
Towards the Detection of Hidden Familial Type
Correlations in Java Code

Alin-Petru Roşu
LOOSE Research Group

Politehnica University of Timişoara
Timişoara, Romania

alin.rosu@student.upt.ro

Petru-Florin Mihancea
LOOSE Research Group

Politehnica University of Timişoara
Timişoara, Romania

petru.mihancea@upt.ro

Abstract—Family polymorphism is an object-oriented pro-
gramming feature which facilitates the definition of groups of
classes (families) that are allowed to be used together while
statically forbidding them to be mixed with classes outside their
families. Unfortunately, this feature has not been yet adopted
by mainstream industrial-strength programming languages. Con-
sequently, in Java, the idea of non-mixable families is prone
to be implemented in a statically unsafe fashion, affecting the
programs’ intelligibility. In order to support program compre-
hension, we present an approach to detect code fragments where
types of references are correlated within a family; nonetheless,
these correlations are hidden behind the references’ declarations.
We obtained promising results during the initial design and
evaluation iterations, based on the analysis of a software system
where the presence of families was previously reported.

Index Terms—program comprehension, family polymorphism,
metrics, static analysis

I. INTRODUCTION

Polymorphism is a motif of expressiveness, reusability

and flexibility in the object-oriented programming languages.

Generally, the mainstream ones (such as Java) support three

kinds of polymorphism i) ad-hoc polymorphism i.e., method

overloading ii) parametric polymorphism i.e., generic pro-

gramming and iii) subtype polymorphism i.e., type inheritance.

However, there is a less known kind of polymorphism, whose

associated language mechanisms have been proved to be

necessary in practice - family polymorphism.

Family polymorphism has been initially detailed in [1]. Its

importance can be more easily understood using an example.

Consider Figure 1, which presents two class hierarchies, Wine
and Glass, and a common client, WaiterTray. By analysing

the WaiterTray’s fields, one might be tempted to believe that

their referred objects are instances of any concrete types of

the Glass and Wine hierarchies, grouped in any arbitrary

combination. However, from the WaiterTray’s clients it can be

implied that the programmer’s intention is different. In fact,

the true intention is to always correlate the instances of the

two hierarchies based on their type. Concretely, a RedWine
instance can only be used together with a RedWineGlass
instance, while a WhiteWine instance must only be used

together with a WhiteWhineGlass instance. Conclusively, this

example consists of two families: {RedWine, RedWineGlass}

and {WhiteWine, WhiteWineGlass}, whose members should

not be intermixed.

Family polymorphism has been proposed so as to allow

programmers to express constraints such as the ones presented

above i.e., to statically guarantee that families cannot be

accidentally mixed. Unfortunately, this feature has not been yet

adopted by mainstream industrial-strength languages, forcing

developers to create families based on the available mecha-

nisms.

Consequently, two such possible patterns have been pre-

sented and compared in [1]. The first one uses parametric poly-

morphism, and ensures safety i.e., statically forbids families

mixing. The second one disregards safety, being similar with

the presented example: statically, nothing stops a developer

to create a WaiterTray using a combination of WhiteWine and

RedWhineGlass objects. This kind of unsafe handling appears

to be used in practice, as it has been recently shown in [2];

downcast operations are usually involved as also discussed

in [1]. Consequently, not only intermixing families may lead

to unexpected system behaviour (e.g., ClassCastExceptions),

but also mislead developers from understanding the code’s

meaning. The brief observation of some reference variables

declared with a particular supertype (e.g., the wine and

glass declared with Wine and Glass respectively) does not

actually show the real design intent. In effect, the familial

correlations between the concrete types intended to be referred

by those variables (e.g., when wine references a RedWine
object, glass must also reference a RedWineGlass object) will

remain hidden beneath the subtype polymorphism mechanism.

Aiming to support program comprehension, we propose an

approach to detect Java code fragments where familial type

correlations exist between some references’ types, yet are

hidden by the way the variables are declared. This approach

would make a developer aware of the references’ true design

intent, possibly triggering a refactoring activity to statically

forbid families intermixing using parametric polymorphism.

