In this way, it would be also possible to evaluate more
precisely a strategy with respect to the developers’ intuition regarding the quantified pitfall.
Unfortunately, at this time, it is not possible to apply this methodology because of the lack
of a sufficiently large set of examples. The construction of such an unbiased tuning set is a
long-term activity that requires the recognition of the pitfalls by both the research and the
practitioner communities.

However, in this experiment we have followed a similar, manual approach. First, we applied
the detection strategies from Section 6.4 on the case studies. In this step, we used light-
weight thresholds (i.e., inferred exclusively from metrics interpretation models) in order to
ensure the detection of a significant number of design entities by our strategies. Next, we

88 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

Strategy HIGH LOW REDUCED FEW INCREASED
Partial Typing 0.5 - - - -

Uneven Service Behavior 0.5 0.4 0.3 - -
Premature Service 0.5 0.4 - 2 0.3

Table 6.1: The Thresholds

analyzed manually all the detected entities and classified them as true-positives or false-
positives. Based on this manual investigation we fine-tuned the thresholds in order to maximize
the precision of the detection rules. At the same time, we took care to minimize the number
of true-positives that might get lost during this fine-tuning process (i.e., minimize false-
negatives). The final threshold values are presented in Table 6.1. Of course, the identified
thresholds may be too specific (i.e., particular for our experiment). However, by analyzing
in similar experiments many other concrete examples of the described pitfalls (from many
other systems), we may be able to establish more general thresholds by applying the “tuning
machine” methodology.

6.6.2 Precision and Frequency

Table 6.2 presents the number of design entities that have been detected by each detection
strategy when applied to each system. Moreover, we split this number of suspects into
correctly identified pitfalls i.e., true-positives (TP) respectively false-positives (FP).

Based on this information we can easily compute the precision of our detection strategies (i.e.,
the number of true-positives divided by the total number of suspects). In the case of Partial
Typing and Uneven Service Behavior strategies, the precision is high (i.e., 90.47% respectively
71.87%). For Premature Service we obtained a smaller precision (around 45%).

A complete evaluation of the proposed detection strategies would also require the estimation
of the recall (i.e., the number of true-positives divided by the total number of pitfalls, detected
or not, from the investigated code). Unfortunately, at this time, we cannot compute the recall
of our strategies. Such an analysis would require an extremely difficult (next to impossible)
manual investigation because our case studies are non-trivial systems. A complementary
approach that could help us solving this problem is briefly presented in Chapter 8.

Turning back to Table 6.2, we can observe that with one single exception each pitfall appears at
least 2 times in each case study. Thus, the defined pitfalls occur in each system. Additionally,
we can observe that the Partial Typing pitfall appears predominantly in Recoder and Jung
while Uneven Service Behavior appears predominantly in Recoder and Freemind. Thus,
the frequency of a pitfall could depend on the type of the analyzed software (e.g., modeled
domain, used technologies).

A possible reason of this relatively reduced pitfalls’ frequency (see also the total number of
possibly affected entities from Table A.2 in Appendix A) and of the relatively small precision
of the Premature Service detection strategy may result from the way we approximate the uni-
formity metrics (see Section 6.5 and Chapter 7). We believe that a more precise estimation of
these metrics (e.g., using an inter-procedural analysis) may have an important positive impact
on our approach (e.g., reducing false-positives, emphasizing false-negatives, etc.) since we

6.6. EXPERIMENTAL RESULTS 89

Strategy Recoder Jung Freemind Overall Overall Overall
TP FP TP FP TP FP TP FP Precision

Partial Typing 9 0 8 2 2 0 19 2 90.47%
Uneven Service Behavior 13 8 3 0 7 1 23 9 71.87%

Premature Service 4 3 0 0 2 4 6 7 46.15%

Table 6.2: Experimental Results

+isNeighborOf()
+isIncidet()
...

<<Interface>>
ArchetypeVertex

<<Interface>>
Vertex

<<Interface>>
Hypervertex

... ...

Figure 6.8: A Partial View of the ArchetypeVertex Hierarchy

have observed at least one pitfall instance during our manual investigation that is missed (i.e.,
remains undetected) by our strategies exactly because of the aforementioned reason.

As a result, based on our relatively small case study and on our manual investigation, we
conclude that the defined pitfalls are promising for the maintenance process and deserve to
be further investigated on larger case studies.

6.6.3 Discussion of Several Findings

In this section we present three concrete pitfalls we encountered during our manual analysis.
On one hand, these examples illustrate the manner in which concrete pitfalls should be studied
in detail. On the other hand, they illustrate the problems that the defined pitfalls can cause
when falling in their misunderstanding trap.

Case 1: Partial Typing. Using the corresponding detection strategy, we have identified in
the Jung system the ArchetypeVertex interface (see Figure 6.8) as being affected by this
pitfall (its AWU is 0.75). It means that the interface is not the root of a type hierarchy
but it links together two or more type sub-hierarchies which are not behaviorally equivalent.
We have decided to discuss in detail this example because, from all the interfaces affected by
this pitfall, the ArchetypeVertex generates the second deepest hierarchy (its height is 6).
We have not presented here the pitfall that generates the tallest hierarchy because it is just a
super-interface of ArchetypeVertex, that would needlessly complicate the discussion.

90 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

Taking a look at these interfaces we can already “smell” that the ArchetypeVertex is not
a type hierarchy. A Vertex models a node of a graph while a Hypervertex models a node
of a hypergraph. In a hypergraph, a hyperedge can connect more than 2 hypernodes. Thus,
we can suspect that a HyperVertex behaves somehow different than a Vertex, and thus they
cannot be usually treated just as ArchetypeVertex objects.

Manually investigating the methods from the ArchetypeVertex interface we have concluded
that they may have a very narrow uniform semantics with respect to any kind of vertexes
defined in the hierarchy. For example, the isNeighborOf method determines if a vertex is a
neighbor of another vertex. However, there should be an extremely rare situation in which we
would ask if a HyperVertex is neighbor of a Vertex since they will never appear in the same
graph (i.e., in a graph only Vertex objects are used while in an hypergraph only HyperVertex
objects appear). Thus, we can conclude again that the ArchetypeVertex interface is not
intended to be the root of a type hierarchy. Additionally, we can say that the Vertex and the
Hypervertex may be intended to be type hierarchies with respect to the methods from the
ArchetypeVertex interface (i.e., not necessarily with respect to their supplementary added
methods).

A manual investigation of the external clients that invoke methods from the ArchetypeVertex
has revealed that they are predominately defined in terms of the Vertex interface2. Addition-
ally, there are very few clients defined in terms of the ArchetypeVertex interface. This is
another sign that the latter base class is not the root of a type hierarchy but that it links to-
gether some sub-hierarchies that are type hierarchies with respect to the methods declared in
the ArchetypeVertex interface. Because of that, substituting a Hypervertex for a Vertex
may produce an unexpected behavior from the system. Thus, it is important to inform a
maintainer that, despite the fact that usually an interface is used as placeholder for any class
from the implied hierarchy, the ArchetypeVertex should not be used in this manner (e.g.,
she should not usually define clients in terms of this interface).

Case 2: Uneven Service Behavior. In Recoder, the Operator base class3 has many
descendants that model different kinds of operators. This base class tends to be inherited for
interface reuse since it declares many methods that are predominately invoked in a strongly
uniform manner by their clients (ASU is 0.67). However, several methods declared in this
base class are not intensively invoked in this way (e.g., the setArguments method has a SU
value of 0.07). Additionally, these methods are invoked on instances of all subclasses from
the Operator hierarchy since their TA values are also small (e.g., 0.05 for setArguments).
Thus, the discussed methods (e.g.,setArguments) appear to be affected by the Uneven
Service Behavior pitfall.

We have decided to present in detail this example (i.e., the setArguments method) because
(i) the method has one of the largest number of clients (i.e., 27) when comparing with other
instances of the Uneven Service Behavior pitfall and (ii) the modeled concepts (i.e., Java
language concepts) make the understanding of the problem easier.

2It also appears in some cases that these clients actually treat uniformly only even more refined types of
Vertex instances.

3Recoder defines a representation for Java programs which explains the names of different designed entities
from this system.

6.6. EXPERIMENTAL RESULTS 91

+setArguments()
+precedes()
...

{Abstract}
Operator

{Abstract}
TypeOperator

{Abstract}
ComparativeOperator

Instanceof LessThan

...

... ...

Figure 6.9: A Partial View of the Operator Hierarchy

As we have already mentioned, the Operator hierarchy models different kinds of Java opera-
tors (e.g.,Instanceof, LessThan, etc.) (see Figure 6.9). To the best of our understanding,
several methods from this base class provide an uniform semantics for all its descendants
(e.g.,precedes method is able to compare the precedence of two operators independently of
their concrete type). However, this is not the case for the setArguments method. Its purpose
is to provide by means of its single parameter a list of expressions representing the operands
of an Operator object. However, the content of this list strongly depends on the concrete
operator whose operands are set. For example, an Instanceof object requires as operators
a reference and a type while a LessThan instance requires two numbers as its operators. As
can be observed, these two requirements regarding the content of the parameter cannot be
simultaneously satisfied. As a result, the setArguments method cannot be invoked with-
out knowing the concrete kind of the target object (i.e., is it a Instanceof or a LessThan
object?). Generalizing, because of similar contradictory requirements imposed by different
Operator objects, the setArguments method cannot be usually invoked in a strongly uni-
form manner. However, it is defined in the Operator class because all descendants must
be capable to provide this service (i.e., to let a client change the operator arguments). As
a result, the setArguments method represents a clear example of Uneven Service Behavior
pitfall.

It is important for a maintainer to be warned that the setArguments method must be invoked
knowing (at least partially) the concrete type of the target object. Otherwise, she can set
incorrect arguments for an operator (e.g., she could set a number in place of a type as the
second argument of an Instanceof operator). This will produce Operator objects with
incorrect state and eventually the system will present an unexpected behavior.

Case 3: Premature Service. A concrete example of this pitfall is exemplified by the setMap
method declared in the NodeHook interface from Freemind system (see Figure 6.10). The
interface tends to be inherited for interface reuse (its ASU metric is relatively high i.e., 0.78).

92 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

+setMap()
+invoke()
...

<<Interface>>
NodeHook

<<Interface>>
PermanentNodeHook

{Abstract}
NodeHookAdapter

{Abstract}
PermanentNodeHookAdapter

...

...

Figure 6.10: A Partial View of the NodeHook Hierarchy

However, one of its methods (i.e.,setMap) appears to not participate to this characteristic
of its base class (it has a small SU value i.e., 0.33). Additionally, this method tends to be
invoked only on instances of particular subclasses from the implied hierarchy (TA metric is
0.36). Thus, it is possible that the setMap method characterizes only some subparts of the
hierarchy rooted by the NodeHook interface.