The rest of the paper is structured as follows: Section II

details the detecting approach; Section III discusses promising

current results obtained while analysing an open-source soft-

ware system where the presence of families was previously re-

ported; Section IV presents the related work; lastly, Section V

concludes the paper and draws future work directions.

148

2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/22/$31.00 ©2022 IEEE
DOI 10.1109/SCAM55253.2022.00022

<<interface>>
Glass

<<interface>>
Wine

RedWineGlass WhiteWineGlass

RedWine WhiteWine

1: class WineBar {
2: private void doServe(Wine w, Glass g) {
3: …
4: WaiterTray wt1 = new WaiterTray();
5: wt1.setWine(new RedWine());
6: wt1.setGlass(new RedWineGlass());
7: …
8: WaiterTray wt2 = new WaiterTray();
9: Wine tmp = w;
10: wt2.setWine(tmp);
11: wt2.setGlass(g);
12: ...
13: }
14: public void serve() {
15: doServe(new WhiteWine(), new WhiteWineGlass());
16: }
17: }

1: class WaiterTray {
2: private Wine _wine;
3: private Glass _glass;
4: public void setBoth(Wine wineB, Glass glassB) {
5: _wine = wineB;
6: _glass = glassB;
7: }
8: public void setWine(Wine wineP) {
9: _wine = wineP;
10: }
11: public void setGlass(Glass glassP) {
12: _glass = glassP;
13: }
14: }

Fig. 1. Example of Class Families

descendants

possibleConcrete
TypePairs

Project +isGeneric():boolean
+isAbstract():boolean
+apertureCoverage():double

Class
* ConcreteTypePair2

*
usedConcrete
TypePairs

*

MethodParameterPair

+aperture():int
+apertureCoverage():double

ReferenceVariablePair
*

*

*

Fig. 2. The Conceptual Metamodel

II. DETECTING HIDDEN FAMILIAL TYPE CORRELATIONS

We propose a metric-based approach, capable of identifying

code fragments containing hidden familial type correlations.

We start by describing the metamodel, which organises the

information required to quantify the property of the prob-

lematic fragments. Afterwards, we present the proposed soft-

ware metrics together with their interpretation models and

implementation alternatives. The entire approach has been

implemented as a publicly available Eclipse plugin1.

A. The Metamodel

In our approach, we are initially interested in gathering in-

formation about the system under investigation and its classes.

These are represented by the Project and Class elements of

the metamodel in Figure 2.

Next, we take a closer look at reference variables (e.g.,

method parameters), trying to estimate the concrete types

of the objects they may be referring at runtime. At first

sight, it might appear sufficient to capture this information

for each reference individually. For instance, in the example

from Figure 1, observing the WaiterTray’s setters invocations

indicate that the wineP parameter might refer both WhiteWine
and RedWine objects. Similar is the case of the glassP pa-

rameter and WhiteWineGlass/RedWineGlass objects. However,

this way disregards an important aspect: when setWine is

1https://github.com/SourceCodeCodex/jFamilyCounselor

invoked with a RedWine object, the setGlass is also invoked,

on the same tray, with a RedWineGlass object. This means

that we omit the correlation between the wineP and glassP’s

types when setting the content of a tray. Consequently, we

must focus on pairs of variables e.g., (wineP, glassP) and

pairs of concrete types e.g., (RedWine, RedWineGlass). We

ultimately decided to represent these elements as first-class

entities i.e., ReferenceVariablePair and ConcreteTypePair in

the metamodel.

For the moment, we decided to analyse only pairs of method

parameters i.e., MethodParameterPair metamodel’s entity. The

reason is that fields are usually set through method calls.

Therefore, a possible correlation between the concrete types

of some fields would very likely induce a correlation between

the concrete types of some parameters that the fields are being

assigned with.

In terms of (current) limitations, we emphasise that: i) we

do not analyse generic code, nor parameters of static methods

ii) we do not analyse arrays, nor containers e.g., Collection
objects iii) we pair only the parameters of methods declared

within a class, disregarding the inherited ones iv) constructor

parameters are paired only with other parameters of the same

constructor.