Manually investigating the code, we have found that it is possible for the NodeHook class to
tend to be the root of a type hierarchy (i.e., its methods - e.g.,invoke - appears to have an
uniform semantics for all its descendants). However, the setMap method appears to not share
this property with the other methods from the same interface. The method is implemented
in the NodeHookAdapter abstract class, where it just sets the value of a private field. The
class also implements a getter method for the same field. Because the member variable is
accessed only by this two methods and because the getter is protected, we had expected to
find in almost all the descendants invocations to the getter method. Surprisingly, the getter is
accessed only from PermanentNodeHookAdapter class. Thus, it is possible that the value of
the aforementioned field is significant only for classes that implement directly or indirectly the
PermanentNodeHook interface. Implicitly, it is possible that the setMap method is dedicated
only for these kinds of objects.

We have also examined the external clients of the setMap method. The interesting fact is
that we have discovered a single call to this method that may be targeted to instances of any
concrete class from the hierarchy. Another one is targeted to PermanentNodeHook objects
and one is targeted directly to instances of a single class that is not of PermanentNodeHook
type (although, it is not clear where exactly this class uses the set value). In conclusion,
to the best of our understanding of the code, we say that the detected method is actually
meaningful only for PermanentNodeHook part of the hierarchy, a result consistent with the
general profile of this pitfall. Thus, it would be worth to investigate the possibility of moving
the declaration of the setMap method down to PermanentNodeHook interface.

6.7. CONTEXTUAL RELATED WORK 93

6.7 Contextual Related Work

Polymorphism and class hierarchies are keys to increase the extensibility of object-oriented
software systems. The type hierarchy nature of class hierarchies is intensively discussed in
theory and practice [30, 46, 53, 57, 75]. The design and enforcement of correct behavioral
type hierarchies is an important part of software development when designing highly reusable
components e.g., [28, 53].

In the reverse engineering community, much effort has been spent in the last decade to
decompose and analyze the complexity of class hierarchies from multiple viewpoints. As our
work is also placed in the context of reverse engineering and design quality assurance, we
relate it in the following to several valuable state-of-the-art contributions.

Our work is especially related with design flaws documentation and detection in object-oriented
programs. Catalogs of good object-oriented design heuristics can be used to identify design
problems related to class hierarchies [75]. In [29] many “bad smells” are described, some of
them (e.g.,Refused Bequest) pointing to design problems in class hierarchies (e.g., inheritance
used to achieve only code reuse). Lanza and Marinescu also present in [42] a catalog of
design problems related to class hierarchies together with metric-based rules (i.e., detection
strategies [52]) to enable their automatic detection. Arévalo et al. use concept analysis to
automatically discover recurring dependency schemas in class hierarchies [4]. Some of these
schemas are also associated with design problems in hierarchies.

By contrast with these achievements we are focused on documenting and detecting new
recurring situations (particularly related to the usage of polymorphism) which can mislead an
engineer during maintenance activities. Additionally, we consider that these situations are not
necessarily design problems. The situations appear in particular design contexts, as a result
of a tradeoff made between contradictory forces or represent accepted fine-grained deviations
from good object-oriented design heuristics.

Several other related works may be seen as a way to avoid code misunderstanding or partially
prove the importance of eliminating the risks of incorrect program comprehension. As we have
previously mentioned, Arévalo et al. present in [4] several recurring dependency schemas in
class hierarchies that are associated with design problems. However, other schemas presented
in the same paper emphasize irregularities in a class hierarchy. These situations can also
be sources of misunderstanding a program during software maintenance. By contrast with
our approach, the presented irregularities have been pseudo-automatically discovered using
concept analysis. Although a positive aspect that we could employ in the context of our work,
the described irregularities are inferred only based on information extracted from a hierarchy
itself. We strongly believe that the comprehension pitfalls introduced in this chapter cannot
or can hardly be generally detected without a closer look at the clients of the investigated
hierarchy. However, it would be interesting to employ the pattern inference mechanism used
in [4] and to apply it on information regarding the kind of invocations (i.e., strong / weak /
non uniform calls) used in the clients of a hierarchy.

In [73], the authors map program entities and relations between them to concepts and relations
recorded in an ontology. In this way, the authors have managed to describe and detect classes
of diffusion of the domain knowledge in code. Such cases may also mislead an engineer during
program understanding / maintenance activities.

94 6. DISCOVERING PITFALLS OF UNDERSTANDING IN CLASS HIERARCHIES

In [49], the author managed to enhance the detection of two design problems by eliminating
those false-positives that conform to specific design requirements of enterprise applications.
Such false-positives can also mislead an engineer since they can be easily misinterpreted as
design problems.

A case study of an API redesign is presented in [82]. An usability evaluation has shown that
the new API significantly improved users’ productivity. Since usability should also reflect the
programmers capacity to properly and quickly understand an API, we consider this experiment
a proof that misunderstanding can dramatically reduce maintainers’ productivity and thus, it
can significantly increase the maintenance costs.

Chapter 7

Tool Support

Because our thesis falls in the general field of object-oriented program analysis to support
various aspects of legacy software maintenance (e.g., program understanding, design quality
assessment), we have decided not to build our tool support from scratch. We have built it as
a series of extensions of the iPlasma software analysis environment.

We start this chapter by presenting in brief this platform, its benefits and some problems
that had hindered initially the implementation of our analysis methods. The extensions we
brought to iPlasma are described afterwards together with some implementation details of
the proposed analysis means. We also discuss some limitations of our implementation and
potential further improvements.

7.1 iPlasma Platform

iPlasma1 is an integrated environment for object-oriented software analysis [50]. It has
been developed by the LOOSE Research Group from “Politehnica” University of Timişoara,
Romania. The platform provides many high-level analysis methods that can help developers
during different maintenance activities (e.g., program understanding, design flaw detection).
An overview of the structure of iPlasma is presented in Figure 7.1. In the following, we
describe in brief its essential components and its benefits.

7.1.1 Structure Overview and Benefits

Memoria Meta-Model. An infrastructure to support program understanding and design
quality assessment requires the creation of an intermediate representation of software systems
[77]. Usually, this intermediate representation is a model of the analyzed system, containing
design information (e.g., classes, methods) and conforming to a meta-model (i.e., a schema).

1Integrated PLAtform for Software Modeling and Analysis

95

96 7. TOOL SUPPORT

Front-End
INSIDER

Representations
MEMORIA

Representation Builders
MCC - Fast MEMORIA - Recoder

Analysis
METRICS PROBLEM

DETECTION ...

builds

uses

integrates

... ...

...

Figure 7.1: iPlasma Overview

Memoria [72] is a meta-model for Java and C++ programs. Because it is a unified meta-
model, it enables an engineer to analyze uniformly the design of Java and C++ systems.

Model Builders. In order to analyze a software system in iPlasma, we need to build the
model of the analyzed program according to Memoria meta-model. Mc’C [63] is the model
builder for C++ software systems. iPlasma contains also model builders for Java programs
(i.e.,Memoria-Recoder) and C#.

Metrics. iPlasma contains a very large library of software metrics implemented on top
of the Memoria meta-model (thus, these metrics can be computed uniformly for Java and
C++ programs). Among the state-of-the-art metrics that can be calculated in iPlasma, we
mention here Cyclomatic Complexity [55] and Tight Class Cohesion [7].

Problem Detection. iPlasma includes a suite of logical rules based on metrics (i.e.,Detect-
ion Strategies [52]) that can be used to identify design problems in the analyzed software.
Among the state-of-the-art design flaws that can be detected using iPlasma, we mention
here DataClass [29] and GodClass [75].

Insider. A key aspect of iPlasma is that all the aforementioned analysis means (i.e.,
metrics, detection strategies) are integrated through a flexible front-end called Insider. In
other words, Insider defines a framework through which different analyses can (i) be defined
in form of plugins (ii) be reused / combined when developing new and / or more complex
analyses and (iii) be transparently invoked by the analyst through a common user interface.
These characteristics make Insider easily extensible with further analyses and enable an
engineer to combine already defined analyses with new ones. Because of these reasons, we

7.1. IPLASMA PLATFORM 97

Front-End
INSIDER

Representations
MEMORIA

Representation Builders
MCC - Fast MEMORIA - Recoder

Analysis
METRICS PROBLEM

DETECTION

builds

uses

integrates

...

...
PATROOLS

MemBrain

...
jMondrian MemBrain Framework & DFA

MemBrain Translators
Recoder Columbus

Figure 7.2: iPlasma Extensions

have decided to implement the tool support of this thesis as a series of extensions to the
iPlasma platform.

7.1.2 Prerequisites for Implementing the Tool Support

In its initial form, iPlasma presented a series of problems which hindered the implementation
of the approaches proposed in this thesis:

1. It did not offer any support to implement software visualizations. Consequently, in
order to implement the Type Highlighting views we had to integrate in iPlasma
a visualization engine.

2. The Memoria meta-model describes only a structural model of the analyzed source
code. That is, it can represent information like the packages from the analyzed system,
the classes included in each package, and the members contained by each class. When
it comes to the representation of the method bodies, Memoria can capture only a very
limited set of information (e.g., the variables accessed in a method body) and it does not
represent detailed information regarding the statements included in a method definition.
This was a very serious problem for us since, for a more precise implementation of our
analysis methods, we depend on data-flow analyses (see Section 3.3) which, at their
turn, depend on a detailed representation of the statements included in a method body.
As a result, in order to implement the proposed approaches, we had to integrate in
iPlasma a data-flow analysis engine.

To meet these prerequisites, we have extended the iPlasma platform. A summary of these
extension (colored in brown) is presented in Figure 7.2.

98 7. TOOL SUPPORT

7.2 jMondrian

We start this section by briefly presenting some related work regarding different visualization
tools. Next, we shortly present jMondrian, the tool we use to generate the visualizations
introduced in this thesis.

7.2.1 Contextual Related Work

The importance of visualizations for maintenance and reengineering is proved by the plethora
of tools dedicated to generate software views. Rigi [67] supports reverse engineering by
providing graph-based visualizations for browsing software subsystem hierarchies. Seesoft [24]
is a tool for visualizing statistics at the level of lines of code for large programs. CodeCrawler
[40] provides visualizations that combine structural information with software metrics.

The main problem with these tools is that they just implement a limited set of visualizations.
In other words, they do not enable a user to easily define new software views. Other tools,
such as Vizz3D [69], G See [25] or BLOOM [74], try to address this problem using various
approaches. However, the Mondrian visualization framework [58] is probably the most flexible
of all. That is because it enables an engineer to define a visualization as a script (i.e., a
program). As a result, it is very easy to define new software views especially when these views
render information obtained programmatically from various sources (i.e., other tools). These
characteristics of Mondrian make it the best choice in order to implement the visualizations
proposed in this thesis.

7.2.2 The Visualization Engine

jMondrian is the Java version of the Mondrian information visualization framework [58]
written in Smalltalk2. It has been integrated in iPlasma by adapting the Insider front-end
to support the interaction with jMondrian. Because this tool is not an important imple-
mentation contribution of our thesis3, we are going to present in brief its main abstractions
and how can it be used to implement a software view.

Basic Abstractions. The main abstractions of the jMondrian framework are:

• Figure - an object representing the description of an image (i.e., software visualization)
in terms of a graph (e.g., it has a list of nodes, a list of edges between some of the
nodes, etc.).