Lastly, the remaining elements of our metamodel (i.e, the

possibleConcreteTypePairs and usedConcreteTypePairs rela-

tions) play an essential role, and are discussed in detail in

the following sections.

B. The Aperture Metric

For a pair of reference variables, we are interested in the

number of distinct combinations of concrete types that can be

referred solely based on the variables’ declarations.

For this purpose, for each reference, we compute the set

of all concrete types of the type hierarchy rooted by the

declared type. For instance, for the wineP parameter, this

set is {RedWine, WhiteWine}, computed based on the type

hierarchy of Wine. Subsequently, at the variables pair level,

we compute the cartesian product between the previously

described sets, associated to each member. Thus, for the

(wineP, glassP) pair, the result is {(RedWine, RedWineGlass),

149

(RedWine, WhiteWineGlass), (WhiteWine, RedWineGlass) and

(WhiteWine, WhiteWineGlass)}. This computation represents

the possibleConcreteTypePairs relation from the metamodel.

Finally, for a references pair, we name the cardinality of the

described cartesian product as the aperture of that pair. This

metric quantifies how large is the space of all concrete types

combinations that could be referred by two particular variables

(type combinations permitted by subtype polymorphism).

C. The Aperture Coverage Metric

Apart from all possible types pairs, represented by the

aperture, it is more important to know how many of these

pairs are actually referred by some references in discussion.

For instance, for the (wineP, glassP) pair we can easily

observe that only the {(RedWine, RedWineGlass), (WhiteWine,
WhiteWineGlass)} pairs are actually used, out of the entire

possible combinations. This subset of the possible combina-

tions corresponds to the usedConcreteTypePairs relation from

the metamodel.

Based on the possibleConcreteTypePairs and the usedCon-
creteTypePairs we define the aperture coverage metric with

Formula 1.

AC((x, y)) =
|usedConcreteTypePairs((x, y))|

|possibleConcreteTypePairs((x, y))| (1)

In our example, it is easy to see that the aperture coverage
of the (wineP, glassP) pair is 2/4 = 0.5. In general, a value in

the (0, 1) interval signifies that not all possible combinations

of concrete types are actually used. Consequently, it might

be the case that some type correlations are hidden behind the

apparently general variable declarations. In fact, the lower the

value the higher the likelihood that correlations do exist.

This metric is also extended at the class level. The aperture

coverage of a class is the minimum of all aperture coverages

of any references pair of the class in discussion. Similarly, the

lower the value the higher the chances that the class might be

a client of type families.

Determining the usedConcreteTypePairs set is, unfortu-

nately, not easy. In order to define heuristics for its adequate

approximation, we needed to observe some real cases of

hidden familial type correlations. Thus, we started by im-

plementing a rough approximation of usedConcreteTypePairs
based on classes’ names. We stress the fact that, although

this approximation can detect code fragments that contain

hidden correlations, the indicated correlated types used in

those fragments will probably be imprecise. However, using

our intuition, and based on the observations drawn from the

results of the name-based estimation, we started prototyping a

more in-depth algorithm i.e., the assignment-based estimation.

a) Name-based Estimation of Used Types Combinations:
This approximation started from our conjecture that there

could be a connection between the need to accommodate type

families in a program’s design and parallel class hierarchies
- code smell defined in [3]. A possible symptom of this smell

is that the correlated types’ names of both hierarchies might

have a common prefix [3]. Therefore, we decided to roughly

approximate the usedConcreteTypePairs based on the names’

similarity.

Let us consider a references pair (x, y). For each reference,

we compute the set of concrete types from the hierarchy rooted

by the references’ declared types; let these sets be X and

Y , respectively. Next, we say that two concrete types ai ∈
X and bj ∈ Y can be used only together when Formula 2

holds. For the remaining concrete types for which no such

relation is found, we consider that they can be used in any

combination. In Formula 2, we mention that Tokens(t) is the

set of tokens obtained by splitting the name of t based on a

naming convention (e.g., CamelCase).

|Tokens(ai) ∩ Tokens(bj)|
avg(|Tokens(ai)|, |Tokens(bj)|) ≥ SIMRATIO (2)

For instance, let us consider the SIMRATIO = 0.5.

For the (wineP, glassP) pair, the sets of concrete types

are {RedWine, WhiteWine} and {RedWineGlass, WhiteWine-
Glass}, respectively. RedWine is a compound of the {Red,

Wine} tokens, and RedWineGlass, of {Red, Wine, Glass}.

These sets having 2 tokens in common and an average

size of 2.5, the names’ similarity is 2/2.5 = 0.8 ≥ 0.5.

Consequently, the pair (RedWine, RedWineGlass) is considered

part of the usedConcreteTypePairs set. In contrast, RedWine
cannot be paired with WhiteWineGlass as their name similarity

is 1/2.5 = 0.4 ≤ 0.5. Ultimately, the resulted usedCon-
creteTypePairs set is {(RedWine, RedWineGlass), (WhiteWine,

WhiteWineGlass)}.

b) Assignment-based Estimation of Used Type Com-
binations: The prototypical algorithm we propose to ap-

proximate the usedConcreteTypePairs is represented by an

heuristic inter-procedural flow-insensitive and (most of the

time) object-insensitive static analysis, being divided in two

phases, described below. We emphasise that, as mentioned in

Section II-A, we currently consider only method parameter

references. Consequently, the next phases are currently specific

to the analysis of parameters and not of all kinds of references.

Assignments Combination. Let us consider a parameter pair

(x,y) for which we want to estimate the usedConcreteTypePairs
set. For each parameter x/y, we identify its corresponding

actual arguments based on the method’s invocation sites2. We

then build a set of assignments entities i.e., tuples of the

form (parameter, callTargetReference, actualExpression). In

our example, for the wineP parameter, this set is {(wineP,
wt1, new RedWine()), (wineP, wt2, tmp)} due to the setWine
invocations in lines 5 and 10 from the WineBar class. Simi-

larly, for the glassP parameter, this set is {(glassP, wt1, new
RedWineGlass()), (glassP, wt2, g)}.

Further, for a parameters pair (x, y), we construct the

cartesian product between the assignments sets of x and y

2Currently, we consider call-sites only based on static method resolution

150

(wineP, wt1, new RedWine()) (wineP, wt2, tmp) (glassP, wt1, new RedWineGlass()) (glassP, wt2, g)

((wineP, wt1, new RedWine()),
(glassP, wt1, new RedWineGlass()))

((wineP, wt1, new RedWine()),
(glassP, wt2, g))

((wineP, wt2, tmp),
(glassP, wt1, new RedWineGlass()))

((wineP, wt2, tmp),
(glassP, wt2, g))

Assignments Combination

Assignments Derivation
(RedWine,

RedWineGlass)
((wineP, wt2, w),
(glassP, wt2, g))

((wineP, wt2, new WhiteWine()),
(glassP, wt2, new WhiteWineGlass()))

(WhiteWine,
WhiteWineGlass)

1

2

3 4

5

6

78

Fig. 3. Assignment-based Estimation Example

and we filter out the pairs whose assignments are performed

using different target references. This is because we must

capture correlated invocations on the same object, as it will

use/store the members of the type family. For the parameters

pair (wineP, glassP) the set of assignments pairs is {((wineP,
wt1, new RedWine()), (glassP, wt1, new RedWineGlass())),
((wineP, wt2, tmp), (glassP, wt2, g))} i.e., elements marked

with 1 and 4 in Figure 3. The other combinations are discarded

as their assignments have a different target references i.e., the

elements marked with 2 and 3.

Assignments Derivation. The assignments pairs resulted

from the previous phase are used as starting point

for an iterative worklist algorithm - stops when this

list is empty. In each iteration, a single assignment

pair is retrieved from the list and then analysed. Let

it have the form ((x,callTargetReference,expAssignedToX),
(y,callTargetReference,expAssignedToY)).