• AbstractEdgePainter - an object that knows how to draw an edge of a graph. The
single concrete class of such a painter is LineEdgePainter, which draws an edge as a
line between two nodes.

2jMondrian does not precisely implement the Mondrian framework. However, they are very similar especially
from the user point of view.

3Our contribution was to re-implement in Java the Mondrian framework and to integrate it in iPlasma

7.2. JMONDRIAN 99

• AbstractNodePainter - an object that knows how to draw a node of a graph. Cur-
rently, there are two such concrete painters: RectangleNodePainter and Ellipse-
NodePainter, that draw a node as a rectangle, respectively as an ellipse.

• AbstractLayout - an object responsible for positioning the nodes of a graph in a
view. At this time, there are four such kinds of objects: FlowLayout - positioning
the graph nodes one after the other; ScatterPlotLayout - positioning the nodes of
a graph like in a scatterplot diagram; TreeLayout - positioning the nodes in a tree
manner; CrossReductionTreeLayout - positioning the nodes in a tree manner using
an algorithm for drawing layered digraphs to minimize edge intersections [6].

• ViewRendererInterface - an object responsible to render a Figure object on a par-
ticular graphic environment. At this moment, there is only one kind of such an object,
called ViewRenderer, which knows how to draw a graph in a window using the AWT
and Swing graphic libraries.

• AbstractEntityCommand, AbstractFigureDescriptionCommand, AbstractNumer-
icalCommand, AbstractStringCommand - these are different abstract types of com-
mand objects [30]. They are used to define different commands (e.g., a command
that returns a node of a graph, a figure object, a numerical value, respectively a String
value). These command objects are used to configure the painters objects. For example,
a RectangleNodePainter needs to know how to compute the width, the height and the
color of the rectangle associated with a given node. To achieve this goal, the painter can
be configured with three user defined AbstractNumericalCommand objects specifying
the algorithms used to compute the values of the aforementioned properties. As yet
another example, a LineEdgePainter needs to know how to find the extremities of an
edge. This can be done by configuring the painter with two AbstractEntityCommands.
Finally, the AbstractFigureDescriptionCommand can be used to define nested views
(i.e., views whose nodes represent other views).

We want to mention here that the nodes and the edges of a view are seen by the jMondrian
framework as simple Objects (i.e., we can use any object as a node / edge in a view).
Additionally, the ViewRenderer associates the graphical element of a node or of an edge with
the object representing that node or edge. As a result, when a graphical element is selected in
a view with the mouse, the framework can inform via a listener (i.e., a MenuReaction object)
about the object representing the selected node or edge. In this manner, the images produced
by jMondrian are not dead pictures (i.e., are not simple image files). They are alive (e.g.,
we can configure jMondrian to enable the user to ask how many methods does a class
have, when a node representing a class object is selected using the mouse). Such features are
very important during an analysis process.

Specifying a View. In order to show how easy it is to use jMondrian, we are going to
present a sketch of the implementation of the System Complexity view [42]. In essence, this
visualization is a graph in which the nodes represent the classes from a software system and
the edges represent the inheritance relations between these classes. The nodes are arranged in
the typical tree-like manner of drawing class hierarchies. The classes are drawn as rectangles
and the edges as lines. The width, the height, and the fill color of a rectangle are used to
render the values of 3 software metrics associated with the represented class: Number of

100 7. TOOL SUPPORT

Figure 7.3: A System Complexity View Example

Attributes (i.e., the width is proportional with this metric), Number of Methods (i.e., the
height is proportional with this metric), Lines of Code (i.e., the darker the node, the higher is
the number of lines of code metric). An example of this view is shown in Figure 7.3.

Describing System Complexity in jMondrian and iPlasma is simple as you can see in the
next code example. The implementations of the command objects is not important in this
context (i.e., it is done by reusing metric computers already implemented in the iPlasma
environment). For this reason we will not present them here.

class SystemComplexity extends AbstractVisualization {

//Insider specific plugin constructor
public SystemComplexity() {

super("System Complexity", "System Complexity", "system");
}

//Insider analysis invocation method
public void view(AbstractEntityInterface entity) {

//Extracting the needed data from the system model (entity) such as the classes and
//the inheritance relations
...

//Start describing the view by creating a Figure object
Figure f = new Figure();

//Specify the figure’s nodes; list_of_classes is a List<Object> that contains an object
//for each class from a system.
f.nodesUsing(list_of_classes,

//Specifying the node painter; here the nodes will be drawn as rectangles
new RectangleNodePainter()
.width(new AbstractNumericalCommand() {

//The command will receive an Object representing
//a class from the list_of_classes and will
//return the Number of Attributes metric for that class
//which is already implemented in iPlasma.

}).height(new AbstractNumericalCommand() {
//The command will receive an Object representing
//a class from the list_of_classes and will
//return the Number of Methods metric for that class
//which is already implemented in iPlasma.

7.3. MEMBRAIN 101

}).color(new LinearNormalizerColor(list_of_classes,
new AbstractNumericalCommand() {
//This command returns the Number of Lines
//of Code for a class. Moreover, it is
//enclosed into a LinearNormalizerColor
//that maps the metric value into a gray
//color scale (white - minimum, black -
//maximum).

})));

//Specify the figure’s edges; list_of_inh is a List that contains an object for each
//inheritance relation.
f.edgesUsing(list_of_inh,

//Specifying the edges painter; here the edges will be drawn as lines
new LineEdgePainter(

new AbstractEntityCommand() {
//The command will receive an Object representing an
//intehirance relation and will return the class
//representing the subclass. Finding the subclass of
//an inheritance relation is already implemented in iPlasma.

},
new AbstractEntityCommand() {

//Similarly, the command tells the painter
//to which node an edge is directed.

}
));

//Specify the view layout
f.layout(new TreeLayout());

//Draw the image on the screen and show it to the user
ViewRendererInterface r = new ViewRenderer();
f.renderOn(r);
r.open();
}}

7.3 MemBrain

We present in this section the MemBrain prototypical data-flow analysis engine we have
developed in order to implement the visualizations and the uniformity metrics introduced in
this thesis. We start by discussing some data-flow analysis basic concepts. Next, we present
some specific requirements a data-flow analysis tool has to meet in the context of program
understanding and design quality assurance. At the same time we discuss several related
works. The anatomy of MemBrain is presented afterwords.

7.3.1 Data-Flow Analysis Basics

Definition. Data-flow analyses collect runtime information about data in programs without
actually executing them [1]. Usually, such static analyses are used in the context of optimizing
compilers and program verifiers. In short, a data-flow analysis computes data facts. What is
a data fact depends on the concrete data-flow analysis. For example, in the case of Reaching

102 7. TOOL SUPPORT

Figure 7.4: Solving a Data-Flow Analysis Problem

Definitions analysis [1] a data fact is in essence an association between a variable, one of its
definitions (i.e., assignments) and a particular program point. The Reaching Definition data-
flow analysis, computes the set of these associations, in such a way that for each association
there is an execution path from the association’s assignment to the association’s program
point such that the association’s variable may have, at that program point, the value assigned
by the definition (i.e., assignment).

Solving a Data-Flow Analysis Problem. The general way the data facts are computed is
exemplified in Figure 7.4. In this example, the data facts are computed for a forward data flow
analysis (i.e., the flow of manipulated information goes in the same direction as the control
flow of the program). In the case of a backward analysis, the computation is very similar. We
also emphasize that in our example a data fact does not contain a program point where it
holds, this information being implicitly encoded in the association between an instruction and
its input and output data fact sets.

Each instruction has two associated sets of data facts: the input set IN(Instr) and the output
set OUT(Instr). Each instruction also has a transfer function (TF) which depends on the
concrete instruction and on the concrete type of data-flow analysis. The purpose of this
function is to correlate the input and the output of an instruction. As a result we can write
a first equation:

7.3. MEMBRAIN 103

OUT (Instr) = FTInstr(IN(Instr)) (7.1)

In general, the transfer function of an instruction looks like the next equation:

OUT (Instr) = GEN(Instr) ∪ (IN(Instr) \KILL(Instr)) (7.2)

where GEN(Instr) and KILL(Instr) are the sets of generated data facts respectively killed
data facts and are always known for a particular instruction in the context of a particular
analysis.

On the other hand, the input of an instruction is correlated with the output of its predecessor
instructions in the flow of control. Again, the way the different OUT sets are combined
(merged) depends on the concrete type of analysis. We will consider here that the merging
operator is the union operator. As a result we can write:

IN(Instr) =
{
Initial for the first instruction
∪P∈Predecessors(Instruction)OUT (P) otherwise (7.3)

Based on these equations associated with an instruction, we can say that computing the data
facts of a data-flow analysis consists in solving the system of equations composed of all the
equations of each instruction in a program / procedure, searching for the input and the output
sets of each instruction. Details regarding the manner in which this system of equations can
be approximated are presented in [1, 66].

7.3.2 Specific Requirements

Usually, data-flow analyses are used in the context of optimizing compilers and program veri-
fiers. However, they also have an important and increasing role for understanding and assuring
the design quality of legacy systems. The state of the art literature presents different such
high-level analyses whose implementation depend more or less on data-flow analyses e.g., [78].
However, in order to be applicable, these techniques need a data-flow analysis infrastructure
as a basis for their implementation. Conventional data-flow analysis infrastructures could be
used for this purpose. However, none of them meet specific requirements of reverse engineer-
ing and design quality assessment. From this perspective such an infrastructure should have
some particular traits:

1. To avoid duplication, when possible, the implementation of a reverse engineering / qual-
ity assessment analysis should be independent of the language in which the analyzed
program is written. This is the reason for which many high-level analyses are imple-
mented based on a common / unified meta-model (e.g.,Memoria) [72, 63]. Thus, a
data-flow analysis engine for reverse engineering and design quality assessment should
also function on a common (language-neutral) representation of programs.

104 7. TOOL SUPPORT

2. A design analyst wants an easy way to implement concrete data-flow analyses. As a
consequence, the common representation of programs must be a sufficiently low-level
one: derived language constructs (e.g., ++ operator) must be eliminated, the repre-
sentation must be explicit (e.g., implicit calls to copy-constructors in C++ must be
made explicit), etc. This is because such language particularities complicate the imple-
mentation of data-flow analyses (e.g., the ++ operator is a definition of the associated
variable that must be considered by a precise implementation of Reaching Definitions
data-flow analysis [1]).

3. A maintainer wants to investigate (e.g., understand) a program at the code / design
level. Thus, a data-flow analysis infrastructure for reverse engineering and quality as-
surance should be able to present the data facts at the level of the analyzed source code
and not at the level of an intermediate low-level representation.

4. Often, reverse engineering is performed on incomplete source code. That is why many
analysis tools try to be able to function even if the source code is not entirely avail-
able (e.g., [27, 50]). As a consequence, a reverse engineering and quality assessment
data-flow analysis infrastructure should also be employable even when the code of the
investigated program is incomplete and thus, probably, almost impossible to compile
(i.e., it is syntactically correct but only a portion of the entire source code is available).

In the following, we are going to briefly present our state-of-the-art investigation in order to see
if these requirements are or can be met by current data-flow analysis infrastructures.

7.3.3 Contextual Related Work

A data-flow analysis framework for Java programs is presented in [65]. However, because it
directly manipulates JVM code, the analyzed system should be compiled first. Thus it may be
hardly used to analyze incomplete Java programs. BML [70] has similar capabilities, but it also
analyzes Java bytecode having the same aforementioned drawback. Additionally, both tools
can be used only for Java programs since they actually analyze Java bytecode. None of them
analyze a common / unified representation of programs written in different languages.

This problem is attacked in [2], where common representations (at different levels of abstrac-
tion) are proposed. These representations can be used as the basis for building a generic
data-flow analysis engine. However, they are too close to the original code (e.g., derived op-
erators such as ++ are not eliminated, they do not make the representation entirely explicit
— e.g., implicit calls to C++ copy-constructors are not made explicit —, etc.) making
data-flow analyses less precise and harder to implement. Similar representations (but only for
C++) are presented in [38].

We have also searched into the world of optimizing compilers for a tool we could used to
implement our analysis methods. In [43] a powerful compiler infrastructure, called LLVM,
is introduced to enable effective program optimization. In essence, it defines a low-level
language-independent representation of programs, front-ends for C++ and C to translate a
program into this representation, and a powerful set of analyses needed in the context of
program optimization. Although an extremely powerful tool, the main problem is that it is
a compiler infrastructure. Thus, it may be difficult to analyze incomplete code that cannot

7.3. MEMBRAIN 105

be compiled. The same problem also appears in the case of the offered Java front-end (i.e.,
the front-end translate class files into LLVM code and thus the program must be compiled
first). On the other hand, our current experience show that it is difficult to precisely present
the analyses results at the level of the original source code. This is also because LLVM is
a compiler infrastructure and it is not dedicate for reverse engineering and design quality
assessment. A similar compiler infrastructure, having the same problems from the discussed
point of view is presented in [19].

7.3.4 Discussion

It is true that, in order to exclusively validate our thesis, it would have been possible to make
use / adapt the aforementioned tools (especially the compiler infrastructures). However,
because our thesis falls in the field of reverse engineering and quality assessment, we have
decided to also start creating a data-flow analysis framework dedicated for these activities.
It is clear that our engine is not (and probably will never be) so powerful and precise as the
aforementioned compiler infrastructures. However, as far as we are aware, it is the first data-
flow analysis infrastructure oriented to the needs of a reverse engineer / design quality analyst
(practitioner or researcher) and not to the requirements of other program analysis goals (e.g.,
optimizing compilers where, for example, preserving the program semantics is central).

7.3.5 The Anatomy of MemBrain

In essence, MemBrain4 means two things. First, it defines a representation for programs
written in Java. On the other hand, it is a framework that allows to easily implement intra-
procedural flow-sensitive data-flow analyses on MemBrain representation. In this section
we present this representation and the main abstractions of the framework. Our prototypical
infrastructure is implemented in Java.

The Representation. The MemBrain instructions can be viewed as an elementary low-
level representation of Java operators and statements (e.g., Addition, StaticCall, VirtualCall,
etc.). This representation does not include derived operators (e.g.,++, +=) or structured
statements such as for, do, etc. All these statements are expressed in terms of goto and
conditional goto instructions. Moreover, every instruction has only one meaning (e.g., +
means addition between numbers and cannot be overloaded as in C++). These simplifications
allow an easier data-flow analysis implementation.

MemBrain instructions are a form of three-address code [1]. In general, the three address
code is a sequence of statements of the following form:

x = y op z

where x,y and z are the operands while op stands for an operator. The distinctive characteristic
of this code is that no built-up arithmetic expressions are permitted. So, the representation
for a more complex expression like x ∗ y + z is converted into:

4Memoria Extension for Method Body Representation, Analysis and INspection

106 7. TOOL SUPPORT

temporary1 = x * y
temporary2 = temporary1 + z

To identify the operands of an instruction, different types of references are used by MemBrain.
Usually, a reference models an entry from the symbol table (e.g., a variable, a type). Addi-
tionally, because we have adopted an implementation of the three-address code using triples
[1], we also use a special kind of reference (i.e., temporary reference) in order to model the
result of an instruction. In Tables 7.1 and 7.2 we present a summary of the MemBrain
references and instructions.

Reference Type Description
UMethodReference Models a method
UTypeReference Models a type (including classes)
UConstantReference Models a literal (e.g., numerical constants)
UTemporaryReference Models the result of a MemBrain instruction located in

the code table before the instruction that uses the ref-
erence

UNameReference Models variables such as parameters, local variables or
fields

UTemporaryNameReference Models generated temporary variables (i.e., do not exist
in the original source code) or special kinds of variables
(e.g., this)

Table 7.1: A Summary of MemBrain References

Example. To exemplify the representation, we present in Figure 7.5 a code fragment and
its MemBrain representation.

// i and j are local variables
if(2 == j) { i = j++; }

// MemBrain representation
1 :Copy [j]
2 :Equal 2 (-1)
3 :CGoto (-1) L1
4 :Goto L2
5 :Label L1
6 :Copy [j]
7 :Add (-1) 1
8 :AssignToName [j] (-1)
9 :AssignToName [i] (-3)
10:Label L2

// Explanation
[i] - reference to the local variable i
(-x)- temporary reference eg., (-3) in the
9th instruction identifies the result of
the 9 - 3 = 6th instruction

Figure 7.5: Representation Example

7.3. MEMBRAIN 107

Category Examples
Control instructions Goto aLabel - unconditional jump to the label

Label aLabel - marks a label in the code table
CGoto Operand, aLabel - jump to the label if the
operand is true

Method invocations Target Operand - specifies the value of the target ref-
erence of the following call
Parameter Operand - specifies the value of a parameter
of the following call
StaticCall aMethod - a call to a static method
NonVirtualCall aMethod - a call to a method but with-
out dynamic dispatching
VirtualCall aMethod - a call to a method with dynamic
dispatching

Copy instructions Copy Operand - copies the value of the first operand
Deref Operand - copies the value from the address
specified by the operand

Assignment instructions AssignToAddress Operand1, Operand2 - stores the
value of the second operand at the address specified by
the first operand
AssighToName Operand1, Operand2 - stores the
value of the second operand in the first operand

Arithmetic instructions Add Operand1, Operand2 - computes the sum of the
values specified by the operands
BitwiseAnd Operand1, Operand2 - computes the bit-
wise AND of the values specified by the operands

Relational instructions Greater Operand1, Operand2 - the result is true if the
value of the first operand is greater than the value of the
second one
Equal Operand1, Operand2 - the result is true when
the value of the first operand is equal with the value of
the second one
InstanceOf Operand, aClass - the result is true when
the first operand refers to an instance of aClass or of one
of its subclasses

Object creation NewObject aClass - creates a new instance of the spec-
ified class (but does not invoke the constructor) and re-
turns its memory address

Table 7.2: The Description of Several MemBrain Instructions

108 7. TOOL SUPPORT

Figure 7.6: The Data-Flow Analysis Framework

Translators. MemBrain includes also a translator that converts Java 1.4 programs into
their MemBrain representation. We emphasize that it is the translator’s responsibility
to perform all the transformations mentioned in the previous paragraphs (e.g., when a +
operator refers to a String operator, the other operand is converted into String by invoking
the String.valueOf() method and a concatenation is performed via the String.concat() method
of the first operand; thus + operator semantics is restricted to arithmetic operations).

The translator is built on top of the Recoder5 parser. One reason for using this tool is that
it can parse incomplete code. Additionally, the translator is written is such a manner that it
permits to translate incomplete code. The final effect is that our infrastructure can be easily
used even when the code of the investigated program is incomplete.

The translator’s primary output consists of a code table with MemBrain instructions for
the translated method. Next, the code table is used to build the control-flow graph of that
method. The translator also provides a mapping between the generated instructions and the
source code. In essence, each generated instruction is associated with a code stripe (i.e.,
continuous or discontinuous sequences of characters identified by their start / stop lines and
columns) representing the source code translated into that instruction. Thus, the mapping can
be used to present data facts at the level of the original source code, an essential prerequisite
for reverse engineering and quality assessment activities.

The Data-Flow Analysis Framework. In Figure 7.6 we present the MemBrain data-flow
analysis framework. The result of a data-flow analysis consists in sets of ComputedValues
associated with any particular point in a method (e.g., at this execution point, local vari-
able x may have the value assigned by the instr instruction). To implement a data-flow

5recoder.sourceforge.net

7.3. MEMBRAIN 109

analysis, an engineer must define first what a ComputedValue means for that analysis (in
a subclass) and to define the equality between two such instances (i.e., to implement the
equals() method).

A DataFacts object represents the result of a data-flow analysis applied on a particular method.
Such an instance is an aggregation of InOutSets (i.e., sets of ComputedValues associated with
the input / output of each basic block). To define the result of a particular analysis, we must
implement the createAnalysis() factory method [30]. This method will only have to create an
object representing the implemented analysis. We also emphasize that the DataFacts class
provides methods that can be used to find the input / output sets of ComputedValues at the
basic block and instruction level. Thus, this class represents the way through which a user can
(programatically) extract the results of a data-flow analysis for further exploitation.

A DataFlowAnalysis object models a particular data-flow analysis. The framework uses a
classical worklist algorithm [1] to approximate the sets of ComputedValues at the start / end
of each basic block. In order to implement a data-flow analysis, an engineer must provide an
implementation for the transfer functions of the analysis (via the createInstructionVisitor()
factory method [30]) and to define the analysis loop (i.e., the manner in which the sets of
ComputedValues are combined) in the analysisLoop() template method [30].

The purpose of an InstructionsVisitor object is to implement the transfer functions of a data-
flow analysis for each relevant MemBrain instruction. Usually, it is going to manipulate (i.e.,
to compare, instantiate, etc.) analysis specific ComputedValue objects. At implementation
level, such an instance is a Visitor [30] for the hierarchy of MemBrain instructions.

7.3.6 Towards the Unification

MemBrain also includes a translator (under development) that can convert ISO C++ code
into the MemBrain representation6. The translator is built on top of the Columbus [27]
parser which is able to manipulate incomplete code. The translator is also written in such a
way that it can be used to translate incomplete code. The final effect is that we will be able to
also analyze incomplete C++ programs. Additionally, because a data-flow analysis is written
in terms of the MemBrain representation, we will be able to perform analyses independently
on the programming language in which the program is written (e.g., Java or C++).

7.3.7 Performances

In order to implement the analysis methods proposed in this thesis we implemented in
MemBrain several data-flow analyses such as: intra-procedural Static Class Analysis (SCA)
[20] and intra-procedural Reaching Definitions (RD) [1]7. In Table 7.3 we present the exe-
cution times needed by Membrain in order to accomplish the aforementioned analyses. We
also present the time needed to construct the control flow graph (because the parser is not
developed by us, the presented time includes translation time but not the parsing time). The

6The representation will be extended in order to address full C++
7The current implementations do not include an alias analysis

110 7. TOOL SUPPORT

System CFG building (sec) SCA (sec) RD (sec)
Recoder 3.0 31.5 4.3
Jung 1.5 28.7 2.3

Table 7.3: MemBrain Execution Times

System Time/method MemBrain (ms) Time/method BML (ms)
Recoder 0.768 0.181
Jung 0.835 0.569

Average 0.802 0.375

Table 7.4: Performance Comparison for Reaching Definitions

measurements have been performed for all methods of two medium-sized Java programs (de-
tails about the size of the analyzed programs can be found in Appendix), using a MacBookPro
computer (Core 2 Duo 2.33 GHz, 2 GB of RAM) running MacOS 10.5.