When both types of expAssignedToX and expAssignedToY
can be statically resolved to a single concrete one, the pair of

resolved types are added to the usedConcreteTypePairs set e.g.,

the element marked with 1 in Figure 3 generates the concrete

pair type marked with 5. Otherwise, from the current assign-

ments pair, we derive new ones, and add them to the worklist

for further analysis3. The derivation process depends on the

kind of the expAssignedToX and expAssignedToY expressions.

• If one is a local variable, we generate new assignments

pairs, replacing that variable with each of the expressions

assigned to it. A similar derivation is done for other

simple expressions e.g., conditional expressions, casts.

An example of such a derivation appears in Figure 3,

when the assignment pair marked with 4 produces the

element marked with 6.

• If both are method parameters, we generate new assign-

ments pairs, replacing them with their actual arguments,

retrieved from all method call-sites.4 An example of such

a derivation appears in Figure 3 when the assignment pair

marked with 6 produces the element marked with 7.

• In any other cases, the expAssignedToX/Y are not derived

and we consider the case inconclusive.

3We ensure that equivalent assignment pairs are analysed only once and
thus, the algorithm do not enter into an infinite loop

4We additionally limit the number of this kind of derivation to a user-defined
threshold; when exceeded, the assignments pair is treated as inconclusive

TABLE I
DETECTED CLASSES WITH HIDDEN FAMILIAL TYPE CORRELATIONS

Classes with Name-based Assignments-based Assignment-based
relevant pairs AC AC AC detection

Max Depth of 3 precision
488 412 60 86%

When the list is empty, if the number of cases when a

concrete types pair was identified is greater than the number

of inconclusive cases, we disregard the latter. Otherwise, we

consider as members of usedConcreteTypePairs all possible

concrete types pairs resulted from the static types of expAs-
signedToX/Y, including the inconclusive cases.

III. CURRENT RESULTS

In order to design and verify our detecting approach, we

analysed the Kettle-Engine project (containing about 2000

classes), of the Pentaho-Kettle5 system, within which the

presence of families was previously reported in [2].

Initially, we identified the potential clients of families that

might contain type correlations hidden behind parameters.

Specifically, these clients are classes and interfaces containing

relevant parameters pairs i.e., each parameter can refer differ-

ent object types at runtime. We then filtered only those for

which the aperture coverage computed using the name-based
estimation was a non-zero yet below 0.5 value. After manually

analysing some of these classes, we managed to refine the very

initial version of the assignments-based algorithm. Table I

contains the current detection results using both approxima-

tions. We mention that: i) to the best of our understanding,

the precision of detecting code fragments containing hidden

familial type correlations using the assignments-based aperture

coverage is of 86% and ii) apart from one, all cases detected

using the assignment-based algorithm were also detected by

the name-based one.

Listing 1 presents two cases detected by both approaches.

Apparently, invoking the processRow operation is valid using

any combination of StepMetaInterface and StepDataInterface
objects. However, its parameters hide type correlations, which

are harder to observe in the BaseStep’s source code, yet easier

5https://github.com/pentaho/pentaho-kettle

151

in all of its descendants. This is due to the use of downcast

operations as seen in the Calculator class.

Listing 1. Detected Code Fragments
p u b l i c c l a s s BaseS tep . . . {

p u b l i c boolean processRow (S t e p M e t a I n t e r f a c e smi ,
S t e p D a t a I n t e r f a c e s d i) throws . . . { . . . }

}

p u b l i c c l a s s C a l c u l a t o r ex tends BaseS tep . . . {
p u b l i c boolean processRow (S t e p M e t a I n t e r f a c e smi ,

S t e p D a t a I n t e r f a c e s d i) throws . . . {
meta = (C a l c u l a t o r M e t a) smi ;
d a t a = (C a l c u l a t o r D a t a) s d i ; . . .

}
}

Furthermore, these examples can be used to contrast the

two estimations of the aperture coverage. In the case of Cal-
culator, the assignment-based algorithm captures a single type

correlation i.e., between CalculatorMeta and CalculatorData,

as it actually happens in reality. The name-based approach,

however, identifies multiple correlations, which in fact corre-

spond to different BaseStep’s descendants. That is because the

name-based technique can only identify correlations that gen-

erally exist between some types, without indicating those that

are actually used in a particular problematic code fragment.