In Table 7.4, we compare our RD analysis with that of BML [70] which however considers only
local variables and not data fields. MemBrain execution time per method is on average 2.14
times higher. We consider this difference of performance acceptable since it will be offset by
the advantage of also analyzing C++ programs. Additionally, this difference will be also offset
by the possibility of analyzing incomplete code that is not compilable (i.e.,BML analyzes Java
bytecode and thus the system must be compiled).

7.4 Patrools

The suite of Insider plugins that implement (based on jMondrian and MemBrain) the
analyses methods proposed in this thesis is called Patrools8. In this section, we will discuss
in short some of its characteristics.

7.4.1 Static Class Analysis in Brief

An essential problem we have to solve in order to implement the Type Highlighting views
and to compute the uniformity metrics is to find, at a particular program point, the set of
classes of the objects that may be referred at runtime by a reference variable. This information
can be computed using a data-flow analysis called Static Class Analysis (SCA) [20, 13]. In
order to implement our analysis methods, we have implemented this data-flow analysis using
MemBrain.

In essence, SCA computes for each instruction Instr two sets of data facts (i.e., IN(Instr)
and OUT (Instr)) composed by associations of the form x→ X meaning that x variable may
refer to an instance of class X before, respectively after the instruction execution. The sets
of data facts are computed based on the following flow functions:

8Polymorphism Analyzing Tool for Reengineering Object-Oriented Legacy Systems

7.4. PATROOLS 111

IN(Instr) = ∪P∈Pred(Instr)OUT (P)

OUTx:=new C(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ C}

OUTx:=constant(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ Cconst}

OUTx:=y(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ z | (y → z) ∈ IN(Instr)}

OUTx:=y op z(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ z | z ∈ result(op)}

OUTx:=rcvr.msg(...)(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ z | z ∈ result(msg)}

OUTx:=obj.var(Instr) = (IN(Instr) \ {x→?}) ∪ {x→ z | z ∈ result(var)}

OUTif c goto (taken)(Instr) = IN(Instr)

OUTif c goto (not taken)(Instr) = IN(Instr)

OUTif c in S (taken)(Instr) = (IN(Instr) \ {x→?})∪
{x→ z | (x→ z) ∈ IN(Instr) ∧ z ∈ S}

OUTif c in S (not taken)(Instr) = (IN(Instr) \ {x→?})∪
{x→ z | (x→ z) ∈ IN(Instr) ∧ z /∈ S}

(7.4)

As an example, the second equation tells us that the OUT set of an instruction like x :=
new C() is computed by (i) eliminating from the IN set all the associations to the x variable
(i.e., x→?) and (ii) adding in the resulting set a new association of the form x→ C.

Figure 7.7: Explaining Some SCA Transfer Functions

112 7. TOOL SUPPORT

Figure 7.8: Group Discrimination View in Insider

A more interesting situation appears in the case of the last two formulas which will be explained
based on Figure 7.7. The formulas split the input set into two sets. The first set represents
the OUT set of the instruction that is going to be propagated to the first instruction from
the true branch of the if. This set contains all the associations from the input set between
the x reference and aClass class or one of its descendants. The second set is the complement
of the first set with respect to the input set of the instruction and represents the OUT set of
that is going to be propagated to the first instruction from the false branch of the if.

7.4.2 Views Implementation

The views introduced in Chapter 4 are implemented as software visualizations plugins in
Insider. In essence, these plugins determine firstly all the external or internal clients of a
base class. Next, they invoke the SCA algorithm on each client and, based on the obtained
information, they determine the color of each client source code token (e.g., by computing
the LA metric). Finally, the views are generated making use of the jMondrian tool. In
Figure 7.8 we show an example of the Group Discrimination view as seen by the user of
Insider.

7.4.3 Uniformity Metrics Implementation

The uniformity metrics from Chapters 5 and 6 are viewed in Insider as properties of classes
and methods. The metrics are computed and associated to the corresponding design entities by
a tool plugin. In essence, for each base class method, the tool determines the external clients
of the method and invoke the SCA analysis on each client. Next, based on the obtained
information, it characterizes each client call to the method as being strong uniform, weak

7.4. PATROOLS 113

Figure 7.9: Uniformity Metrics in Insider

uniform or non-uniform. When all the calls to the method are categorized, the uniformity
metrics can be easily computed. After the metrics are calculated at the method level, they are
computed at the base class level. After running this Insider tool, we can easily investigate
the values of the uniformity metrics for any base class or method, and we can invoke other
analyses that make use of these metrics (e.g., invoke the corresponding detection strategies
to detect comprehension pitfalls) (see Figure 7.9).

7.4.4 Detection Strategies Implementation

The detection strategies introduced in Chapter 6 are implemented as filtering rules plugins
in Insider. In essence, a filtering rule receives an entity (e.g., a class) from the model of
the analyzed system and determines if that entity has some particular characteristics (e.g.,
the value of a metric for that entity is higher than a specified threshold). In Figure 7.10 we
present the implementation of the Partial Typing detection strategy. A filtering rule can be
easily invoked via Insider for all the associated entities from a system. Thus, the pitfalls
detection is at the distance of several mouse clicks (see Figure 7.11) in the analysis tool.

114 7. TOOL SUPPORT

public class PartialTyping extends FilteringRule {

//Insider specific constructor; "class" parameter specifies
//that the rule applies to classes
public PartialTypeHierarchy() {

super(new Descriptor("Partial Typing", "class"));
}

//The filtering rule implementation
public boolean applyFilter(AbstractEntityInterface anEntity) {

//Finds all the methods of the class
GroupEntity allMethods = anEntity.getGroup("method group");

//If the class is not an interface then it cannot represent a
//Partial Typing pitfall
if(allMethods.applyFilter("is abstract").size() != allMethods.size()

return false;

//The class is a Partial Typing pitfall if its AWU metric is higher
//than 0.5; if the class is not a base class the AWU metric is
//undefined (ie. its value is -1).
return ((Double)anEntity.getProperty("AWU").getValue()) > 0.5;

}
}

Figure 7.10: The Implementation of the Partial Typing Detection Strategy

Figure 7.11: Finding Comprehension Pitfalls in Insider

7.4. PATROOLS 115

+m()

<<Interface>>
A

+m()

C

void aClient(A a) {
 //In this context, a refers only to B objects
 a.m();
}

+m()

B

void aClientInvoker1() {
 aClient(new B());
}

void aClientInvoker2() {
 aClient(new B());
}

Figure 7.12: Limitations of Intra-Procedural SCA

7.4.5 Implementation Limitations and Possible Improvements

During Chapters 4, 5 and 6 we have briefly discussed a couple of implementation limitations
of our tool support. In this section we are going to detail some of them.

Intra- vs. Inter- Procedural SCA. The biggest problem appears to be caused by the intra-
procedural implementation of the SCA analysis which provides the raw information needed
to implement the proposed software visualizations and metrics. Let us exemplify the problem
based on Figure 7.12.

In an intra-procedural implementation of SCA, each method is analyzed in isolation. Thus,
at the beginning of the exemplified method, it is considered that the a parameter may refer
to instances of B and C classes (i.e., to instances of any concrete descendants of the class
designated by the statically declared type of the parameter). However, if we take a closer
look at all the invokers of aClient method (i.e.,aClientInvoker1 and aClientInvoker2)
we can see that the a variable may refer only to B instances. Such a situation cannot be
emphasized by an intra-procedural data-flow analysis and thus, the precision of the Type
Highlighting views and of the uniformity metrics may be negatively affected (e.g., the
invocation from aClient is actually a non-uniform call and not a strong uniform one as
identified when using an intra-procedural SCA).

A solution to this problem is to use an inter-procedural SCA (e.g., [33]). In this case, a system
is analyzed as a whole, constructing the system call-graph (including dynamically bounded
invocations), seeing what classes are really instantiated, and passing data facts between callers
and callees. However, this implementation alternative raises some other issues. First, because
a system is analyzed as a whole, the analysis may be excessively time consuming when applied
to large legacy systems. Second, analyzing incomplete code may easily become problematic

116 7. TOOL SUPPORT

+m()
+getType()

<<Interface>>
A

+m()
+getType()

C

void aClient(A a) {
 if(a instanceof B) {
 //a refers only to B objects
 }

 if(a.getType() == 1) {
 //a also refers only to B objects
 }
}

int getType() {
 return 1;
}

int getType() {
 return 2;
}+m()

+getType()

B

Figure 7.13: Detecting Class Discriminations

(e.g., what if the client from Figure 7.12 is also called with an instance of the C class for its
parameter, but these invocations are missing from the analyzed source code?). Finally, what
if a subclass is never instantiated in a system because the investigated software is a particular
instantiation of a framework? For example, in another framework instantiation, the client
from Figure 7.12 might also be invoked with a parameter referring to a C object.

It is clear that both SCA implementations (i.e., intra- or inter-procedural) have some benefits
but also some drawbacks. In order to obtain the best possible implementation of our analysis
methods, a proper balance must be found between these pros and cons. At the moment,
because of its simplicity, we consider that the limitations of the intra-procedural SCA are less
important than the issues that have to be solved in order to use an inter-procedural SCA as
an implementation basis for our analysis methods.

Class Discrimination. Another implementation limitation comes from the fact that we de-
tect class discrimination operations based exclusively on the usage of the instanceof operator.
Thus, our SCA implementation can detect that in the true branch of the first if statement
from Figure 7.13, the a variable can refer only to B objects. Unfortunately, we cannot detect
that a also refers only to B instances in the true branch of the second if statement.

Of course, precisely identifying all the class discriminations in code is not possible. However,
cases like the one presented in Figure 7.13 may appear frequently in legacy code and thus,
we should try to also emphasize them. A solution is presented in [34] where methods like
getType are detected and used afterwards to improve our SCA implementation.

Chapter 8

Conclusions and Perspectives

We have presented in this thesis several new high-level analyses to support understanding
and assessing the quality of class hierarchies. These analyses are built based on a novel
perspective of using the clients of class hierarchies to investigate the hierarchies: observing
the usage of polymorphism in the clients. In this chapter, we draw the conclusions related
to the analysis means introduced in the current dissertation and we establish our future work
directions.

8.1 Summary of Contributions

The scope of this thesis is in the field of program understanding and quality assessment for
object-oriented legacy programs. Its main goal is to enhance the current support for class
hierarchies understanding and quality assessment by observing how their clients make use of
polymorphism when they use the hierarchies.

Type Highlighting

To achieve the thesis goal, we have created first the Type Highlighting visual analysis
vehicle. Its purpose is to (i) capture the usage of polymorphism in the clients of a class
hierarchy and (ii) help us discover various ways of using this information to enhance the
understanding of class hierarchies and their quality assessment.