As we previously mentioned, the name-based estimation of

usedConcreteTypePairs is too rough. Additionally, although

we did not observe such cases, we can already imagine

situations where the presence of type families does not imply

that their members have correlated names, and thus hindering

the effectiveness of the name-based estimation. Due to these

reasons, we need the assignment-based way to compute the

aperture coverage metric.

Nevertheless, the assignment-based algorithm presents a

natural drawback: it cannot work properly with insufficient

data e.g., there are none/too few object types flowing through

the parameters. For instance, some of the BaseStep’s de-

scendants are not detected using assignment-based aperture
coverage, although they contain hidden type correlations. This

is due to the fact that many type correlations flow from tests;

these false-negative cases are in fact not tested. Interestingly,

these cases are although detected when aperture coverage is

name-based estimated. Thus, even if the used type correlations

are erroneous, the name-based estimation at least reveals the

code containing hidden type correlations.

Based on this discussion and other observations drawn from

the analysed code, we conclude that i) further improvements

of the assignment-based estimation are required/possible and

ii) we might define very specific use-cases, when one aperture
coverage approximation should be preferred in the detriment

of the other.

IV. RELATED WORK

Initially detailed in [1], family polymorphism is a language

mechanism, disregarded by most of the mainstream object-

oriented languages. In its absence, the idea of non-mixable

families is prone to be implemented in an statically unsafe

manner.

This fact is supported by the work of Mastrangelo et. al.

in [2], where the authors analysed the occurrence of cast

operations in Java programs. They have shown that 6.86% of

casts are caused by the need to accommodate type families.

This implies that references whose runtime types are correlated

despite their declared type do exist in practice (i.e., hidden

familial type correlations). Therefore, so as to support program

comprehension, we aim to detect code fragments containing

such references, together with their underlying correlations.

In [4], the authors present a pattern that safely and statically

accommodates type families, which makes use of the F-
bounded parametric polymorphism, available in Java. Conse-

quently, the results of our detecting approach could also be

used to design/trigger refactoring actions, using the mentioned

pattern, in order to increase the program type safety.

Still, using parametric polymorphism might involve other

problems, as explained in [1]. For instance, in C++, it makes

code less reusable since it tends to depend on concrete type

families, not on abstract ones. In other words, the principle

“program to an interface, not an implementation” [5] might be

disobeyed. To favour both, code reuse and safety, a dedicated

language for type families is therefore needed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed the detection of Java code

containing hidden familial type correlations, which very likely

cause comprehensibility problems. We also presented a detec-

tion approach that was refined by analysing a system known

to contain families of types.

As the current results are promising, we thus plan further

refinements of the detection technique (e.g., analyse pairs of

fields, handle collection references whose contained concrete

types might be correlated, enhance the derivation phase of the

assignments-based estimation by detailing more expressions

kinds, such as fields and method calls). We are also consider-

ing dynamic analysis as an alternative implementation of our

approach. What is more, an important aspect is to also enrich

the number of case-studies, especially to observe other real

cases of hidden correlations and their particularities.

Additionally, the definition of specific use-cases for the

usage of one aperture coverage’s estimation instead of the

other is also considered.

REFERENCES

[1] E. Ernst, “Family polymorphism,” in ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-
22, 2001, Proceedings, ser. Lecture Notes in Computer Science, J. L.
Knudsen, Ed., vol. 2072. Springer, 2001, pp. 303–326.

[2] L. Mastrangelo, M. Hauswirth, and N. Nystrom, “Casting about in
the Dark: An Empirical Study of Cast Operations in Java Programs,”
Proceedings of the ACM on Programming Languages, vol. 3, pp. 1–31,
10 2019.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999.

[4] B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-Bounded
Polymorphism into Shape,” in PLDI, 2014, pp. 89–99. [Online].
Available: http://www.cs.cornell.edu/ ross/publications/shapes/

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-Wesley
Professional, 1994.

152