Type Highlighting proved to be an efficient analysis vehicle. Using it we have managed to
develop a vocabulary of visual patterns that reveal various characteristics of a class hierarchy
and of its clients, characteristics that enhance the understanding and the quality assessment
of class hierarchies. At the same time, we have shown during a maintenance episode, how the
proposed software visualizations can effectively support maintenance and restructuring.

We would like to emphasize here that the visual patterns discovered using the Type High-
lighting analysis vehicle could be quantified and consequently automatically detected with-

117

118 8. CONCLUSIONS AND PERSPECTIVES

out the need of a visual inspection. However, in order to quantify them, we have to discover,
describe and interpret them first, and this is the main purpose of our analysis vehicle. This
makes Type Highlighting an essential research vehicle.

The Metric-Based Bi-Dimensional Characterization of Class Hierarchies

Starting from the observations made using the Type Highlighting views (i.e., the possibil-
ity of detecting the type hierarchy intention of a class hierarchy based on the manner in which
its clients make use of polymorphism when manipulating the hierarchy), we have introduced
a bi-dimensional characterization of class hierarchies. Its purpose is to automatically reveal
(without the need of a supplementary visual inspection using Type Highlighting) the type
hierarchy and / or implementation hierarchy nature of a class hierarchy.

The primary achievement was the developing of a suite of uniformity metrics that capture the
extent to which a class hierarchy is polymorphically used by its clients and that can reveal the
type hierarchy intention of a hierarchy. We have applied our characterization methodology on
three case studies and we have found that it can help in understanding the nature of a class
hierarchy from a legacy system since the metrics interpretation appears to be consistent with
the conclusion reached when we have manually analyzed these systems. Although our case
studies have provided promising results, we believe that a stronger case study is required in
order to evaluate our approach in more detail.

We would like to emphasize here that the success of the metric-based bi-dimensional char-
acterization is due to the Type Highlighting analysis vehicle. That is, the uniformity
metrics have been derived as a result of observing some of the visual patterns (e.g.,Intensively
Polymorphic External Population) identified using this research vehicle. On one hand, this is
a proof that some of the visual patterns from Chapter 4 can be quantified and automatically
detected using metrics without the need of a visual inspection of the views. On the other hand,
the metrics have been enhanced once the corresponding visual pattern have been identified,
understood and interpreted. It would have been much more difficult to develop the metrics
without the support offered by Type Highlighting. Consequently, this is yet another proof
of the of importance of the Type Highlighting as a research vehicle.

Discovering Comprehension Pitfalls

We have also introduced in this dissertation the notion of comprehension pitfall as a design
situation in which the polymorphic manipulation of a design entity (e.g., method) can be easily
misunderstood. Additionally, we presented a generic process that can be used to define such
pitfalls. The applicability of this process has been proved by using it to define three concrete
comprehension pitfalls. Moreover, we have introduced three detection strategies (based on
the uniformity metrics) to automatically detect these pitfalls in object-oriented code.

Possible threats to the validity of our approach are (i) our relative small case study based on
our (possible biased) manual investigation and (ii) the lack of an empirical third-party study to
prove the difficulty in code understanding and modification of the presented pitfalls. However,
based on the current experimental results, we can conclude that the identified comprehension

8.2. FUTURE WORK 119

pitfalls and the approach used to detect them are a promising support for maintenance and
deserve to be further investigated on larger case studies and in an industrial development
environment.

The sufficiently good precision of the presented detection strategies indicates two other things
related to our work. First, it directly indicates the potential of the uniformity metrics to
distinguish between class hierarchies intended to be type hierarchies and those which are
not intended for this purpose. Second, it proves once again our thesis: that observing how
the clients of class hierarchies make use of polymorphism when manipulating objects from
the hierarchies can enhance the understanding and the quality assessment of inheritance
lattices.

8.2 Future Work

Our future work is focused on the following directions:

• We plan to extend the vocabulary of visual patterns by searching for other relevant
patterns in many different object-oriented systems. At the same time, we plan to
investigate (i) the patterns prevalence and (ii) the accuracy of their interpretation. We
also plan an experiment with human subjects in order to emphasize the benefits of
the proposed analysis vehicle in the context of maintenance (not only its benefits as a
research vehicle). We also consider to quantify some of the identified visual patterns in
order to automatically detect them in code (without the need of a visual inspection).

• The LAmetric is not concern sensitive. For example, a client might implement more than
one concern (also known under the name of feature or concept). Thus, it is reasonable
to ask how much influence a variable has for a token / statement while computing its
LA. For example, a token may be part of a polymorphic concern for which the variable
is significant. This situation will be correctly classified. However, another token from
the same client may be part of another unrelated feature for which the variable is not
relevant. At the moment, we cannot make any distinction between these two tokens from
the polymorphism usage point of view. Fortunately, for the current visual patterns, this
issue should not raise any significant problems for the patterns interpretation. However,
we plan to investigate the possibility of considering the influence of a variable for a
token when computing its LA metric. This may help in discovering more complex visual
patterns than the already presented ones.

• We plan to extend the suite of comprehension pitfalls1, by describing other situations
in which polymorphism and inheritance can mislead a maintainer during software com-
prehension activities. At the same time, we plan larger case studies to evaluate the
frequency of each identified comprehension pitfalls and the accuracy of their detection
means. Additionally, we plan an empirical study with human subjects in order to esti-
mate the difficulties in code understanding and modification induced by the described
pitfalls.

1Several other comprehension pitfalls have been identified but, at the moment, they have not been evaluated
sufficiently

120 8. CONCLUSIONS AND PERSPECTIVES

• For all the proposed analyses, we plan to evaluate the impact of using an inter-procedural
static class analysis as a basis for their implementation.

• We plan to provide a complementary approach for the detection of comprehension
pitfalls. That is, we start building the ECHOS 2 analysis tool that integrates a dynamic
analysis instrument to infer method preconditions and postconditions, a static analysis
tool to filter irrelevant invariants, an automatic test generator, and a theorem prover
[17, 37, 54]. We believe that the comprehension pitfalls introduced in this thesis can
be formalized in terms of preconditions and postconditions of base class methods and
consequently, can be detected by proving particular relations between these invariants
using a theorem prover. In this manner, we expect to obtain a detection approach
which will facilitate a more complete analysis of the presented comprehension pitfalls in
object-oriented code.

• We plan to migrate the tool support created for this thesis in the Eclipse integrated
development environment. In this manner, we will facilitate its usage since it will be
very close to the developer (i.e., programmers will not have to use a separate tool in
order to access the analyses proposed in this thesis). Additionally, the migration will
facilitate the evaluation of our analyses in an industrial environment.

2Eclipse CHecker for Object Substitutability

Appendix A

Details on the Analyzed
Software

During evaluation, we have used four Java programs. Recoder1, Jung2 and Freemind3 are
open-source systems while InternalProduct is an old product of LOOSE Research Group.
Tables A.1 and A.2 present several high-level characteristics of these systems.

System \ Metrics NOC NOM LOC ANDC AHH
Recoder 490 6 795 42 259 0.74 0.43
Jung 391 3 038 22 447 0.41 0.34

FreeMind 455 5 228 52 904 0.51 0.34
InternalProduct 124 1 002 11 210 0.68 0.37

Table A.1: Overall Characteristics of the Analyzed Systems

System Base Classes Interfaces Base Class Methods
Recoder 219 154 1 742
Jung 168 85 908

FreeMind 239 141 1 523
InternalProduct 20 3 127

Table A.2: Other Class Hierarchies Related Characteristics

On one hand, they give an impression about the size of these programs e.g.,Number of Classes
(NOC),Number of Methods (NOM), Lines of Code (LOC).

On the other hand, the Average Number of Derived Classes (ANDC) and the Average Hierar-
chy Height (AHH) system-level metrics [42] explain the reason for selecting the case studies.

1recoder.sourceforge.net
2jung.sourceforge.net
3freemind.sourceforge.net

121

122 A. DETAILS ON THE ANALYZED SOFTWARE

The ANDC metric is the average number of classes directly derived from a base class (if a
class has no derived classes then it contributes with a value of 0 to ANDC) while the AHH
metric is the average of the Height of the Inheritance Tree (HIT) for all the root classes from
a system (a class is a root class if it is not derived from another one; stand-alone classes have
a HIT of 0). According to the statistical thresholds from [42], the values of these metrics
tell us that hierarchies are frequent in all the presented systems and that the hierarchies are
relatively wide and deep. Such hierarchies’ characteristics make these systems a good choice
in order to obtain a relevant evaluation of our analysis methods.

Appendix B

List of Publications

B.1 Papers Published in Proceedings of International Con-
ferences with ISI Ranking (abroad)

1. Petru-Florin Mihancea, Radu Marinescu, Discovering Comprehension Pitfalls in Class
Hierarchies, In Proceedings of the 13th European Conference on Software Maintenance
and Reengineering (CSMR09), pp. 7–16, ISBN 978-07695-3589-0, Acceptance Rate1:
21+10/70 (30%), IEEE Computer Society, 2009.

2. Petru-Florin Mihancea, Type Highlighting: A Client-Driven Visual Approach for Class
Hierarchies Reengineering, In Proceedings of the 8th IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM08), pp. 207–216, ISBN
978-0-7695-3353-7, Acceptance Rate: 23+0/61 (38%), IEEE Computer Society, 2008,
Nominated for Best Paper Award.

3. Mihai Balint, Petru-Florin Mihancea, Tudor Gîrba, Radu Marinescu, NOREX: A Dis-
tributed Reengineering Environment, In Proceedings of the 23rd IEEE International
Conference on Software Maintenance (ICSM07), pp. 523–524 , ISBN 1-4244-1256-0,
IEEE Computer Society, 2007.

4. Petru-Florin Mihancea, Towards a Client-Driven Characterization of Class Hierarchies,
In Proceedings of the 14th IEEE International Conference on Program Comprehension
(ICPC06), pp. 285–294, ISBN 0-7695-2601-2, Acceptance Rate: 32+11/73 (32%),
IEEE Computer Society, 2006, Relevant citations2:

• Simon Denier, Yann-Gaël Guéhéneuc, Mendel: A Model, Metrics, and Ruled to
Understand Class Hierarchies, In Proceeding of the 16th IEEE International Con-
ference on Program Comprehension (ICPC08), pp. 143–152, ISBN 978-0-7695-
3176-2, IEEE Computer Society Press, 2008.

1Presented only where available, http://people.engr.ncsu.edu/txie/seconferences.htm
2Citations which appear in papers ranked ISI / ISI proceedings and which are relevant in the context of

this thesis

123

124 B. LIST OF PUBLICATIONS

5. Petru-Florin Mihancea, Radu Marinescu, Towards the Optimization of Automatic
Detection of Design Flaws in Object-Oriented Software Systems, In Proceedings of
the 9th European Conference on Software Maintenance and Reengineering (CSMR05),
pp. 92–101, ISBN 0-7695-2304-8, Acceptance Rate: 33+5/81 (41%),IEEE Computer
Society, 2005, Relevant citations:

• Mazeiar Salehie, Shimin Li, Ladan Tahvildari, A Metric-Based Heuristic Framework
to Detect Object-Oriented Design Flaws, In Proceeding of the 14th IEEE Inter-
national Conference on Program Comprehension (ICPC06), pp. 159–168, ISBN
0-7695-2601-2, IEEE Computer Society Press, 2006.

B.2 Papers Published in Proceedings of International Con-
ferences with ISI Ranking (in Romania)

1. Petru-Florin Mihancea, George Ganea, Ioana Verebi, Cristina Marinescu, Radu Mari-
nescu, McC and Mc#: Unified C++ and C# Design Facts Extractor Tools, In Post-
Proceedings of the 9th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC07), pp. 101–104, ISBN 0-7695-3078-8, IEEE Com-
puter Society, 2007.

B.3 Papers Published in Proceedings of International Con-
ferences Indexed in International Databases

1. Petru-Florin Mihancea, Towards a Reverse Engineering Dataflow Analysis Framework
for Java and C++, In Post-Proceedings of the 10th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC08), pp. 285-288,
ISBN 978-0-7695-3523-4, IEEE Computer Society, 2008 [IEEE Explore].

2. Cristina Marinescu, Radu Marinescu, Petru-Florin Mihancea, Daniel Raţiu, Richard
Wettle, iPlasma: An Integrated Platform for Quality Assessment of Object-Oriented
Design, In Proceedings of the 21st IEEE International Conference on Software Mainte-
nance - Industrial and Tool Volume, (ICSM05), pp. 77–80, ISBN 9-6346-0980-5, 2005
[DBLP].

B.4 Papers Published in Proceedings of Other Confer-
ences and Workshops

1. Mihai Balint, Petru-Florin Mihancea, Radu Marinescu, Michele Lanza, NOREX: Dis-
tributed Collaborative Reengineering, In Proceedings of the 1st Workshop on FAMIX
and MOOSE in Reengineering, 2007.

B.4. PAPERS PUBLISHED IN PROCEEDINGS OF OTHER CONFERENCES AND WORKSHOPS 125

2. Petru-Florin Mihancea, Radu Marinescu, Improving the Automatic Detection of De-
sign Flaws in Object-Oriented Software Systems, In Proceedings of the CAVIS Workshop,
2004.

3. Cristina Marinescu, Radu Marinescu, Petru-Florin Mihancea, Daniel Raţiu, Richard
Wettle, Analysis Infrastructure for Quality Assesment of Object-Oriented Design, In
Proceedings of the 6th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC04), 2004.

placeholder

Appendix C

List of Research Grants

C.1 National Research Grants (as Director)

1. Reverse Engineering Techniques for Class Hierarchies, CNCSIS TD 46/GR/11.05.2007
(47.000 RON).

2. Reverse Engineering Techniques for Class Hierarchies, CNCSIS TD 98/GR/11.06.2008
(30.000 RON).

C.2 International Research Grants (as TeamMember)

1. Network of Reengineering Expertise, Swiss National Science Foundation IB7320 - 110997
/ 2005.

2. Systems Verification, Austrian Government BMBWK GZ45.527/1-VI/B/7a/2002-2005.

C.3 National Research Grants (as Team Member)

1. Methods and Tools for Continuous Quality Assurance of Complex Software Systems,
CNCSIS PN-II 357/01.10.2007.

2. Distributed Environment for the Control and Optimization of Software Evolution, CEEX
Module II 5880/18.09.2006.

3. Design Quality Assurance for Enterprise Software Systems, CEEX Module II 3147 /
01.10.2005.

4. Integrated Evolutive Environment for Software Quality Assessment, CNCSIS A1/GR181/
19.05.2005.

127

placeholder

List of Figures

2.1 A Violation of LSP . 18
2.2 A Client of the Hierarchy . 18
2.3 Transformed Client Code . 19
2.4 A Structure Not Compliant With DIP [53] 19
2.5 A DIP Compliant Structure of an Application [53] 20

3.1 Prolog Rule to Detect Base Classes Not Used for Polymorphism 23
3.2 Refused Parent Bequest Detection Strategy [42] 24
3.3 Client Type Checking Restructuring . 25
3.4 An Example of Inheritance Classification View [41] 27
3.5 The Importance of Observing How Clients Use Polymorphism 30
3.6 The Thesis Roadmap . 31

4.1 Manually Investigating Client Code . 34
4.2 Exemplifying LA Values . 37
4.3 Microprints Examples . 38
4.4 A Generic Type Highlighting View . 39
4.5 Exemplifying the Level of Abstraction View 40
4.6 A Group Discrimination View Example . 42
4.7 The Hierarchy Used to Exemplify Visual Patterns 44
4.8 Polymorphic Client . 44
4.9 Partially Polymorphic Client . 44
4.10 Concrete Client . 45
4.11 Mixed Client . 45
4.12 Indirect Client and Auxiliary Code . 46
4.13 Intensively Polymorphic External Population 47
4.14 Intensively Partially Polymorphic External Population 47
4.15 Intensively Concrete External Population . 48

129

130 LIST OF FIGURES

4.16 Mixed Twins . 48
4.17 Mixed Twins Unification . 49
4.18 External Short-Circuits . 50
4.19 Polymorphic External Islands . 50
4.20 Level of Abstraction View for UserDataContainer Hierarchy 52
4.21 Group Discrimination View for UserDataContainer Hierarchy filtered with

Top8PrevalentGroups . 53
4.22 Legend of Group Discrimination View for UserDataContainer Hierarchy fil-

tered with Top8PrevalentGroups (rotated) 54
4.23 Level of Abstraction View for the Edge Hierarchy 57
4.24 Group Discrimination View (without filters) for the Edge Hierarchy 58
4.25 Legend of the Group Discrimination View for the Edge Hierarchy 59
4.26 Type Highlighting Views for a Hierarchy from InternalProduct 60

5.1 Exemplifying Types of Invocations . 69
5.2 A Partial View of the AbstractArrayList Hierarchy 73
5.3 A Partial View of the LineAdapter Hierarchy 74
5.4 A Partial View of the AbstractLayout Hierarchy 74

6.1 A Pitfall Example . 78
6.2 The Process of Defining Pitfalls . 79
6.3 Computation of the Type Affinity Metric 80
6.4 Exemplifying the Type Affinity Computation 81
6.5 Partial Typing Detection Strategy . 83
6.6 Uneven Service Behavior Detection Strategy 85
6.7 Premature Service Detection Strategy . 86
6.8 A Partial View of the ArchetypeVertex Hierarchy 89
6.9 A Partial View of the Operator Hierarchy 91
6.10 A Partial View of the NodeHook Hierarchy 92

7.1 iPlasma Overview . 96
7.2 iPlasma Extensions . 97
7.3 A System Complexity View Example . 100
7.4 Solving a Data-Flow Analysis Problem . 102
7.5 Representation Example . 106
7.6 The Data-Flow Analysis Framework . 108
7.7 Explaining Some SCA Transfer Functions 111
7.8 Group Discrimination View in Insider . 112
7.9 Uniformity Metrics in Insider . 113
7.10 The Implementation of the Partial Typing Detection Strategy 114

LIST OF FIGURES 131

7.11 Finding Comprehension Pitfalls in Insider 114
7.12 Limitations of Intra-Procedural SCA . 115
7.13 Detecting Class Discriminations . 116

placeholder

List of Tables

4.1 Pixels’ colors in Level of Abstraction View 39

5.1 Interface Reuse Characterization Based on a Base Class Method’s Invocation
by its Clients (the horizontal perspective) 67

5.2 Code Reuse Characterization Based on a Base Class Method’s Usage in De-
scendants (the vertical perspective) . 67

5.3 The Analyzed Base Classes . 72
5.4 Metric Values for the Discussed Base Classes 72

6.1 The Thresholds . 88
6.2 Experimental Results . 89

7.1 A Summary of MemBrain References . 106
7.2 The Description of Several MemBrain Instructions 107
7.3 MemBrain Execution Times . 110
7.4 Performance Comparison for Reaching Definitions 110

A.1 Overall Characteristics of the Analyzed Systems 121
A.2 Other Class Hierarchies Related Characteristics 121

133

placeholder

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools (2nd Edition). Addison Wesley, 2007.

[2] R. Al-Ekram and K. Kontogiannis. An XML-Based Framework for Language Neutral
Program Representation and Generic Analysis. In Proceedings of the 9th European
Conference on Software Maintenance and Reengineering (CSMR’05). IEEE Computer
Society, 2005.

[3] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design Pattern Recovery in Object-Oriented
Software. In Proceedings of the 6th International Workshop on Program Comprehension
(IWPC’98). IEEE Computer Society, 1998.

[4] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. Discovering Unanticipated
Dependency Schemas in Class Hierarchies. In Proceedings of the 9th European Confer-
ence on Software Maintenance and Reengineering (CSMR’05). IEEE Computer Society,
2005.

[5] Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C++ Source Code. In
Proceedings of the 19th International Conference on Software Maintenance (ICSM’03).
IEEE Computer Society, 2003.

[6] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tolls. Graph
Drawing — Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[7] James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an Object-Oriented
System. SIGSOFT Software Engineering Notes, 20(SI), 1995.

[8] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Object
Technology Series. Addison Wesley, 1999.

[9] Grady Booch. Object Oriented Analysis and Design with Applications (2nd Edition).
The Benjamin Cummings Publishing Co. Inc., 1994.

[10] Grady Booch. Object Solutions. Addison Wesley, 1996.

[11] L.C. Briand, Y. Labiche, and Y. Miao. Towards the Reverse Engineering of UML Se-
quence Diagrams. In Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE’03). IEEE Computer Society, 2003.

135

136 BIBLIOGRAPHY

[12] F. Brito e Abreu, M. Goulao, and R. Esteves. Toward the Design Quality Evaluation of
Object-Oriented Software Systems. In Proceeding of the 5th International Conference
on Software Quality (5ICSQ’95), 1995.

[13] Craig Chambers and David Ungar. Iterative Type Analysis and Extended Message Split-
ting: Optimizing Dynamically-Typed Object-Oriented Programs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 1990.

[14] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object-Oriented Design.
IEEE Transactions on Software Engineering, 20(6), 1994.

[15] Elliot Chikofsky and James Cross II. Reverse Engineering and Design Recovery: A Tax-
onomy. IEEE Software, 7(1), 1990.

[16] Oliver Ciupke. Automatic Detection of Design Problems in Object-Oriented Reengi-
neering. In Proceedings of Technology of Object-Oriented Languages and Systems
(TOOLS’99). IEEE Computer Society, 1999.

[17] Andrei Costache. Filtering Dynamically Inferred Invariants Using Static Analysis. Diploma
thesis, Politehnica University of Timişoara, Romania, 2009.

[18] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and
Michele Risi. Design Pattern Recovery by Visual Language Parsing. In Proceedings of
the 9th European Conference on Software Maintenance and Reengineering (CSMR’05).
IEEE Computer Society, 2005.

[19] Jeffrey Dean, Greg Defouw, David Grove, Vassily Litvinov, and Craig Chambers. Vortex:
An Optimizing Compiler for Object-Oriented Languages. In Proceedings of the 11th
ACM Conference on Object-Oriented Programming Systems, Languages and Application
(OOPSLA’96), 1996.

[20] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Pro-
grams Using Static Class Hierarchy Analysis. In Proceedings of the 9th European Con-
ference on Object-Oriented Programming (ECOOP’95). Springer-Verlag, 1995.

[21] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengineering
Patterns. Morgan Kaufmann, 2002.

[22] Serge Demeyer, Matthias Rieger, and Sander Tichelaar. Three Reverse Engineering
Patterns, 1998. Writing Workshop at 3rd European Conference on Pattern Languages
of Programming and Computing (EuroPLOP’98).

[23] Stephan Diehl. Software Visualization. Visualizing the Structure, Behavior and Evolution
of Software. Springer, 2007.

[24] Stephen G. Eick, Joseph L. Steffen, Eric E., and Sumner Jr. SeeSoft—A Tool for
Visualizing Line Oriented Software Statistics. Transactions on Software Engineering,
18(11), 1992.

[25] Jean-Marie Favre. GSEE: A Generic Software Exploration Environment. In Proceedings of
the 9th International Workshop on Program Comprehension (IWPC’01). IEEE Computer
Society, 2001.

BIBLIOGRAPHY 137

[26] Rudolf Ferenc, Arpad Beszedes, Lajos Fulop, and Janos Lele. Design Pattern Mining
Enhanced by Machine Learning. In Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05). IEEE Computer Society, 2005.

[27] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus -
Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th IEEE
International Conference on Software Maintenance (ICSM’02). IEEE Computer Society,
2002.

[28] Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Behavioral Contracts
and Behavioral Subtyping. In Proceedings of the 8th European Software Engineering
Conference and 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/SIGSOFT FSE’01). ACM, 2001.

[29] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[31] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer Verlag, 1999.

[32] Tudor Gîrba, Michele Lanza, and Stéphane Ducasse. Characterizing the Evolution of Class
Hierarchies. In Proceedings of the 9th European Conference on Software Maintenance
and Reengineering (CSMR’05). IEEE Computer Society, 2005.

[33] David Grove. The Impact of Interprocedural Class Analysis on Optimisation. In Pro-
ceedings of the 1995 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’95). IBM Press, 1995.

[34] Andrei Györfi. Partitioning Hierarchical Types for Improving Static Class Analysis.
Diploma thesis, Politehnica University of Timişoara, Romania, 2008.

[35] Carl S. Hartzman and Charles F. Austin. Maintenance Productivity: Observations based
on an Experience in a Large System Environment. In Proceedings of the 1993 Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON’93). IBM Press,
1993.

[36] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall, 1996.

[37] Andreea Ionete. ECHOS: An Infrastructure to Verify object Substitutability Using Dy-
namic Analysis. Diploma thesis, Politehnica University of Timişoara, Romania, 2008.

[38] N.A. Kraft, B.A. Malloy, and J.F. Power. Towards an Infrastructure to Support Inter-
operability in Reverse Engineering. In Proceedings of the 12th Working Conference on
Reverse Engineering (WCRE’05). IEEE Computer Society, 2005.

[39] Christian Kramer and Lutz Prechelt. Design Recovery by Automated Search for Struc-
tural Design Patterns in Object-Oriented Software. In Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE’96). IEEE Computer Society, 1996.

138 BIBLIOGRAPHY

[40] Michele Lanza. Codecrawler — Lessons Learned in Building a Software Visualization
Tool. In Proceedings of the 7th European Conference on Software Maintenance and
Reengineering (CSMR’03). IEEE Computer Society, 2003.

[41] Michele Lanza and Stéphane Ducasse. Polymetric Views—A Lightweight Visual Approach
to Reverse Engineering. Transactions on Software Engineering, 29(9), 2003.

[42] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

[43] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), 2004.

[44] Manny Lehman and Les Belady. Program Evolution: Processes of Software Change.
London Academic Press, 1985.

[45] Karl J. Lieberherr, Ian M. Holland, and Arthur Riel. Object-Oriented Programming:
An Objective Sense of Style. In Proceedings of the 3rd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’88). ACM, 1988.

[46] Barbara Liskov. Data Abstraction and Hierarchy. In Proceedings of the 2nd Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’87).
ACM, 1987.

[47] Barbara Liskov and Stephane Zilles. Programming With Abstract Data Types. In Pro-
ceedings of ACM SIGPLAN Conference on Very High Level Languages. ACM, 1974.

[48] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall, 1994.

[49] Cristina Marinescu. Identification of Design Roles for the Assessment of Design Quality
in Enterprise Applications. In Proceedings of the 14th IEEE International Conference on
Program Comprehension (ICPC’06). IEEE Computer Society, 2006.

[50] Cristina Marinescu, Radu Marinescu, Petru F. Mihancea, Dan Ratiu, and Richard Wet-
tel. iPlasma: An Integrated Platform for Quality Assessment of Object-Oriented De-
sign. In Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05) - Industrial and Tool Volume, 2005.

[51] Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Department of Computer Science, Politehnica University of Timişoara, 2002.

[52] Radu Marinescu. Detection Strategies: Metrics-Based Rules for Detecting Design Flaws.
In Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM’04). IEEE Computer Society, 2004.

[53] Robert Cecil Martin. Agile Software Development. Principles, Patterns, and Practices.
Prentice-Hall, 2002.

[54] Simina Mazilu. Generarea Automata a Suitelor de Teste pentru Platforma ECHOS.
Diploma thesis, Politehnica University of Timişoara, Romania, 2009.

BIBLIOGRAPHY 139

[55] T.J. McCabe. A Measure of Complexity. IEEE Transactions on Software Engineering,
2(4), 1976.

[56] Bertrand Meyer. Object-Oriented Software Construction (1st Edition). Prentice-Hall,
1988.

[57] Bertrand Meyer. Object-Oriented Software Construction (2nd Edition). Prentice-Hall,
1997.

[58] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An Agile Visualization
Framework. In Proceedings of the ACM Symposium on Software Visualization (SOFT-
VIS’06). ACM, 2006.

[59] Petru Mihancea and Radu Marinescu. Towards the Optimization of Automatic Detection
of Design Flaws in Object-Oriented Software Systems. In Proceedings of the 9th European
Conference on Software Maintenance and Reengineering (CSMR’05). IEEE Computer
Society, 2005.

[60] Petru Florin Mihancea. Towards a Client Driven Characterization of Class Hierarchies.
In Proceedings of the 14th IEEE International Conference on Program Comprehension
(ICPC’06). IEEE Computer Society, 2006.

[61] Petru Florin Mihancea. Towards a Reverse Engineering Dataflow Analysis Framework for
Java and C++. In Post-Proceedings of the 10th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC’08). IEEE Computer Society,
2008.

[62] Petru Florin Mihancea. Type Highlighting : A Client Driven Visual Approach for Class
Hierarchies Reengineering. In Proceedings of the 8th IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM’08). IEEE Computer Society,
2008.

[63] Petru Florin Mihancea, George Ganea, Ioana Verebi, Cristina Marinescu, and Radu Mari-
nescu. Mcc and Mc#: Unified C++ and C# Design Facts Extractors Tools. In Pro-
ceedings of the 9th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’07). IEEE Computer Society, 2007.

[64] Petru Florin Mihancea and Radu Marinescu. Discovering Comprehension Pitfalls in Class
Hierarchies. In Proceedings of the 13th European Conference on Software Maintenance
and Reengineering (CSMR’09). IEEE Computer Society, 2009.

[65] Markus Mohnen. An Open Framework for Data-Flow Analysis in Java : Extended Ab-
stract. In Proceeding of the Inaugural Conference on the Principles and Practice of
Programming (PPPJ’02), and Proceedings of the Second Workshop on Intermediate
Representation Engineering for Virtual Machines (IRE’02). National University of Ire-
land, 2002.

[66] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Haufmann,
1997.

[67] Hausi A. Müller. Rigi — A Model for Software System Construction, Integration, and
Evaluation based on Module Interface Specifications. PhD thesis, Rice University, 1986.

140 BIBLIOGRAPHY

[68] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh. To-
wards Pattern-Based Design Recovery. In Proceedings of the 24th International Confer-
ence on Software Engineering (ICSE’02). ACM, 2002.

[69] Thomas Panas, Rüdiger Lincke, and Welf Löwe. Online-Configuration of Software Vi-
sualization with Vizz3D. In Proceedings of ACM Symposium on Software Visualization
(SOFTVIS’05). ACM, 2005.

[70] David J. Pearce. The Bytecode Manipulation Library (BML), 2009.
http://homepages.mcs.vuw.ac.nz/∼djp/bml/.

[71] K. Periyasamy and X. Liu. A New Metrics Set for Evaluating Testing Efforts for Object-
Oriented Programs. In Proceedings of Technology of Object-Oriented Languages and
Systems (TOOLS’99). IEEE Computer Society, 1999.

[72] Daniel Raţiu. Memoria: A Unified Meta-Model for Java and C++. Master’s thesis,
Politehnica University of Timişoara, 2004.

[73] Daniel Raţiu and Florian Deissenboeck. From Reality to Programs and (Not Quite)
Back Again. In In Proceedings of the 15th IEEE International Conference on Program
Comprehension (ICPC’07). IEEE Computer Society, 2007.

[74] Steven P. Reiss. An Overview of BLOOM. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(PASTE’01). ACM, 2001.

[75] Arthur Riel. Object-Oriented Design Heuristics. Addison Wesley, Boston MA, 1996.

[76] Romain Robbes, Stéphane Ducasse, and Michele Lanza. Microprints: A Pixel-based
Semantically Rich Visualization of Methods. In Proceedings of the 13th International
Smalltalk Conference (ISC’05), 2005.

[77] Spencer Rugaber and Linda M. Wills. Creating a Research Infrastructure for Reengineer-
ing. In Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE’96).
IEEE Computer Society, 1996.

[78] Gregor Snelting and Frank Tip. Understanding Class Hierarchies Using Concept Analysis.
ACM Transactions on Programming Languages and Systems, 2000.

[79] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages.
In Proceedings of the 1st Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’86), ACM SIGPLAN Notices, volume 21. ACM,
1986.

[80] Ian Sommerville. Software Engineering (Sixth Edition). Addison Wesley, 2000.

[81] Christopher Strachey. Fundamental Concepts in Programming Languages. Lecture Notes
from International Summer School in Computer Programming, 1967.

[82] Jeffrey Stylos, Benjamin Graf, Daniela K. Busse, Carsten Ziegler, Ralf Ehret, and Jan
Karstens. A Case Study of API Redesign for Improved Usability. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’08).
IEEE Computer Society, 2008.

BIBLIOGRAPHY 141

[83] Edward R. Tufte. The Visual Display of Quantitative Information (2nd Edition). Graphics
Press, 2001.

[84] Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

[85] Lothar Wendehals. Improving Design Pattern Instances Recognition by Dynamic Analysis.
In Workshop on Dynamic Analysis (WODA’03), 2003.

142 BIBLIOGRAPHY

placeholder

